Contains Phosphorus Patents (Class 148/253)
  • Patent number: 10612118
    Abstract: A method is provided. The method includes providing a steel substrate having two faces coated by dipping the substrate in a bath, altering layers of magnesium oxide or magnesium hydroxide formed on the outer surfaces of the metal coatings by applying mechanical forces, rinsing and drying the outer surfaces, applying a conversion solution on the outer surfaces and painting the outer surfaces of the metal coatings. A metal sheet is also provided.
    Type: Grant
    Filed: February 24, 2016
    Date of Patent: April 7, 2020
    Assignee: ARCELORMITTAL
    Inventors: Tiago Machado Amorim, Joëlle Richard, Eric Jacqueson, Audrey Lhermeroult, Pascale Feltin, Jean-Michel Lemaire, Christian Allely, Luc Diez, Jean-Michel Mataigne
  • Patent number: 10392709
    Abstract: A coated steel sheet includes a corrosion-resistant coating composed of at least one layer selected from the group consisting of a Ni layer, a Sn layer, an Fe—Ni alloy layer, an Fe—Sn alloy layer, and an Fe—Ni—Sn alloy layer disposed on at least one surface of a steel sheet, and an adhesive coating disposed on the corrosion-resistant coating, the adhesive coating containing Zr and further containing at least one metal element selected from the group consisting of Co, Fe, Ni, V, Cu, Mn, and Zn, in total, at a ratio by mass of 0.01 to 10 with respect to Zr. The coated steel sheet has excellent humid resin adhesion and corrosion resistance, in which streaky surface defects do not occur.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: August 27, 2019
    Assignee: JFE Steel Corporation
    Inventors: Yuka Miyamoto, Takeshi Suzuki, Hiroki Iwasa, Norihiko Nakamura, Masao Inose, Hisato Noro, Yoichi Tobiyama
  • Patent number: 10196744
    Abstract: A process for surface treatment of metal substrates, including the steps of: providing a metal substrate including hydroxyl groups at its surface; bringing the metal substrate into contact with a solution of at least one organophosphorus compound to enable the reaction of the hydroxyl groups at the surface of the metal substrate with the organophosphorus compound to form a monomolecular layer over the surface and a second layer of physisorbed organophosphorus molecules at least preponderantly crystallized, the obtained treated substrate being coated with the organophosphorus compound in the form of a first monomolecular layer coating at least 15% of the surface of the substrate and in the form of a physisorbed second layer at least preponderantly crystallized. A treated metal substrate which may be obtained by the process thereof, corresponding solution and its use for treating metallic substrates to improve their tribological properties during their shaping, in particular their stamping.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: February 5, 2019
    Assignees: APERAM, UNIVERSITE DE FRANCHE-COMTE
    Inventors: Fabrice Lallemand, Xavier Roizard, Jean-Marie Melot, Aurélien Buteri, Mélanie Borgeot, Romain Evrard
  • Patent number: 10030197
    Abstract: The invention provides an etching solution, comprising: 10 to 30 wt % of phosphoric acid; 2 to 20 wt % of nitric acid; 6 to 18 wt % of hydrofluoric acid; 5 to 10 wt % of hydrochloric acid; and water, wherein the weight percentages are based on the weight of the etching solution. The etching solution can be used for thinning the substrate in large-scale production, dissolving the precipitated impurities attached to the surface of the substrate after substrate thinning so as to remove effectively the impurities on the surface of the substrate, improve the qualified ratio and passed ratio of a product, and at the same time, provide the effective insurance for controlling the thickness of the substrate.
    Type: Grant
    Filed: March 20, 2015
    Date of Patent: July 24, 2018
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventor: Feng Gu
  • Patent number: 9963798
    Abstract: Various embodiments include a sealed laminated metal structure. This laminated metal structure has a metal layer, where the metal layer has a first surface and an opposite second surface. A material is laminated on each of the first and second surfaces of the metal layer. In some cases, the laminated metal structure is removed from a larger laminated sheet of metal. The laminated metal structure is subjected to alternating current electrolytic deburring and cleaning to remove any burrs along the perimeter edge. After deburring and cleaning, a sealer, which is a phosphate compound, is deposited on the perimeter edge of the laminated metal structure where the metal is exposed using alternating current.
    Type: Grant
    Filed: July 13, 2015
    Date of Patent: May 8, 2018
    Assignee: General Electric Company
    Inventors: Yuefeng Luo, William Edward Adis, Michael Lewis Jones
  • Patent number: 9595674
    Abstract: A method of manufacturing a mask includes aligning a mask substrate comprising a thin film at a processing position, forming a coating layer comprising a cleaning solution material on a first surface of the mask substrate, forming a deposition pattern on a second surface of the mask substrate, and removing the coating layer from the mask substrate comprising the deposition pattern.
    Type: Grant
    Filed: September 16, 2015
    Date of Patent: March 14, 2017
    Assignee: Samsung Display Co., Ltd.
    Inventors: Tae Min Kang, Young Suk Cho
  • Patent number: 9393759
    Abstract: The present disclosure generally relates to a sealed metal laminate structure comprising: a metal layer having a first surface and an opposite second surface; a first enamel layer laminated on the first surface of the metal layer, except at an exposed metal protrusion at a perimeter edge of the sealed metal laminate structure; a second enamel layer laminated on the second surface of the metal layer, except at the exposed metal protrusion at the perimeter edge of the sealed laminate structure; and a phosphate sealer deposited on the exposed metal protrusion of the sealed metal laminate structure. The present disclosure also relates to a metal laminate structure without a phosphate sealer. In addition, systems and methods for treating workpieces, including metal laminate structures, are discussed.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: July 19, 2016
    Assignee: General Electric Company
    Inventors: Yuefeng Luo, William Edward Adis, Michael Lewis Jones
  • Patent number: 9359210
    Abstract: A method for manufacturing a graphene layer includes performing a sputtering process to form a graphite layer on a substrate, and performing a lithography process on the graphite layer for thinning the graphite layer and thereafter making the graphite layer thinned to become a graphene layer.
    Type: Grant
    Filed: July 11, 2013
    Date of Patent: June 7, 2016
    Assignee: METAL INDUSTRIES RESEARCH & DEVELOPMENT CENTRE
    Inventors: Chia-Hung Huang, Sung-Mao Chiu, Chung-Jen Chung, Bo-Hsiung Wu
  • Patent number: 8999076
    Abstract: In one embodiment, the invention provides a composition useful for passivating a metal surface, in particular a zinciferous surface, comprising, preferably consisting essentially of, most preferably consisting of water and: (A) dissolved phosphate ions; (B) dissolved trivalent chromium ions; (C) dissolved anions of at least one complex fluoride of an element selected from the group consisting of Ti, Zr, Hf, Si, Sn, Al, Ge and B; preferably Ti, Si and/or Zr; (D) an optional component of dissolved free fluoride ions; (E) organic acid inhibitor, preferably comprising quaternary ammonium compounds; and, optionally (F) a pH adjusting component; and optionally organic hydroxyl acids.
    Type: Grant
    Filed: April 27, 2009
    Date of Patent: April 7, 2015
    Assignee: Henkel AG & Co. KGaA
    Inventors: David R. McCormick, Thomas W. Cape
  • Publication number: 20150090369
    Abstract: A method for conversion coating a magnesium-containing surface, the method comprising contacting the magnesium-containing surface with an ionic liquid compound under conditions that result in decomposition of the ionic liquid compound to produce a conversion coated magnesium-containing surface having a substantially improved corrosion resistance relative to the magnesium-containing surface before said conversion coating. Also described are the resulting conversion-coated magnesium-containing surface, as well as mechanical components and devices containing the conversion-coated magnesium-containing surface.
    Type: Application
    Filed: October 2, 2013
    Publication date: April 2, 2015
    Inventors: Jun Qu, Huimin Luo
  • Patent number: 8980015
    Abstract: Chromate free treatments and compositions for applying a conversion or passivation coating to metal surfaces. Preferred compositions comprise a film forming latex polymer, fluoacid, phosphoric acid, and a polyoxyethylene/oxypropylene block copolymer. The requisite metal surfaces are contacted by the compositions and dried. Rinsing is optional.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: March 17, 2015
    Assignee: Chemtall Corporation
    Inventors: Andrea Keys, Jeffrey I. Melzer, Michael T. Raab
  • Patent number: 8956468
    Abstract: The invention relates to an aqueous composition and to a method for the anticorrosion conversion treatment of metallic surfaces, particularly metallic materials which are assembled into composite structures, comprising steel or galvanized or alloy-galvanized steel and any combinations thereof, the composite structure being composed at least in part of aluminum or the alloys thereof. The aqueous composition according to the invention is based on a phosphating solution and contains, in addition to water-soluble compounds of zirconium and titanium, a quantity of free fluoride in a ratio that both permits phosphating of the steel and galvanized and/or alloy-galvanized steel surfaces and determines low pickling rates of the aluminum substrate with simultaneous passivation of the aluminum.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: February 17, 2015
    Assignee: Henkel AG & Co. KGaA
    Inventors: Jan-Willem Brouwer, Jens Krömer, Matthias Hamacher, Stephan Winkels, Frank-Oliver Pilarek, Marc Balzer
  • Patent number: 8951363
    Abstract: The invention refers to a process for producing an anticorrosive coating in which a surface to be treated is brought into contact with an aqueous treatment solution containing chromium(III) ions and at least one phosphate compound and an organosol. The corrosive protection of metal surfaces, in particular those containing zinc and zinciferous surfaces with conversion layers is improved. The decorative and functional properties of the surfaces are retained or improved. In addition, the well-known problems associated with the use of compounds containing chromium(VI) or with multi-stage processes are avoided in which a passivation layer containing chromium ions and a sealing are applied one after the other.
    Type: Grant
    Filed: July 5, 2010
    Date of Patent: February 10, 2015
    Assignee: Atotech Deutschland GmbH
    Inventors: Udo Hofmann, Hermann Donsbach, Joerg Unger, Volker Krenzel
  • Publication number: 20150024222
    Abstract: A process for passivation of strip steel plate, having the following steps: electrochemical treatment of the black plate by passing the black plate through an electrolyte to form an inert steel surface; rinsing the black plate; and application of an aqueous chromium-free treatment solution to at least one surface of the black plate to form a conversion layer that protects against corrosion and an adhesion layer for paints and organic coating materials. The black plate treated in accordance with this process is characterized by high corrosion resistance and has good bonding capacity for paints and organic coatings and therefore is very suitable as a substitute for tin-free steel (TFS or ECCS) and tinplate for the production of packagings, in particular cans. In contrast to the traditional manufacturing and passivation processes for tin-free steel and tinplate, no chromium VI, which is environmentally hazardous and hazardous to health, is used in this process.
    Type: Application
    Filed: July 16, 2014
    Publication date: January 22, 2015
    Inventors: Reiner SAUER, Andrea MARMANN, Helmut OBERHOFFER, Tatjana KASDORF, Gerhard MENZEL, Dirk MATUSCH, Rainer GOERTZ
  • Publication number: 20150024137
    Abstract: An apparatus and method for the application of an aqueous treatment solution onto the surface of a steel strip that is moved, at a prespecified strip speed, in a direction of movement of the strip, with the following steps: drying of the moving steel strip with a gas flow; application of the aqueous solution on at least one surface of the steel strip with a rotary sprayer with several spray rotors that are situated next to one another, transverse to the direction of movement of the strip, to which the aqueous treatment solution is supplied and which are rotated by a drive, so as to spray the treatment solution, as a result of centrifugal force, in the form of a spray jet, onto the surface of the steel strip and, there, to form a wet film of the aqueous treatment solution; equalization of the applied wet film of the aqueous treatment solution by driven smoothing rollers; and drying of the applied wet film of the aqueous treatment solution.
    Type: Application
    Filed: July 15, 2014
    Publication date: January 22, 2015
    Inventors: Andrea Marmann, Michael Wild, Paul Michels
  • Patent number: 8871038
    Abstract: A tinned steel sheet includes an Sn-containing plating layer disposed on at least one surface of a steel sheet and in which mass per unit area of Sn is 0.05 to 20 g/m2; a first chemical conversion coating disposed on the Sn-containing plating layer and contains P and Sn, and in which mass per unit area of P is 0.3 to 10 mg/m2; a second chemical conversion coating disposed on the first chemical conversion coating and contains P and Al, and in which mass per unit area of P is 1.2 to 10 mg/m2 and mass per unit area of Al is 0.24 to 8.7 mg/m2; and a silane coupling agent-treating layer formed with the silane coupling agent disposed on the second chemical conversion coating and has a mass per unit area of Si of 0.10 to 100 mg/m2.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: October 28, 2014
    Assignee: JFE Steel Corporation
    Inventors: Takeshi Suzuki, Norihiko Nakamura, Hiroki Iwasa
  • Patent number: 8864916
    Abstract: The invention relates to a method and coating agents used in the method which provide good adherence to and good corrosion protection of metal substrates; the coating coating agents are cross-linkable via radical polymerization. Adhesion promoting compounds are present in the conversion layer in a quantity of about 0.01 to 40 weight percent and contain, on average, one reactive unsaturated group and at least one H-active group per molecule.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: October 21, 2014
    Assignee: Henkel AG & Co. KGaA
    Inventors: Matthias Koch, Kerstin Motzkat
  • Patent number: 8858734
    Abstract: A method of superfinishing a large hollow wheel gear in a vibratory bowl having a center hub comprises at least partially filling the vibratory bowl with an amount of finishing media, laying the gear horizontally into the bowl over the center hub, supplying a quantity of an active chemistry into the bowl and agitating the vibratory bowl at a frequency such that the gear settles into and is fully supported by the media. By controlling the process parameters, the hollow wheel gear may be caused to rotate in the media and can be made to float at a desired level. The method is particularly suitable for hollow wheel gears for large wind turbines.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: October 14, 2014
    Assignee: REM Technologies, Inc.
    Inventors: Mark Michaud, Edward David Summers
  • Publication number: 20140290802
    Abstract: This surface treatment method comprises a rustproofing step, a rinsing step, and a cleaning step. In the rustproofing step, a rustproofing liquid containing orthophosphoric acid and an organic acid is used to perform a rustproofing treatment on the surface of a steel material. In the rinsing step, a treatment liquid containing an oxo acid salt of a transition metal is used to perform a rinsing treatment on the surface of the steel material. In the cleaning step, the surface of the steel material that has undergone the rinsing step is subjected to a cleaning treatment.
    Type: Application
    Filed: September 12, 2012
    Publication date: October 2, 2014
    Applicants: KOMATSU LTD., NIPPON KAZAI CO., LTD., COTEC CORPORATION
    Inventors: Haruji Morita, Tsuneo Tate, Akira Shiozawa
  • Publication number: 20140251503
    Abstract: The present invention is directed to compositions and methods for forming conversion coatings on a surface of a substrate by contacting a liquid composition to the surface of the substrate at a high temperature (i.e., 400° F. or above).
    Type: Application
    Filed: March 6, 2014
    Publication date: September 11, 2014
    Inventor: James E. Murphy, III
  • Patent number: 8801871
    Abstract: The present invention relates to an aqueous composition and to a method for the anticorrosion conversion treatment of metallic surfaces, particularly metallic materials which are assembled into composite structures, comprising steel or galvanized or alloy-galvanized steel and any combinations of these materials, the composite structure being composed at least in part of aluminum or the alloys thereof. The aqueous composition according to the invention is based on a phosphating solution and contains, in addition to water-soluble compounds of zirconium and titanium, a quantity of free fluoride in a ratio that both permits phosphating of the steel and galvanized and/or alloy-galvanized steel surfaces and determines low pickling rates with regard to the aluminum substrate with simultaneous passivation of the aluminum.
    Type: Grant
    Filed: April 22, 2009
    Date of Patent: August 12, 2014
    Assignee: Henkel AG & Co. KGaA
    Inventors: Jan-Willem Brouwer, Jens Krömer, Matthias Hamacher, Stephan Winkels, Frank-Oliver Pilarek, Marc Balzer
  • Patent number: 8696831
    Abstract: Disclosed herein is a chromate-free conversion film solution and a method of applying the solution to magnesium and magnesium alloys. The solution contains zirconium ions, manganese ions, barium ions and phosphate corrosion inhibitor; and the pH of the said solution is in the range of 1-5; and may further comprise molybdate as accelerant. The method comprises degreasing, acid etching, surface activation, surface adjusting, and film forming steps. The conversion film obtained in accordance with the disclosed method is uniform, smooth, and compact and has high corrosion resistance and good adhesion with paint film. Moreover, the chromate-free conversion film solution is environmentally friendly and possesses fast film growth rates.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: April 15, 2014
    Assignee: Institute of Metal Research Chinese Academy of Sciences
    Inventors: Dayong Shan, Yingwei Song, Enhou Han, Rongshi Chen, Wei Ke
  • Patent number: 8652270
    Abstract: Disclosed are methods for treating and coating a ferrous metal substrate, such as cold rolled steel, hot rolled steel, and electrogalvanized steel. These methods include contacting the ferrous metal substrate with an aqueous pretreatment composition comprising: (a) a Group IIIB and/or IVB metal compound; (b) phosphate ions; and (c) water.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: February 18, 2014
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Randall J. Brent, Nicephoros A. Fotinos, John F. McIntyre, David A. Raney, Richard M. Vargas
  • Patent number: 8614004
    Abstract: The invention concerns a two-tone paint application having a first base color in a first color area, a second base color in a second color area, and two layers of clear coat such that the transition between the two color areas is smooth surface.
    Type: Grant
    Filed: April 20, 2006
    Date of Patent: December 24, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Duane A. Brier, Patrick J. McKernan
  • Patent number: 8585834
    Abstract: Chromate-free and metal phosphate free treatments and compositions for applying a conversion or passivation coating for metals, more particularly, steel, zinc coated steel, and aluminum surfaces. The methods of the invention comprise contacting the requisite metal surface with a treatment composition comprising a member or members comprising one or more Group IV B elements, fluoride, and phosphonic acid or phosphonate. Optionally, a silane may be added as a treatment component.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: November 19, 2013
    Inventors: Edward A. Rodzewich, Jeffrey I. Melzer, Philip D. Deck, Donald W. Whisenhunt, Jr., William S. Carey, David B. Engel, Bret Chisholm, Christopher M. Carter
  • Patent number: 8512484
    Abstract: A passivating agent for metallic surfaces of workpieces or casting molds includes an aqueous phosphate solution with metal ions and a gelatin.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: August 20, 2013
    Assignees: KS Aluminium-Technologie GmbH, Gelita AG
    Inventors: Manfred Laudenklos, Stephan Beer, Matthias Reihmann
  • Patent number: 8491713
    Abstract: Described is a new a solution comprising a phosphorous compound and optionally a solderability-enhancing compound and its use in a process for increasing the solderability and corrosion resistance of a metal or metal alloy surface.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: July 23, 2013
    Assignee: Atotech Deutschland GmbH
    Inventors: Jürgen Barthelmes, Robert Ruether, Olaf Kurtz, Jana Breitfelder
  • Publication number: 20130160898
    Abstract: The present disclosure relates to a chemically treated zinc-based plated steel sheet that is superior in weather resistance, water resistance, blackening resistance and film adhesion. A chemical conversion film having a thickness 0.5-10 ?m is formed by coating and drying a chemical treatment solution on a surface of an aluminum-containing zinc-based alloy plated steel sheet. The chemical treatment solution contains a fluororesin containing 0.05-5% by weight of a hydrophilic functional group selected from the group consisting of a carboxyl group and a sulfonic acid group and 7-20% by weight of a fluorine atom, the fluororesin in which a number-average molecular weight is 1,000-2,000,000, and an oxoate, a fluoride, a hydroxide, an organic salt, a carbonate or a peroxygenated salt of a group 4A metal.
    Type: Application
    Filed: June 17, 2011
    Publication date: June 27, 2013
    Applicant: NISSHIN STEEL CO., LTD.
    Inventors: Masanori Matsuno, Koichiro Ueda, Masaya Yamamoto, Hirofumi Taketsu
  • Patent number: 8470202
    Abstract: A method for passivating low-alloy steel surfaces in apparatus operating in the temperature range 350 to 580° C. and exposed to a carbon monoxide containing gas mixture comprises adding a passivating compound containing at least one phosphorus (P) atom to the gas mixture. The gas mixture is preferably a reformed gas and also described is a process for producing a synthesis gas wherein, prior to cooling a reformed gas mixture to a temperature between 350 and 580° C. in apparatus having low-alloy steel surfaces downstream of one or more reforming steps, a passivating compound containing at least one phosphorus (P) atom is combined with the gas mixture.
    Type: Grant
    Filed: October 10, 2006
    Date of Patent: June 25, 2013
    Assignee: Johnson Matthey PLC
    Inventors: Peter Edward James Abbott, Martin Fowles
  • Publication number: 20130139930
    Abstract: This disclosure relates to method phosphating an iron surface susceptible to corrosion, the method comprising contacting an iron surface with an aqueous mixture of an acidic phosphate component, a basic component, and at least one silicate; and forming a passivation zone chemically bound to the iron surface of one or more iron ions corresponding to the iron surface, the acidic phosphate component, the basic component, and at least one corrosion inhibitor precursor.
    Type: Application
    Filed: June 11, 2012
    Publication date: June 6, 2013
    Applicant: LATITUDE 18, INC.
    Inventors: Vadym Drozd, Sameerkumar Vasantlal Patel, Anthony Collins
  • Publication number: 20130126050
    Abstract: This disclosure relates to method phosphating an iron surface susceptible to corrosion, the method comprising contacting an iron surface with an aqueous mixture of an acidic phosphate component, a basic component, and at least one silicate; and forming a passivation zone chemically bound to the iron surface of one or more iron ions corresponding to the iron surface, the acidic phosphate component, the basic component, and at least one corrosion inhibitor precursor.
    Type: Application
    Filed: January 22, 2013
    Publication date: May 23, 2013
    Applicant: LATITUDE 18, INC.
    Inventor: Latitude 18, Inc.
  • Patent number: 8409370
    Abstract: A treatment solution for insulation coating for grain oriented electrical steel sheet includes at least one member selected from phosphates of Mg, Ca, Ba, Sr, Zn, Al, and Mn, and colloidal silica in a proportion of 0.2 to 10 mol in terms of SiO2 and a titanium chelate compound in a proportion of 0.01 to 4.0 mol in terms of Ti, relative to PO4: 1 mol in the phosphates.
    Type: Grant
    Filed: August 28, 2008
    Date of Patent: April 2, 2013
    Assignee: JFE Steel Corporation
    Inventors: Minoru Takashima, Mineo Muraki, Makoto Watanabe, Tomofumi Shigekuni
  • Patent number: 8377236
    Abstract: The present invention provides a stabilized lithium metal powder having a substantially continuous protective layer of lithium phosphate on the lithium metal powder.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: February 19, 2013
    Assignee: FMC Corporation
    Inventors: Marina Yakovleva, Yuan Gao, Yangxing Li
  • Patent number: 8372216
    Abstract: A continuous method for surface treatment of metal strips applies a finish coat having a thickness of not more than 3 ?m, the apparatus employed for application being equipped with at least one IR sensor which faces a coated side of the strip, operates in reflection geometry, and serves to measure the coat thickness of the finish coat, with the strip running.
    Type: Grant
    Filed: October 9, 2009
    Date of Patent: February 12, 2013
    Assignee: BASF SE
    Inventors: Guido Vandermeulen, Bernd Strubel, Helmut Witteler, Jessica Neumann, Walter Bertkau, Bernd Laubusch, Jens Haas, Mirjam Herrlich-Loos, Helmut Löw, Walter Braumandl
  • Patent number: 8349092
    Abstract: A method for treating or pre-treating parts, profiled-pieces, strips, sheet metals or wires having metallic surfaces, in which at least 5% of these surfaces consists of aluminum or of at least one aluminum alloy with an acid aqueous solution which contains fluoride, zinc and phosphate and which has the following dissolved contents in the phosphatizing solution: sodium virtually none, from 0.04 to less than 2 g/L; potassium virtually none or in a concentration ranging from 0.025 to 2.5 g/L; sodium and potassium in a concentration ranging from 0.025 to 2.5 g/L as sodium, whereby the potassium content is converted to sodium on a molar basis; zinc 0.2 to 4 g/L zinc, 5 to 65 g/L calculated as PO4; 0.03 to 0.5 g/L phosphate free fluoride wherein the total fluoride is present in a concentration ranging from 0.1 to 5 g/L. A zinc-containing phosphate layer is thereby deposited onto the metallic surfaces with a layer weight ranging from 0.5 to 10 g/m2.
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: January 8, 2013
    Assignee: Chemetall GmbH
    Inventors: Jürgen Specht, Peter Schubach, Rüdiger Rein, Peter Claude
  • Patent number: 8333847
    Abstract: A chemical conversion treatment liquid which can stably form a phosphate-type chemical conversion film on a steel material for a joint portion of an oil well steel pipe containing 0.5-13% Cr is developed. Using a chemical conversion treatment liquid to which a prescribed amount of potassium is added, a chemical conversion film containing a prescribed amount of potassium compounds and having a prescribed thickness can be formed on the threaded surface of a joint portion of an oil well steel pipe.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: December 18, 2012
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Masaru Izawa, Kunio Goto
  • Publication number: 20120305140
    Abstract: A non-oriented electrical steel sheet includes: a base iron (1); and a tension applying type insulating film (2) of not less than 1 g/m2 nor more than 6 g/m2 on a surface of the base iron (1). An oxide layer (3) containing at least one type of oxide selected from the group consisting of Si, Al, and Cr and having a thickness of not less than 0.01 ?m nor more than 0.5 ?m is formed on the surface of the base iron (1).
    Type: Application
    Filed: February 15, 2011
    Publication date: December 6, 2012
    Inventors: Shuichi Yamazaki, Takeshi Kubota, Yousuke Kurosaki, Masahiro Fujikura, Takahide Shimazu
  • Patent number: 8262810
    Abstract: A method for conversion treating a surface of a magnesium alloy workpiece includes the steps of degreasing, acid pickling, alkali pickling, and chemical converting. A phosphating solution is used in the step of chemical converting and includes the following solution concentrations: 2.89 gram/liter to 8.67 gram/liter of phosphoric acid, 0.3 gram/liter to 1.0 gram/liter of carbamide, 0.39 gram/liter to 1.56 gram/liter of nitric acid, 6 gram/liter to 30 gram/liter of manganese dihydrogen phosphate, and 0.2 gram/liter to 0.6 gram/liter of tannin.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: September 11, 2012
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Sheng-En Hsu, Yong Liu, Fei-Xiang Li, Zhao Jin
  • Publication number: 20120211124
    Abstract: The galvannealed steel sheet includes: a galvannealed layer formed on at least one surface of a steel sheet and contains includes an amount of 0.05 mass % to 0.5 mass % of Al, an amount of 6 mass % of 12 mass % of Fe, and the balance composed of Zn and inevitable impurities; and a mixed layer formed on a surface of the galvannealed layer and includes a composite oxide of Mn, Zn, and P and an aqueous P compound, wherein the composite oxide includes 0.1 mg/m2 to 100 mg/m2 of Mn, an amount of 1 mg/m2 to 100 mg/m2 of P, and Zn, and a P/Mn ratio is 0.3 to 50, and wherein the total size of an area of the mixed layer in which an attached amount of P is equal to or more than 20 mg/m2 is 20% to 80% of a surface area of the mixed layer.
    Type: Application
    Filed: July 12, 2010
    Publication date: August 23, 2012
    Inventors: Kazuhiko Honda, Noriyuki Suzuki, Yoichi Ikematsu
  • Patent number: 8231743
    Abstract: Improved compositions and processes for zincating magnesium and magnesium alloy substrates. An aqueous zincating composition having a pH of from about 8 to about 11 and including zinc ions, a complexing agent, fluoride ions and a reducing agent. A non-electrolytic process for zincating a magnesium or magnesium alloy substrate, including immersing the substrate in the non-electrolytic aqueous zincating composition for a time sufficient to deposit a zincate on the substrate. A non-electrolytic process for zincating a magnesium or magnesium alloy substrate, including preparing a aqueous non-electrolytic composition comprising zinc ions, a complexing agent, fluoride ions and a pH in the range from about 8 to about 11; adding to the composition an amount of a reducing agent sufficient to improve deposition of zincate on the magnesium or magnesium alloy substrate; and immersing the substrate in a composition for a time sufficient to deposit the zincate on the substrate.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: July 31, 2012
    Assignee: Atotech Deutschland GmbH
    Inventors: Jacob Grant Wiles, Nayan H. Joshi
  • Publication number: 20120183775
    Abstract: Disclosed is a process which comprises bringing an acidic organic substance or phosphoric acid into contact with a metal to form, on the surface of the metal, a layer that contains either an organic acid salt formed from both the acidic organic substance and the metal or a phosphoric acid salt formed from both the phosphoric acid and the metal. In the process, the layer can be selectively formed only on the surface of the metal. When the process is applied to the production of core-shell particles, neither agglomeration of the particles nor viscosity increase of the fluid occurs, while when the process is applied to the production of a covered metal-wiring circuit board, the layer can be selectively formed only in the metal area to be covered.
    Type: Application
    Filed: October 8, 2010
    Publication date: July 19, 2012
    Inventors: Yoichi Shinba, Shoichi Niizeki, Toshihisa Nonaka
  • Patent number: 8163105
    Abstract: The present invention provides a corrosion inhibition method which minimizes environmental adverse effects by using phosphate base anticorrosives without using zinc salt base anticorrosives and by reducing the concentration of the phosphate base anticorrosives, enables stable formation of an effective initial protective film, and does not affect water treatment after the formation of the initial protective film. In an initial protective film formation process of forming an initial protective film on a surface of an iron-based metallic member of a water system by adding anticorrosives to the water system, at least one selected from a group consisting of pyrophosphoric acids and pyrophosphates is employed as the anticorrosives and the initial protective film formation process is conducted such that the initial pH at the start of the initial protective film formation process is adjusted to be 5 or more and less than 7 so that the pH at the end of the initial protective film formation process becomes 7 or more.
    Type: Grant
    Filed: March 22, 2005
    Date of Patent: April 24, 2012
    Assignee: Kurita Water Industries Ltd.
    Inventors: Yutaka Yoneda, Hajime Iseri, Shintaro Mori
  • Publication number: 20120052304
    Abstract: A method for adhesively bonding a metallic substrate and a component together includes treating the metallic substrate to form an oxide layer thereon, treating the oxide layer with a conversion coating solution to form a bond promoter coating on the oxide layer, and depositing an adhesive material on the bond promoter coating to bond the component and the metallic substrate together.
    Type: Application
    Filed: August 30, 2010
    Publication date: March 1, 2012
    Inventors: Promila P. Bhaatia, Joseph Parkos
  • Patent number: 8105444
    Abstract: A process for producing a highly anticorrosive rare earth permanent magnet, characterized by sequentially subjecting an R—Fe—B sintered magnet to surface finishing involving cutting and/or polishing, plating pretreatment, nickel electroplating to a given plating thickness, immersion in an aqueous solution containing a phosphoric salt, washing with water and heat treatment at 150° to 400° C. for 1 to 24 hr in an atmosphere of 1.3×103 Pa or higher oxygen partial pressure so as to form a thin nickel oxide layer at the surface layer portion.
    Type: Grant
    Filed: May 30, 2007
    Date of Patent: January 31, 2012
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventor: Kazuo Tamura
  • Patent number: 8097093
    Abstract: Disclosed are methods for treating and coating a ferrous metal substrate, such as cold rolled steel, hot rolled steel, and electrogalvanized steel. These methods include contacting the ferrous metal substrate with an aqueous pretreatment composition comprising: (a) a Group IIIB and/or IVB metal compound; (b) phosphate ions; and (c) water.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: January 17, 2012
    Assignee: PPG Industries Ohio, Inc
    Inventors: Randall J. Brent, Nicephoros A. Fotinos, John F. McIntyre, David A. Raney, Richard M. Vargas
  • Patent number: 8092618
    Abstract: The invention provides a method and apparatus for controlling the formation of foulant deposits on petroleum processing equipment. The invention involves a first mixture comprising an acid phosphate ester. The first mixture is applied to the surface of the petroleum processing equipment at a high temperature. Then a second mixture comprising a metal salt is applied also at a high temperature. The result is sufficient to provide an effective coating that prevents the formation of foulant deposits on the petroleum processing equipment. The second mixture reacts with any polyphosphate in the coating to prevent any contamination of petroleum materials within the petroleum processing equipment.
    Type: Grant
    Filed: October 21, 2009
    Date of Patent: January 10, 2012
    Assignee: Nalco Company
    Inventors: Ron Sharpe, Christopher Russell, Simon Crozier
  • Patent number: 8062435
    Abstract: Operational problems such as scale and sludge formation which are encountered in phosphating processes using compositions containing zinc and at least one of Ni, Co, or Zn may be alleviated by maintaining an effective level of dissolved iron cations in such compositions.
    Type: Grant
    Filed: June 18, 2001
    Date of Patent: November 22, 2011
    Assignee: Henkel Kommanditgesellschaft Auf Aktien
    Inventors: Brian B. Cuyler, Kevin K. Meagher, Timm L. Kelly
  • Publication number: 20110226388
    Abstract: Disclosed herein is a chromate-free conversion film solution and a method of applying the solution to magnesium and magnesium alloys. The solution contains zirconium ions, manganese ions, barium ions and phosphate corrosion inhibitor; and the pH of the said solution is in the range of 1-5; and may further comprise molybdate as accelerant. The method comprises degreasing, acid etching, surface activation, surface adjusting, and film forming steps. The conversion film obtained in accordance with the disclosed method is uniform, smooth, and compact and has high corrosion resistance and good adhesion with paint film. Moreover, the chromate-free conversion film solution is environmentally friendly and possesses fast film growth rates.
    Type: Application
    Filed: July 8, 2010
    Publication date: September 22, 2011
    Inventors: Dayong SHAN, Yingwei Song, Enhou Han, Rongshi Chen, Wei Ke
  • Patent number: 8021496
    Abstract: The present invention provides a method for stabilizing lithium metal powder. The method comprises the steps of heating the lithium metal powder to above its melting point to provide molten lithium metal, dispersing the molten lithium metal, and contacting the dispersed molten lithium metal with a phosphorous-containing compound to provide a substantially continuous protective layer of lithium phosphate on the lithium metal powder.
    Type: Grant
    Filed: May 13, 2008
    Date of Patent: September 20, 2011
    Assignee: FMC Corporation
    Inventors: Marina Yakovleva, Yuan Gao, Yangxing Li
  • Patent number: 7993438
    Abstract: An aqueous phosphoric bonding solution consists essentially of phosphoric acid, a source of magnesium ions, and a leachable corrosion inhibitor. The bonding solution is stable with respect to inorganic metal particles, such as aluminum, which are admixed to the bonding solution for the preparation of a coating slurry. Metal parts coated with the coating compositions have very satisfactory properties such as heat and corrosion resistance.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: August 9, 2011
    Assignee: Praxair S.T. Technology, Inc.
    Inventors: Mark F. Mosser, Kevin Eddinger, Eileen Fox, Thomas F. Lewis, III