Heart Rate Regulating (e.g., Pacing) Patents (Class 607/9)
  • Patent number: 9042981
    Abstract: One or more temporal stimulation parameters of vagus nerve stimulation (VNS) are selected to substantially modulate one or more target physiological functions without substantially modulating one or more non-target physiological functions. In one embodiment, a stimulation duty cycle is selected such that VNS is delivered to the cervical vagus nerve trunk to modulate a cardiovascular function without causing laryngeal muscle contractions.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: May 26, 2015
    Assignees: Cardiac Pacemakers, Inc., Duke University
    Inventors: Paul B. Yoo, Warren M. Grill, Juan Gabriel Hincapie Ordonez
  • Patent number: 9042980
    Abstract: Methods and devices for cardiac signal analysis in implantable cardiac therapy systems. Several signal processing and/or conditioning methods are shown including R-wave detection embodiments including the use of thresholds related to previous peak amplitudes. Also, some embodiments include sample thresholding to remove extraneous data from sampled signals. Some embodiments include weighting certain samples more heavily than other samples within a sampled cardiac signal for analysis.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: May 26, 2015
    Assignee: CAMERON HEALTH, INC.
    Inventors: Alan H. Ostroff, James W. Phillips, Venugopal Allavatam
  • Patent number: 9042982
    Abstract: Methods and devices for determining optimal Atrial to Ventricular (AV) pacing intervals and Ventricular to Ventricular (VV) delay intervals in order to optimize cardiac output. Impedance, preferably sub-threshold impedance, is measured across the heart at selected cardiac cycle times as a measure of chamber expansion or contraction. One embodiment measures impedance over a long AV interval to obtain the minimum impedance, indicative of maximum ventricular expansion, in order to set the AV interval. Another embodiment measures impedance change over a cycle and varies the AV pace interval in a binary search to converge on the AV interval causing maximum impedance change indicative of maximum ventricular output. Another method varies the right ventricle to left ventricle (VV) interval to converge on an impedance maximum indicative of minimum cardiac volume at end systole. Another embodiment varies the VV interval to maximize impedance change.
    Type: Grant
    Filed: February 20, 2012
    Date of Patent: May 26, 2015
    Assignee: Medtronic, Inc.
    Inventors: John E. Burnes, Yong K. Cho, David Igel, Luc R. Mongeon, John C. Rueter, Harry Stone, Jodi Zilinski
  • Patent number: 9037233
    Abstract: A device and method for delivering high-energy electrical stimulation to the heart in order to improve cardiac function in heart failure patients. The high-energy stimulation mimics the effects of exercise and improves symptoms even in patients who are exercise intolerant. The high-energy stimulation may be delivered on an intermittent basis either as pacing pulses in accordance with a programmed pacing mode and with a higher pacing pulse energy than used for conventional pacing or as low energy shock pulses.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: May 19, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Joseph M. Pastore, Imad Libbus, Andrew P. Kramer, Julio C. Spinelli
  • Patent number: 9037234
    Abstract: Described herein are implantable cardiac stimulation devices, and methods for use therewith. A pacing channel of such a device includes a pace output terminal, a pulse generator and at least two pace return electrode terminals. The pace output terminal is coupleable to an electrode for use as an anode. The pulse generator is configured to selectively output an electrical stimulation pulse to the pace output terminal. Each of the pace return electrode terminals is coupleable to a separate one of at least two further electrodes for use as a cathode. Switching circuitry selectively couples any one of the pace return electrode terminals of the pacing channel to the pace return capacitor of the pacing channel at a time, thereby enabling the pace return capacitor to be shared by at least two of the pace return electrode terminals of the pacing channel. Additional embodiments are also disclosed herein.
    Type: Grant
    Filed: July 25, 2013
    Date of Patent: May 19, 2015
    Assignee: Pacesetter, Inc.
    Inventors: Eric Labbe, Christian Sauer, Erno Klaassen
  • Publication number: 20150134022
    Abstract: An electric stimulator for heart, brain, organs and general cells with a possibly random shape and position of electrodes which enhances its performance for breaking the symmetry. Two types of electrodes are introduced: type-1, or active electrodes are similar to prior art, while type-2, or passive electrodes have not been used in this context. Passive electrodes are electrically insulated, being unable to inject current in the surrounding medium, but they are capable of shaping the electric field, which has consequence on the path of the stimulating currents injected by type-1 electrodes. The invention also discloses a supercapacitor-type passive electrode of type-2, which maximizes the stored charge on the electrode—therefore increasing the electric field magnitude created by it.
    Type: Application
    Filed: September 24, 2014
    Publication date: May 14, 2015
    Inventors: Chong Il Lee, Sergio Lara Pereira Monteiro
  • Patent number: 9031646
    Abstract: A method discriminates between ventricular arrhythmia and supraventricular arrhythmia by determining the direction of an electrical signal conducted through the atrioventricular node. An implantable cardiac defibrillator provides atrioventricular and ventriculoatrial pacing bursts to determine if an arrhythmia with a 1:1 atrial to ventricular relationship is due to ventricular tachycardia or supraventricular tachycardia. This discrimination capability reduces the incidence of inappropriate shocks from dual-chamber implantable cardiac defibrillators to near zero and provides a method to differentially diagnose supraventricular tachycardia from ventricular tachycardia.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: May 12, 2015
    Assignee: University of Pittsburgh—of the Commonwealth System of Higher Education
    Inventor: Samir F. Saba
  • Patent number: 9031650
    Abstract: Various aspects of the present subject matter relate to a method. According to various method embodiments, cardiac activity is detected, and neural stimulation is synchronized with a reference event in the detected cardiac activity. Neural stimulation is titrated based on a detected response to the neural stimulation. Other aspects and embodiments are provided herein.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: May 12, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Aaron R. McCabe, Imad Libbus, Yi Zhang, Paul A. Haefner, Alok S. Sathaye, Anthony V. Caparso, M. Jason Brooke
  • Patent number: 9031647
    Abstract: Cardiac lead implantation systems, devices, and methods for lead implantation are disclosed. An illustrative cardiac lead implantation system comprises a mapping guidewire including one or more electrodes configured for sensing cardiac electrical activity, a signal analyzer including an analysis module configured for analyzing an electrocardiogram signal sensed by the mapping guidewire, and a user interface configured for monitoring one or more hemodynamic parameters within the body. The sensed electrical activity signal can be used by the analysis module to compute a timing interval associated with ventricular depolarization.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: May 12, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Barun Maskara, Yinghong Yu, Bruce A. Tockman, Sunipa Saha, Martin McDaniel, Geng Zhang
  • Patent number: 9031648
    Abstract: According to one aspect, various methods and apparatus are used for treating a condition of a patient's heart, and for monitoring cardiac operation. In one approach consistent therewith, an electrode arrangement is placed in a right ventricle of the heart. The electrode arrangement is used to capture the myocardium for re-synchronization of the left and right ventricles by providing first and second signal components having opposite polarity on respective electrodes. The electrode arrangement is connected to an implantable CRM device that has the capability of pacing/sensing atrium, pacing/sensing ventricles, and deliver defibrillation therapy from the right side of the heart. The CRM device captures ventricular contractions to treat conduction abnormalities in one or more of the ventricles.
    Type: Grant
    Filed: September 17, 2013
    Date of Patent: May 12, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Qingsheng Zhu, Daniel Felipe Ortega
  • Patent number: 9026206
    Abstract: An implantable medical system that includes a cardiac therapy module and a neurostimulation therapy module may identify when neurostimulation electrodes have migrated toward a patient's heart. In some examples, the system may determine whether the neurostimulation electrodes have migrated toward the patient's heart based on a physiological response to an electrical signal delivered to the patient via the neurostimulation electrodes. In addition, in some examples, the system may determine whether the neurostimulation electrodes have migrated toward the patient's heart based on an electrical cardiac signal sensed via the neurostimulation electrodes.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: May 5, 2015
    Assignee: Medtronic, Inc.
    Inventors: Paul G. Krause, Avram Scheiner
  • Patent number: 9026210
    Abstract: An implantable medical device includes a sensor configured to generate an endocardial acceleration (EA) signal representative of activity of a patient's heart. The device further includes one or more circuits configured to identify within the EA signal at least one EA signal component corresponding to at least one peak of endocardial acceleration, and extract from the at least one EA signal component at least two characteristic parameters. The one or more circuits are further configured to generate a composite index based on a combination of the at least two characteristic parameters, determine a plurality of values of the composite index for a plurality of pacing configurations, and select a current pacing configuration from among the plurality of pacing configurations based on the plurality of values of the composite index.
    Type: Grant
    Filed: September 12, 2014
    Date of Patent: May 5, 2015
    Assignee: Sorin CRM S.A.S.
    Inventors: Fabrizio Renesto, Lionel Giorgis
  • Patent number: 9020593
    Abstract: Systems and methods for selection of electrodes and related pacing configuration parameters used to pace a heart chamber are described. A change in the hemodynamic state of a patient is detected. Responsive to the detected change, a distribution of an electrical, mechanical, or electromechanical parameter related to contractile function of a heart chamber with respect to locations of multiple electrodes disposed within the heart chamber is determined. A pacing output configuration, including one or more electrodes of the multiple electrodes, is selected and the heart chamber is paced using the selected pacing output configuration.
    Type: Grant
    Filed: November 22, 2013
    Date of Patent: April 28, 2015
    Assignee: Cardiac Paemakers, Inc.
    Inventors: Shantha Arcot-Krishnamurthy, Michael J. Stucky, Yinghong Yu, Jiang Ding
  • Patent number: 9014804
    Abstract: An implantable medical device such as an implantable pulse generator that includes EEG sensing for monitoring and treating neurological conditions, and leadless ECG sensing for monitoring cardiac signals. The device includes a connector block with provisions for cardiac leads which may be used/enabled when needed. If significant co-morbid cardiac events are observed in patients via the leadless ECG monitoring, then cardiac leads may be subsequently connected for therapeutic use.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: April 21, 2015
    Assignee: Medtronic, Inc.
    Inventors: Jonathon E. Giftakis, Nina M. Graves, Jonathan C. Werder, Eric J. Panken
  • Patent number: 9014822
    Abstract: A pacing lead for a left cavity of the heart, implanted in the coronary system. This lead (24) includes a lead body with a hollow sheath (26, 28) of deformable material, having a central lumen open at both ends, and at least one telescopic microcable (42) of conductive material. The microcable slides along the length of the lead body and extends beyond the distal end (32) thereof. The party emerging beyond the distal end is an active free part (34) comprising a plurality of distinct bare areas (36, 38, 50, 50?, 50?), intended to come into contact (40) with the wall of a target vein (22) of the coronary system (14-22), so as to form a network of stimulation electrodes electrically connected together in parallel. The microcable further comprises, proximally, a connector to a generator of active implantable medical device such as a pacemaker or a resynchronizer.
    Type: Grant
    Filed: August 6, 2013
    Date of Patent: April 21, 2015
    Assignee: Sorin CRM S.A.S.
    Inventor: Jean-François Ollivier
  • Patent number: 9014809
    Abstract: An exemplary embodiment includes acquiring an electroneurogram of the right carotid sinus nerve or the left carotid sinus nerve, analyzing the electroneurogram for at least one of chemosensory information and barosensory information and calling for one or more therapeutic actions based at least in part on the analyzing. Therapeutic actions may aim to treat conditions such as sleep apnea, an increase in metabolic demand, hypoglycemia, hypertension, renal failure, and congestive heart failure. Other exemplary methods, devices, systems, etc., are also disclosed.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: April 21, 2015
    Assignee: Pacesetter, Inc.
    Inventors: Brian J. Wenzel, Taraneh Ghaffari Farazi
  • Patent number: 9014806
    Abstract: Performing a capture test on a stimulated cardiac cycle based on the analysis of a cardiac vectogram using an active medical device including circuits and control logic for delivering electrical stimulation pulses to a heart chamber; collecting electrical activity of the heart chamber and producing two distinct temporal components (Vbip, Vuni) from two distinct intracardiac electrogram EGM signals from the heart chamber. The capture test detects an occurrence of a depolarization wave induced by the stimulation of the heart chamber, and determines a two-dimensional non-temporal characteristic (VGM) representative of the stimulated cardiac cycle, from the variation of one of the temporal components (Vuni) versus the other temporal component (Vbip). A bi-dimensional analysis delivers at least one descriptor parameter of the two-dimensional non-temporal characteristic, and determines a presence or loss of a capture based on the at least one descriptor parameter.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: April 21, 2015
    Assignee: Sorin CRM SAS
    Inventors: Christine Henry, Paola Milpied
  • Patent number: 9008768
    Abstract: Various embodiments of the present invention are directed to systems, methods and devices for cardiac applications. One such device is directed to a catheter, and uses thereof, for capturing myocardium of a heart by delivering pacing signals to a location in the heart. The location is near a His Bundle of the heart. The catheter has a proximal end for interfacing with an electrical pacing signal source and a distal end. The distal end includes a fixation mechanism that attaches the catheter to heart tissue. First and second electrodes are also located at the distal end. Each electrode is individually addressable for providing pacing signals to the heart tissue and also arranged to physically contact the heart tissue when the fixation mechanism is attached to the heart tissue.
    Type: Grant
    Filed: April 15, 2013
    Date of Patent: April 14, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Qingsheng Zhu, Daniel Felipe Ortega
  • Patent number: 9008772
    Abstract: An apparatus comprises a control circuit that initiates a normal pacing mode for delivery of electrostimulation energy to the heart chamber. In response to an indication to initiate a threshold test, the control circuit determines an electrode configuration used to deliver the electrostimulation energy in the normal pacing mode, selects a first threshold test mode when a sensing electrode independent from the set of pacing electrodes is unavailable for the heart chamber, wherein a cardiac activity signal is sensed using a set of sensing electrodes that includes an electrode common to the set of pacing electrodes, and selects a second threshold test mode when a sensing electrode independent from the set of pacing electrodes is available for the heart chamber, wherein the cardiac activity signal is sensed using a set of sensing electrodes that excludes an electrode common to the set of pacing electrodes.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: April 14, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Aaron R. McCabe, Deepa Mahajan, David W. Yost, Clayton S. Foster, Shibaji Shome, Amy Jean Brisben
  • Patent number: 9002454
    Abstract: Methods and/or devices may be configured to track effectiveness of pacing therapy by monitoring two or more electrical vectors of the patient's heart during pacing therapy and analyzing at least one feature of a morphological waveform within each of the two or more electrical vectors.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: April 7, 2015
    Assignee: Medtronic, Inc.
    Inventors: Subham Ghosh, Jeffrey M Gillberg, Aleksandre T Sambelashvili
  • Patent number: 9002450
    Abstract: Techniques are provided for use with an implantable medical device for assessing left ventricular (LV) sphericity and atrial dimensional extent based on impedance measurements for the purposes of detecting and tracking heart failure and related conditions such as volume overload or mitral regurgitation. In some examples described herein, various short-axis and long-axis impedance vectors are exploited that pass through portions of the LV for the purposes of assessing LV sphericity. In other examples, impedance measurements taken along a vector between a right atrial (RA) ring electrode and an LV electrode implanted near the atrioventricular (AV) groove are exploited to assess LA extent, biatrial extent or mitral annular diameter. The assessment techniques can be employed alone or in conjunction with other heart failure detection techniques, such as those based on left atrial pressure (LAP.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: April 7, 2015
    Assignee: Pacesetter, Inc.
    Inventors: Stuart Rosenberg, Yelena Nabutovsky, Cecilia Qin Xi, Jong Gill, Kyungmoo Ryu, Brian Jeffrey Wenzel, William Hsu
  • Patent number: 8996111
    Abstract: The disclosure describes implantable medical systems that respond to occurrence of a lead-related condition by utilizing an elongated coil electrode in defining an alternative pacing therapy vector to maintain optimal drain of an IMD power supply. An exemplary system includes a medical electrical lead having an elongated electrode and an improved sensing and therapy delivery circuitry to provide the alternative pacing therapy vector responsive to the lead-related conditions. The system includes circuitry for recognition of the lead type in order to respond to the occurrence of the lead-related condition.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: March 31, 2015
    Assignee: Medtronic, Inc.
    Inventors: Mark T Marshall, Gonzalo Martinez, Kevin R Seifert
  • Publication number: 20150088221
    Abstract: A fully implantable cardiac pacemaker system is provided. The pacemaker system includes a pacemaker having an electrode sub-assembly containing an electrode and a base into which the electrode is embedded. It also includes an implantable package that has electronic components for providing electrical pulses to a patient's heart. The pacemaker also has a power supply and a flexible electrically conductive lead that connects the electronic components to the electrode. In addition to the pacemaker, the pacemaker system includes a removable insertion casing that is physically attached to the base portion of the electrode sub-assembly. Upon insertion of the pacemaker into a patient's heart, the pacemaker is detached from the removable insertion casing and deployed fully in the patient's chest. The pacemaker system has particular use in fetal applications.
    Type: Application
    Filed: April 5, 2013
    Publication date: March 26, 2015
    Applicants: Univserity of Southern California, Children's Hospital Los Angeles
    Inventors: Yaniv Barr-Cohen, Gerald Loeb, Michael Silka, Ramen Chmait
  • Publication number: 20150087608
    Abstract: Methods and devices treating an autonomic nervous system associated disease condition in a subject are provided. Aspects of the invention include inducing one or more physiological response selected from the group consisting of sweating, gastric emptying, enhanced heart rate variability and enhanced quantitative sensory test responsiveness in a manner sufficient to modify the autonomic nervous system so as to treat the subject for the disease condition. The methods and devices find use in a variety of applications, e.g. in the treatment of subjects suffering from conditions arising from disorders of the autonomic nervous system.
    Type: Application
    Filed: November 10, 2014
    Publication date: March 26, 2015
    Inventor: Anthony Joonkyoo Yun
  • Patent number: 8983601
    Abstract: Treatment of heart failure in a patient by electrically modulating both the sympathetic and parasympathetic autonomic cardiac nerve fibers that innervate the patient's heart at an extravascular site in the pericardial space of the heart. The extravascular site is any suitable single location inside the chest cavity that carries both sympathetic and parasympathetic cardiac nerves such as the cardiac plexus or the pericardial transverse sinus or any two separate extravascular sites with one site carrying predominantly sympathetic cardiac nerves and the other site carrying predominantly parasympathetic cardiac nerves for electrically modulating the balance of autonomic cardiac nerve control.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: March 17, 2015
    Assignee: The Cleveland Clinic Foundation
    Inventors: Kiyotaka Fukamachi, Alex Massiello, Mariko Kobayashi, Ray Dessoffy, Eugene Jung, Shubhayu Basu
  • Patent number: 8983602
    Abstract: Approaches for selecting an electrode combination of multi-electrode pacing devices are described. Electrode combination parameters that support cardiac function consistent with a prescribed therapy are evaluated for each of a plurality of electrode combinations. Electrode combination parameters that do not support cardiac function are evaluated for each of the plurality of electrode combinations. An order is determined for the electrode combinations based on the parameter evaluations. An electrode combination is selected based on the order, and therapy is delivered using the selected electrode combination.
    Type: Grant
    Filed: November 20, 2013
    Date of Patent: March 17, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Alok S. Sathaye, M. Jason Brooke, Bruce A. Tockman
  • Patent number: 8983600
    Abstract: A cardiac pacing system introduces a transitional period when pacing mode changes, such as when pacing starts and stops, or when one or more pacing parameter values change substantially. For each pacing parameter that changes substantially when the pacing mode changes, its value is adjusted incrementally over the transitional period to protect the heart from potentially harmful conditions associated with an abrupt change in the value of that pacing parameter.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: March 17, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Allan C. Shuros, Eric A. Mokelke
  • Patent number: 8977355
    Abstract: A bandstop filter having optimum component values is provided for a lead of an active implantable medical device (AIMD). The bandstop filter includes a capacitor in parallel with an inductor. The parallel capacitor and inductor are placed in series with the implantable lead of the AIMD, wherein values of capacitance and inductance are selected such that the bandstop filter is resonant at a selected frequency. The Q of the inductor may be relatively maximized and the Q of the capacitor may be relatively minimized to reduce the overall Q of the bandstop filter to attenuate current flow through the implantable lead along a range of selected frequencies.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: March 10, 2015
    Assignee: Greatbatch Ltd.
    Inventors: Robert A. Stevenson, Warren S. Dabney, Robert Shawn Johnson, Holly Noelle Moschiano, Henry R. Halperin
  • Patent number: 8972010
    Abstract: The present invention generally relates to implantable medical devices, such as pacemakers, and, in particular, to a method and an implantable medical device capable of detecting the presence of noise caused by external noise sources. Voltages and/or impedances are measured over one or several electrode configurations. Based on the measured voltages and/or impedances, noise parameters are calculated, which are compared with reference values to detect the presence of noise. In another aspect of the invention, at least two different electrode configurations with different noise pick-up areas are used in the measurement. Relations between the noise parameters of the at least two vectors are calculated and compared with reference relations to detect the presence of noise.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: March 3, 2015
    Assignee: St. Jude Medical AB
    Inventors: Allan Olson, Lars Karlsson, Marcus Berner
  • Patent number: 8972013
    Abstract: An implantable medical system includes an implantable medical device (IMD) and an electrode coupleable to the IMD. The electrode is operative to deliver a first electrical signal from the IMD to a neural structure. The system includes a sensor coupleable to the IMD. The sensor is operative to sense a physiological parameter. The physiological parameter may include at least one of a neurotransmitter parameter, a neurotransmitter breakdown product parameter, a neuropeptide parameter, a norepinephrine parameter, a glucocorticoid (GC) parameter, a neuromodulator parameter, a neuromodulator breakdown product parameter, an amino acid parameter, and a hormone parameter. The IMD includes a controller operative to change a parameter of the first electrical signal based upon at least one sensed physiological parameter to generate a second electrical signal and to apply the second electrical signal to the neural structure.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: March 3, 2015
    Assignee: Cyberonics, Inc.
    Inventor: Steven E. Maschino
  • Patent number: 8972006
    Abstract: A method of operating a cardiac therapy system to deliver cardiac resynchronization therapy (CRT) pacing that includes pacing both ventricles or pacing only the left ventricle is described. Delivery of the CRT pacing to one or both ventricles is scheduled for a cardiac cycle. If an intrinsic depolarization of a ventricle is detected during a pacing delay of the ventricle, then the scheduled CRT pacing to the ventricle is inhibited for the cycle. The intrinsic interval of the ventricle, such as the intrinsic atrioventricular interval concluded by the intrinsic depolarization, is measured. During a subsequent cardiac cycle, the pacing delay of the ventricle is decreased to be less than or equal to the measured intrinsic interval. Capture of the ventricle is verified after pacing is delivered during the subsequent cardiac cycle.
    Type: Grant
    Filed: February 12, 2014
    Date of Patent: March 3, 2015
    Assignee: Cardiac Pacemakers Inc.
    Inventors: Barun Maskara, Jiang Ding, M. Jason Brooke
  • Patent number: 8972005
    Abstract: A subthreshold lead impedance technique is described for an implantable medical device. The lead impedance technique may be applicable to a subcutaneous implantable cardioversion defibrillator device and utilizes an output circuit of the device coupled between a first diode and a second diode to define a current path through two electrodes coupled to the output circuit. The second diode is further coupled to a switch to provide a current pathway from the first diode to circuit ground. A control circuit is coupled to the output circuit, the first diode, the second diode, and the switch to bias a leg of the output circuit in a conducting state while biasing the other legs of the output circuit in a non-conducting state.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: March 3, 2015
    Assignee: Medtronic, Inc.
    Inventors: Marshall J. Rasmussen, Forrest C. M. Pape, Lonny V. Cabelka
  • Patent number: 8965502
    Abstract: At least one embodiment of the invention relates to a cardiac stimulator comprising at least one stimulation unit to deliver subthreshold stimulation pulses for a cardiac contractility modulation therapy via at least two stimulation electrode poles, and at least one sensing unit to detect cardiac electrical or mechanical actions. The at least one sensing unit detects signals characteristic of cardiac action and comprises, or is connected to, an evaluation unit that evaluates signals detected by the sensing unit and supplies a corresponding evaluation result signal. The cardiac stimulator further comprises a therapy control unit to control a respective cardiac contractility modulation therapy depending on a respective evaluation result signal.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: February 24, 2015
    Assignee: Biotronik SE & Co. KG
    Inventor: Thomas Doerr
  • Patent number: 8958870
    Abstract: A therapy program may be modified based on information indicative of a change in a therapy field, which may represent a region of a patient's tissue to which therapy is delivered. Upon receiving information indicative of a therapy field change, an algorithmic model of a present therapy field may be generated and compared to an algorithmic model of a baseline therapy field, which indicates a therapy field that provides efficacious therapy to the patient. If a characteristic of the present therapy field differs from the baseline therapy field model, the current therapy program may be modified. In another example, upon receiving information indicative of a therapy field change, the current therapy program may be modified, and an algorithmic model of a therapy field based on the modified therapy program may be compared to a baseline therapy field model to determine whether the modified therapy program is a suitable alternative.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: February 17, 2015
    Assignee: Medtronic, Inc.
    Inventors: Martin T. Gerber, John C. Rondoni
  • Patent number: 8956295
    Abstract: Devices and methods for sleep detection involve the use of an adjustable threshold for detecting sleep onset and termination. A method for detecting sleep includes adjusting a sleep threshold associated with a first sleep-related signal using a second sleep-related signal. The first sleep-related signal is compared to the adjusted threshold and sleep is detected based on the comparison. The sleep-related signals may be derived from implantable or external sensors. Additional sleep-related signals may be used to confirm the sleep condition. A sleep detector device implementing a sleep detection method may be a component of an implantable pulse generator such as a pacemaker or defibrillator.
    Type: Grant
    Filed: September 9, 2013
    Date of Patent: February 17, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Quan Ni, Zoe Hajenga, Douglas R. Daum, Jeffrey E. Stahmann, John D. Hatlestad, Kent Lee
  • Patent number: 8958873
    Abstract: A cardiac pacing system controls the progression of a cardiac disorder such as heart failure by delivering cardiac stress augmentation pacing to create or augment regional stress in the heart according to a delivery schedule programmed for a patient. Various events associated with the patient's conditions, activities, and other treatments may render the cardiac stress augmentation pacing risky or ineffective. The system detects such events before and during each cardiac stress augmentation pacing session and modifies the delivery schedule in response to the detection of each event to ensure patient safety and therapy efficiency.
    Type: Grant
    Filed: April 29, 2010
    Date of Patent: February 17, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Shantha Arcot-Krishnamurthy, Allan C. Shuros, Craig Stolen, Robert Shipley
  • Patent number: 8958871
    Abstract: Methods and apparatus are provided for pulsed electric field neuromodulation via an intra-to-extravascular approach, e.g., to effectuate irreversible electroporation or electrofusion, necrosis and/or inducement of apoptosis, alteration of gene expression, changes in cytokine upregulation and other conditions in target neural fibers. In some embodiments, the ITEV PEF system comprises an intravascular catheter having one or more electrodes configured for intra-to-extravascular placement across a wall of patient's vessel into proximity with target neural fibers. With the electrode(s) passing from an intravascular position to an extravascular position prior to delivery of the PEF, a magnitude of applied voltage or energy delivered via the electrode(s) and necessary to achieve desired neuromodulation may be reduced relative to an intravascular PEF system having one or more electrodes positioned solely intravascularly.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: February 17, 2015
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Denise Demarais, Benjamin J. Clark, Nicolas Zadno, Erik Thai, Hanson Gifford, III
  • Patent number: 8954145
    Abstract: An electric stimulator for heart, brain, organs and general cells with a random shape and position of electrodes which enhances its performance for breaking the symmetry. Two types of electrodes are introduced: type-1, or active electrodes are similar to prior art, while type-2, or passive electrodes have not been used in this context. Passive electrodes are electrically insulated, being unable to inject current in the surrounding medium, but they are capable of shaping the electric field, which has consequence on the path of the stimulating currents injected by type-1 electrodes.
    Type: Grant
    Filed: May 12, 2012
    Date of Patent: February 10, 2015
    Inventors: Chong Il Lee, Sergio Lara Pereira Monteiro
  • Patent number: 8951546
    Abstract: Described herein are implantable composites, kits comprising the composites, implant devices comprising the composites, and methods of making and using same, including point of use methods.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: February 10, 2015
    Assignee: SurModics Pharmaceuticals, Inc.
    Inventor: Thomas R. Tice
  • Patent number: 8954146
    Abstract: Cardiac monitoring and/or stimulation methods and systems employing dyspnea measurement. An implantable cardiac device may sense transthoracic impedance and determine a patient activity level. An index indicative of pulmonary function is implantably computed to detect an episode of dyspnea based on a change, trend, and/or value exceeding a threshold at a determined patient activity level. Trending one or more pulmonary function index values may be done to determine a patient's pulmonary function index profile, which may be used to adapt a cardiac therapy. A physician may be automatically alerted in response to a pulmonary function index value and/or a trend of the patient's pulmonary index being beyond a threshold. Computed pulmonary function index values and their associated patient's activity levels may be stored periodically in a memory and/or transmitted to a patient-external device.
    Type: Grant
    Filed: April 16, 2014
    Date of Patent: February 10, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Donald L. Hopper, John Voegele, Jesse W. Hartley, Avram Scheiner
  • Patent number: 8948865
    Abstract: Methods and apparatus are provided for treatment of heart arrhythmia via renal neuromodulation. Such neuromodulation may effectuate irreversible electroporation or electrofusion, ablation, necrosis and/or inducement of apoptosis, alteration of gene expression, action potential attenuation or blockade, changes in cytokine up-regulation and other conditions in target neural fibers. In some embodiments, such neuromodulation is achieved through application of an electric field. In some embodiments, such neuromodulation is achieved through application of neuromodulatory agents, of thermal energy and/or of high intensity focused ultrasound. In some embodiments, such neuromodulation is performed in a bilateral fashion.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: February 3, 2015
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Denise Zarins, Hanson Gifford, III
  • Patent number: 8948868
    Abstract: The capability to suspend a patient alert relating to a monitored physiologic parameters addresses a need to selectively shut off a patient-alert signal or signals during the time a patient is being treated for an excursion in the parameter. Of course, in general a signal call attention to a patient's a potentially deleterious status or condition for which they should seek medical attention. Once a chronically-implanted monitoring device has detected or provided information about the parameter relative to a desired value, trend, or range and a clinician has been notified and intervened the alert signal is temporarily disabled for a predetermined period. That is, once the notification occurs and alert has served its purpose, the alert mechanism is selectively deactivated while the patient ostensibly begins to gradually correct the monitored physiologic parameter under a caregiver's direction and control. After which time, the alert will reactivate.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: February 3, 2015
    Assignee: Medtronic, Inc.
    Inventors: Holly S. Vitense, Li Wang, Denise Dirnberger, Melissa M. Rhodes, Douglas A. Hettrick, Shantanu Sarkar
  • Patent number: 8948867
    Abstract: In connection with capture detection for a heart chamber with backup pacing in a contralateral heart chamber, a cardiac signal of the first heart chamber is sensed following delivery of a pacing pulse. The cardiac response of the first heart chamber to the pacing pulse is classified based on one or more features of the sensed cardiac signal. A backup pacing pulse is delivered to a second heart chamber contralateral to the first heart chamber. For example, the timing of the delivery of the backup pacing pulse may be based on the expected or detected timing of the features used to classify the cardiac pacing response. The backup pace may be delivered within a detection window used for sensing the features indicative of the cardiac pacing response.
    Type: Grant
    Filed: September 14, 2006
    Date of Patent: February 3, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Alok Sathaye, M. Jason Brooke
  • Patent number: 8948866
    Abstract: During auto-threshold, autocapture, or other evoked response sensing, post-pace artifact is reduced by using a smaller coupling capacitor value than what is used when not in such an evoked response sensing configuration. This can be accomplished by borrowing another capacitor for use as the coupling capacitor. The borrowed capacitor can be a backup pacing capacitor from the same or a different pacing channel. The borrowed capacitor can also be a coupling capacitor from a different pacing channel.
    Type: Grant
    Filed: February 20, 2014
    Date of Patent: February 3, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Michael J. Lyden, Nicholas J. Stessman
  • Publication number: 20150032014
    Abstract: An exemplary computer-implemented method is disclosed for detection of onset of depolarization on far-field electrograms (EGMs) or electrocardiogram (ECG)- or ECG-like signals. The method includes determining a baseline rhythm using a plurality of body-surface electrodes. The baseline rhythm includes an atrial marker and a ventricular marker. A pre-specified window is defined as being between the atrial marker and the ventricular marker. A low pass filter is applied to a signal within the window. A rectified slope of the signal within the window is determined. A determination is made as to whether a time point (t1) is present such that the rectified slope exceeds 10% of a maximum value of the rectified slope. A point of onset of a depolarization complex in the signal is determined. The point of onset occurs at a largest curvature in the signal within the window.
    Type: Application
    Filed: July 26, 2013
    Publication date: January 29, 2015
    Inventor: Subham Ghosh
  • Patent number: 8942819
    Abstract: Various neural stimulator embodiments comprise controller circuitry, neural stimulation output circuitry, sensor circuitry and a memory. The neural stimulation output circuitry is configured to deliver the neural stimulation. The controller circuitry is configured to control stimulation parameters of the neural stimulation delivered by the neural stimulation output circuitry. The sensor circuitry, including at least one sensor, is configured to sense a response to the neural stimulation. The controller is configured to communicate with the sensor circuitry. The memory has instructions stored therein, operable on by the controller circuitry.
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: January 27, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Juan Gabriel Hincapie Ordonez, Stephen Ruble, Jason J. Hamann, Eric A. Mokelke, Shantha Arcot-Krishnamurthy, Kevin John Stalsberg, David J. Ternes
  • Patent number: 8942798
    Abstract: A method, apparatus, and system for determining an adverse operational condition associated with a lead assembly in an implantable medical device used for providing a therapeutic electrical signal to a cranial nerve. A first impedance associated with the lead assembly configured to provide the therapeutic electrical signal to a cranial nerve is detected. A determination is made as to whether the first impedance is outside a first predetermined range. A second impedance is detected. The detection of the second impedance is performed within a predetermined period of time from the time of the detection of the first impedance. A determination is made as to whether the second impedance is outside a second predetermined range. If the first impedance is outside the first range and the second impedance is outside the second range, the implantable medical device is prevented from providing the therapeutic electrical signal.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: January 27, 2015
    Assignee: Cyberonics, Inc.
    Inventors: Randolph K. Armstrong, Albert A. Rodriguez, Steven E. Maschino
  • Patent number: 8938296
    Abstract: A device and method for cardiac rhythm management in which a heart chamber is paced in accordance with sense signals from the opposite chamber or other distant cardiac site. The method is particularly useful in delivering cardiac resynchronization therapy.
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: January 20, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Andrew P. Kramer, Jeffrey E. Stahmann
  • Publication number: 20150018747
    Abstract: Methods, devices, kits and compositions to treat a myocardial infarction. In one embodiment, the method includes the prevention of remodeling of the infarct zone of the ventricle using a combination of therapies. The method may include the introduction of structurally reinforcing agents. In other embodiments, agents may be introduced into a ventricle to increase compliance of the ventricle. The prevention of remodeling may include the prevention of thinning of the ventricular infarct zone. Another embodiment includes the reversing or prevention of ventricular remodeling with electro-stimulatory therapy. The unloading of the stressed myocardium over time effects reversal of undesirable ventricular remodeling. These therapies may be combined with structurally reinforcing therapies. In other embodiments, the structurally reinforcing component may be accompanied by other therapeutic agents. These agents may include but are not limited to pro-fibroblastic and angiogenic agents.
    Type: Application
    Filed: June 20, 2014
    Publication date: January 15, 2015
    Inventors: Eugene T. Michal, Jeffrey Ross
  • Patent number: 8934970
    Abstract: An embodiment of an implantable system configured to be implanted in a patient includes an accelerometer, a neural stimulator, and a controller. The neural stimulator is configured to deliver neural stimulation to a neural target. The controller is configured to use the accelerometer to detect laryngeal vibration or coughing, and is configured to deliver a programmed neural stimulation therapy using the neural stimulator and using detected laryngeal vibration or detected coughing as an input to the programmed neural stimulation therapy.
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: January 13, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: David J. Ternes, Krzysztof Z. Siejko, Stephen B. Ruble, Jason J. Hamann