Gate Arrays Patents (Class 257/202)
  • Patent number: 8896029
    Abstract: A solid state image pickup device which can prevent color mixture by using a layout of a capacitor region provided separately from a floating diffusion region and a camera using such a device are provided. A photodiode region is a rectangular region including a photodiode. A capacitor region includes a carrier holding unit and is arranged on one side of the rectangle of the photodiode region as a region having a side longer than the one side. In a MOS unit region, an output unit region including an output unit having a side longer than the other side which crosses the one side of the rectangle of the photodiode region is arranged on the other side. A gate region and the FD region are arranged between the photodiode region and the capacitor region.
    Type: Grant
    Filed: January 29, 2013
    Date of Patent: November 25, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventors: Toru Koizumi, Akira Okita, Masanori Ogura, Shin Kikuchi, Tetsuya Itano
  • Patent number: 8890214
    Abstract: The present invention relates to a method of manufacturing sidewall spacers on a memory device. The method comprises forming sidewall spacers on a memory device having a memory array region and at least one peripheral circuit region by forming a first sidewall spacer adjacent to a word line in the memory array region and a second sidewall spacer adjacent to a transistor in the peripheral circuit region. The first sidewall spacer has a first thickness and the second sidewall spacer has a second thickness, wherein the second thickness is greater than the first thickness.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: November 18, 2014
    Assignee: Nan Ya Technology Corporation
    Inventors: Panda Durga, Jaydip Guha, Robert Kerr
  • Patent number: 8890231
    Abstract: According to one embodiment, a nonvolatile semiconductor memory device includes a first memory cell on the first fin-type active area, and a second memory cell on the second fin-type active area. Each of widths of charge storage layers of the first and second memory cells becomes narrower upward from below. Each of inter-electrode insulating layers of the first and second memory cells has a contact portion through which both are in contact with each other.
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: November 18, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Ryuji Ohba
  • Patent number: 8884338
    Abstract: A semiconductor integrated-circuit device is disclosed. The semiconductor integrated-circuit device uses a filter, which includes a standard capacitor, as a standard cell connecting a memory cell with a logic cell. As such, the semiconductor integrated-circuit device can minimize a glitch phenomenon of power/ground voltages and provide stability of power/ground voltages.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: November 11, 2014
    Assignee: LG Display Co., Ltd.
    Inventor: Ki Joong Kim
  • Patent number: 8884337
    Abstract: An output buffer includes an input/output end, a voltage source, a first transistor and a second transistor. The first transistor includes a first end coupled to the input/output end, a second end coupled to the voltage source, and a control end coupled to the voltage source. The second transistor includes a first end coupled to the input/output end, a second end coupled to the voltage source, and a control end coupled to the voltage source. The control end of the first transistor and the control end of the second transistor are substantially perpendicular to each other, and the punch through voltage of the first transistor is higher than the punch through voltage of the second transistor.
    Type: Grant
    Filed: April 8, 2013
    Date of Patent: November 11, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Chang-Tzu Wang, Ping-Chen Chang, Tien-Hao Tang
  • Patent number: 8884436
    Abstract: A semiconductor device includes first pads having centers offset in a first direction, wherein the first pads are arranged in a second direction crossing the first direction; second pads separated in the first direction from the first pads and arranged in the second direction, wherein centers of the second pads are offset in the first direction; first gate lines coupled to the first pads, respectively; and second gate lines coupled to the second pads, respectively.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: November 11, 2014
    Assignee: SK Hynix Inc.
    Inventor: Hyun Jo Yang
  • Patent number: 8878254
    Abstract: A semiconductor memory device according to one embodiment of the present invention includes a dielectric film configured to store information depending on presence or absence of a conductive path therein, and a plurality of electrodes provided to contact a first surface of the dielectric film. The conductive path can be formed between two electrodes arbitrarily selected form the plurality of electrodes. The conductive path has a rectifying property of allowing a current to flow more easily in a first direction connecting arbitrary two electrodes than in a second direction opposite to the first direction. The largest possible number of the conductive paths that may be formed is larger than the number of the plurality of electrodes.
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: November 4, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshiaki Fukuzumi, Hideaki Aochi
  • Patent number: 8878253
    Abstract: A semiconductor device and method of manufacturing a semiconductor device include a plurality of first active regions and a second active region being formed on a substrate. The second active region is formed between two of the first active regions. A plurality of gate structures is formed on respective first active regions. A dummy gate structure is formed on the second active region, and a first voltage is applied to the dummy gate structure.
    Type: Grant
    Filed: May 3, 2011
    Date of Patent: November 4, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hong-Soo Kim, Hwa-Kyung Shin, Moo-Kyung Lee, Jong-Ho Lim
  • Patent number: 8872338
    Abstract: A semiconductor device includes a substrate configured with a plurality of conductive traces. The traces are configured to electrically couple to an integrated circuit (IC) die and at least one of the plurality of conductive traces includes first electrically conductive portions in a first electrically conductive layer of the substrate, second electrically conductive portions in a second electrically conductive layer of the substrate, and first electrically conductive connections between the first electrically conductive portions and the second electrically conductive portions. The first and second electrically conductive portions and the first electrically conductive connections form a continuous path along at least a portion of the at least one of the conductive traces. Time delay of conducting a signal along the at least one of the conductive traces is within a specified amount of time of time delay of conducting a signal along another one of the plurality of conductive traces.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: October 28, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Brian D. Young
  • Patent number: 8860204
    Abstract: There is provided a semiconductor device including: plural bit cells each including the same circuit; plural electrodes supplied with power from outside, wherein each of the respective plural electrodes is mounted above the same circuit within the plural bit cells. Further, there is provided a semiconductor package including: the semiconductor device; a substrate mounted with the semiconductor device; an external input terminal formed on the substrate; an external output terminal formed on the substrate; an input wiring pattern connecting the semiconductor device mounted above the substrate and the external input terminal; an output wiring pattern connecting the semiconductor device mounted above the substrate and the external output terminal; and plural power supply lines, arranged without contact with each other on the same face of the substrate, and connecting the plural electrodes mounted to the semiconductor device to the corresponding electrode from the plural external power input electrodes.
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: October 14, 2014
    Assignee: OKI Semiconductor Co., Ltd.
    Inventor: Koji Higuchi
  • Publication number: 20140299920
    Abstract: The present disclosure provides a layout of a semiconductor integrated circuit device that can assure a lot of substrate contact regions, and can surely suppress latch-up without increasing an area of a whole semiconductor integrated circuit and without significantly decreasing a decoupling capacitance element. In a margin region, a transistor serving as a decoupling capacitance and a substrate contact are disposed as a pair on a P-type well. In the margin region, a transistor serving as a decoupling capacitance and a substrate contact are disposed as a pair on an N-type well.
    Type: Application
    Filed: June 19, 2014
    Publication date: October 9, 2014
    Inventor: Kazuyuki NAKANISHI
  • Publication number: 20140291729
    Abstract: A memory unit includes a substrate, at least one charge storage element, at least one first recessed access element, and an isolation portion. The substrate has a surface and the first recessed access element is disposed in an active area of the substrate and extending from the surface into the substrate. The first recessed access element is electrically connected to the charge storage element and induces in the substrate a first depletion region. The isolation portion is adjacent to the active area and extending from the surface into the substrate. The isolation portion includes a trenched isolating barrier and a second recessed access element. The second recessed access element is disposed in the trenched isolating barrier and induces in the substrate a second depletion region merging with the first depletion region.
    Type: Application
    Filed: June 19, 2013
    Publication date: October 2, 2014
    Inventors: TZUNG-HAN LEE, YAW-WEN HU, CHUNG-YUAN LEE, HSU CHIANG, SHENG-HSIUNG WU, HUNG CHANG LIAO
  • Patent number: 8841774
    Abstract: A first wiring (1) has a bending portion (2), a first wiring region (1a) extending from the bending portion (2) in the X direction, and a second wiring region (1b) extending from the bending portion (2) in the Y direction. A via (3) is formed under the wiring (1). The via (3) is formed so as not to overlap with a region of the bending portion (2) in the first wiring region (1a). The length of the via (3) in the X direction (x) is longer than the length thereof in the Y direction (y) and both ends of the via (3) in the Y direction overlap with both ends of the first wiring region (1a) in the Y direction.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: September 23, 2014
    Assignee: Panasonic Corporation
    Inventors: Miwa Ichiryu, Hiroyuki Uehara, Hidetoshi Nishimura
  • Publication number: 20140264460
    Abstract: A layer of microscopic, 3-terminal transistors is printed over a first conductor layer so that bottom electrodes of the transistors electrically contact the first conductor layer. A first dielectric layer overlies the first conductor layer, and a second conductor layer over the first dielectric layer contacts intermediate electrodes on the transistors between the bottom electrodes and top electrodes. A second dielectric layer overlies the second conductor layer, and a third conductor layer over the second dielectric layer contacts the top electrodes. The devices are thus electrically connected in parallel by a combination of the first conductor layer, the second conductor layer, and the third conductor layer. Separate groups of the devices may be interconnected to form more complex circuits. The resulting circuit may be a very thin flex-circuit.
    Type: Application
    Filed: March 11, 2014
    Publication date: September 18, 2014
    Applicant: Nthdegree Technologies Worldwide Inc.
    Inventor: Richard Austin Blanchard
  • Publication number: 20140252418
    Abstract: A memory array and a method for electrically coupling memory cell access devices to a word line. The memory array includes a source line electrically coupled to each source terminal of the memory cell access devices. The memory array also includes a first set of at least two vertical pillars positioned above and electrically coupled to the source line. A second set of vertical pillars electrically isolated from the source line and positioned such that the source line does not extend below the second set of vertical pillars is also included. Furthermore, gate terminals of the memory cell access devices laterally surround the first set of vertical pillars and the second set of vertical pillars. Finally, a first word line contact is positioned between two of the second set of vertical pillars. The first word line contact is electrically coupled to the gate terminals.
    Type: Application
    Filed: March 6, 2013
    Publication date: September 11, 2014
    Applicant: International Business Machines Corporation
    Inventors: Chung H. Lam, Jing Li, Edward W. Kiewra
  • Patent number: 8816346
    Abstract: A TFT array substrate and a manufacturing method thereof, where the TFT array substrate includes a substrate; a gate line and a gate electrode integrated therewith, which are covered by a gate insulating layer, a semiconductor layer, and a ohmic contact layer sequentially. An insulating layer is formed on the resulting substrate and on both sides of the gate line and the gate electrode, the gate insulating layer, the semiconductor layer, and the ohmic contact layer. A trench is then formed in the ohmic contact layer to divide the ohmic contact layer over the semiconductor layer. A data line and first and second source/drain electrodes are then formed on the insulating layer and the ohmic contact layer.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: August 26, 2014
    Assignee: Beijing BOE Optoelectronics Technology Co., Ltd.
    Inventors: Zhangtao Wang, Haijun Qiu, Tae Yup Min, Seung Moo Rim
  • Patent number: 8809829
    Abstract: A memory device having a phase change material element with a modified stoichiometry in the active region does not exhibit drift in set state resistance. A method for manufacturing the memory device includes first manufacturing an integrated circuit including an array of phase change memory cells with bodies of phase change material having a bulk stoichiometry; and then applying forming current to the phase change memory cells in the array to change the bulk stoichiometry in active regions of the bodies of phase change material to the modified stoichiometry, without disturbing the bulk stoichiometry outside the active regions. The bulk stoichiometry is characterized by stability under the thermodynamic conditions outside the active region, while the modified stoichiometry is characterized by stability under the thermodynamic conditions inside the active region.
    Type: Grant
    Filed: June 15, 2009
    Date of Patent: August 19, 2014
    Assignee: Macronix International Co., Ltd.
    Inventor: Ming-Hsiu Lee
  • Publication number: 20140225164
    Abstract: A standard cell has gate patterns extending in Y direction and arranged at an equal pitch in X direction. End portions of the gate patterns are located at the same position in Y direction, and have an equal width in X direction. A diode cell is located next to the standard cell in Y direction, and includes a plurality of opposite end portions formed of gate patterns that are opposed to the end portions, in addition to a diffusion layer which functions as a diode.
    Type: Application
    Filed: April 15, 2014
    Publication date: August 14, 2014
    Applicant: PANASONIC CORPORATION
    Inventors: Tomoaki IKEGAMI, Kazuyuki NAKANISHI, Masaki TAMARU
  • Patent number: 8804416
    Abstract: Memory devices and methods of operating memory devices are shown. Configurations described include a memory cell string having an elongated n type body region and having select gates with p type bodies. Configurations and methods shown can provide a reliable bias to a body region for memory operations such as erasing.
    Type: Grant
    Filed: January 20, 2014
    Date of Patent: August 12, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Akira Goda
  • Patent number: 8797787
    Abstract: A memory bit cell includes a latch, a write port coupled to the latch, and a read port coupled to the latch. The write port includes a first set of devices having a first threshold voltage and a second set of devices having a second threshold voltage that is greater than the first threshold voltage. The read port includes a third set of devices having a third threshold voltage that is less than the first threshold voltage.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: August 5, 2014
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Jhon Jhy Liaw
  • Patent number: 8791507
    Abstract: A layout of a semiconductor device is capable of reliably reducing a variation in gate length due to the optical proximity effect, and enables flexible layout design to be implemented. Gate patterns (G1, G2, G3) of a cell (C1) are arranged at the same pitch, and terminal ends (e1, e2, e3) of the gate patterns are located at the same position in the Y direction, and have the same width in the X direction. A gate pattern (G4) of a cell (C2) has protruding portions (4b) protruding toward the cell (C1) in the Y direction, and the protruding portions (4b) form opposing terminal ends (eo1, eo2, eo3). The opposing terminal ends (eo1, eo2, eo3) are arranged at the same pitch as the gate patterns (G1, G2, G3), are located at the same position in the Y direction, and have the same width in the X direction.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: July 29, 2014
    Assignee: Panasonic Corporation
    Inventors: Kazuyuki Nakanishi, Masaki Tamaru
  • Patent number: 8779467
    Abstract: To provide a light emitting device high in reliability with a pixel portion having high definition with a large screen. According to a light emitting device of the present invention, on an insulator (24) provided between pixel electrodes. an auxiliary electrode (21) made of a metal film is formed, whereby a conductive layer (20) made of a transparent conductive film in contact with the auxiliary electrode can be made low in resistance and thin. Also, the auxiliary electrode (21) is used to achieve connection with an electrode on a lower layer, whereby the electrode can be led out with the transparent conductive film formed on an EL layer. Further, a protective film (32) made of a film containing hydrogen and a silicon nitride film which are laminated is formed, whereby high reliability can be achieved.
    Type: Grant
    Filed: December 30, 2011
    Date of Patent: July 15, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Masaaki Hiroki, Masakazu Murakami, Hideaki Kuwabara
  • Patent number: 8772838
    Abstract: A semiconductor layout structure includes multiple active blocks which are disposed on a substrate, parallel with one another and extending along a first direction, multiple first shallow trench isolations which are disposed on a substrate, parallel with one another and respectively disposed on the multiple active blocks, and multiple second shallow trench isolations which are disposed on a substrate, cutting through multiple active blocks and extending along a second direction. The first direction has an angle about 1 degree to about 53 degrees to the second direction.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: July 8, 2014
    Assignee: Inotera Memories, Inc.
    Inventors: Tzung-Han Lee, Chung-Yuan Lee
  • Publication number: 20140183602
    Abstract: An integrated circuit includes a plurality of N wells disposed on a P substrate. A plurality of tap columns is located across the plurality of N wells and a plurality of standard cells is located between the tap columns. A plurality of tap cells is disposed consecutively in the plurality of tap columns. Each tap cell further includes a first tap active and a second tap active. The first tap active of a first tap cell extends to the first tap active of a second tap cell which further extends to a well boundary of either the first tap cell or the second tap cell. The first tap active of the first tap cell and the first tap active of the second tap cell are adjacent to each other in the tap column.
    Type: Application
    Filed: December 17, 2013
    Publication date: July 3, 2014
    Inventor: Girishankar Gurumurthy
  • Patent number: 8766452
    Abstract: A semiconductor device having a conductive pattern includes a plurality of conductive lines extending in parallel, each having a first region extending in a first direction and a second region coupled to the first region and extending in a second direction crossing the first direction, and a plurality of contact pads, each coupled to a respective conductive line of the second regions, wherein the conductive lines are grouped and arranged in a plurality of groups, the first region of a first group is longer than the first region of a second group, and the second region of the first group and the second region of the second group are spaced apart from each other.
    Type: Grant
    Filed: August 24, 2012
    Date of Patent: July 1, 2014
    Assignee: SK Hynix Inc.
    Inventor: Dae Sung Eom
  • Publication number: 20140176216
    Abstract: The invention relates to an integrated circuit comprising: a block comprising: first (38) and second (40) oppositely doped semiconductor wells; standard cells (42, 43) placed next to one another, each standard cell (42) comprising first transistors (60, 62), and a clock tree cell (30) encircled by standard cells, the clock tree cell (30) comprising: a third semiconductor well (104) having the same doping type as the doping of the first well (38); second transistors (100, 102); a semiconductor strip (106) extending continuously around the third well (104), and having the opposite doping type to the doping of the third well, so as to electrically isolate the third well (104) from the first well (38).
    Type: Application
    Filed: December 19, 2013
    Publication date: June 26, 2014
    Inventors: Yvain Thonnart, Bastien Giraud, Fady Abouzeid, Sylvain Clerc, Jean-Philippe Noel
  • Patent number: 8759979
    Abstract: A semiconductor memory device having a cell pattern formed on an interconnection and capable of reducing an interconnection resistance and a fabrication method thereof are provided. The semiconductor device includes a semiconductor substrate in which a cell area, a core area, and a peripheral area are defined and a bottom structure is formed, a conductive line formed on an entire structure of the semiconductor substrate, a memory cell pattern formed on the conductive line in the cell area, and a dummy conductive pattern formed on any one of the conductive line in the core area and the peripheral area.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: June 24, 2014
    Assignee: SK Hynix Inc.
    Inventor: Jang Uk Lee
  • Patent number: 8759882
    Abstract: An integrated circuit device includes a plurality of dynamic array sections, each of which includes three or more linear conductive segments formed within its gate electrode level in a parallel manner to extend lengthwise in a first direction. An adjoining pair of dynamic array sections are positioned to have co-located portions of outer peripheral boundary segments extending perpendicular to the first direction. Some of the three or more linear conductive segments within the gate electrode levels of the adjoining pair of dynamic array sections are co-aligned in the first direction and separated by an end-to-end spacing that spans the co-located portions of outer peripheral boundary segments of the adjoining pair of dynamic array sections. Each of these end-to-end spacings is sized to ensure that each gate electrode level manufacturing assurance halo portion of the first adjoining pair of dynamic array sections is devoid of the co-aligned linear conductive segments.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: June 24, 2014
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Michael C. Smayling
  • Publication number: 20140167117
    Abstract: A semiconductor device is disclosed to include a plurality of cells. Each of the cells has a respective outer cell boundary defined to circumscribe the cell in an orthogonal manner. Also, each of the cells includes circuitry for performing one or more logic functions. This circuitry includes a plurality of conductive features defined in one or more levels of the cell. One or more of the conductive features in at least one level of a given cell is an encroaching feature positioned to encroach by an encroachment distance into an exclusion zone. The exclusion zone occupies an area within the cell defined by an exclusion distance extending perpendicularly inward into the given cell from a first segment of the outer cell boundary. The exclusion distance is based on a design rule distance representing a minimum separation distance required between conductive features in adjacently placed cells on the semiconductor device.
    Type: Application
    Filed: February 21, 2014
    Publication date: June 19, 2014
    Applicant: Tela Innovations, Inc.
    Inventors: Jonathan R. Quandt, Scott T. Becker, Dhrumil Gandhi
  • Publication number: 20140151751
    Abstract: One or more techniques or systems for mitigating density gradients between two or more regions of cells are provided herein. In some embodiments, an array of cells is associated with a dummy region. For example, the array of cells includes an array of gates and an array of OD regions. In some embodiments, the array of gates includes a first set of gates associated with a first gate dimension and a second set of gates associated with a second gate dimension. In some embodiments, the array of OD regions includes a first set of OD regions associated with a first OD dimension and a second set of OD regions associated with a second OD dimension. In this manner, at least one of a pattern density, gate density, or OD density is customized to a region associated with active cells, thus mitigating density gradients between respective regions.
    Type: Application
    Filed: December 20, 2012
    Publication date: June 5, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company Limited
    Inventor: Taiwan Semiconductor Manufacturing Company Limited
  • Patent number: 8735857
    Abstract: A via-configurable circuit block may contain chains of p-type and n-type transistors that may or may not be interconnected by means of configurable vias. Configurable vias may also be used to connect various transistor terminals to a ground line, a power line and/or to various terminals that may provide connections outside of the circuit block.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: May 27, 2014
    Assignee: eASIC Corporation
    Inventors: Alexander Andreev, Sergey Gribok, Ranko Scepanovic
  • Patent number: 8716803
    Abstract: A 3-D Single Floating Gate Non-Volatile Memory (SFGNVM) device based on the 3-D fin Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) is disclosed. The disclosed Non-Volatile Memory (NVM) device consists of a pair of semiconductor fins and one floating metal gate. The floating metal gate for storing electrical charges to alter the threshold voltage of the fin MOSFET crosses over the pair of semiconductor fins on top of coupling and tunneling dielectrics above the surfaces of the two semiconductor fins. One semiconductor fin with the same type impurity forms the control gate of the non-volatile memory device. The other semiconductor fin is doped with opposite type of impurity in the channel regions under the metal floating gate and with the same type of impurity in the source and drain regions on the sides of the crossed metal floating gate.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: May 6, 2014
    Assignee: FlashSilicon Incorporation
    Inventor: Lee Wang
  • Patent number: 8710553
    Abstract: An integrated circuit includes a substrate. The substrate includes diffusion lines. The diffusion lines include impurities diffused into the substrate. A signal line layer includes first signal lines. A first metal layer includes second signal lines. The second signal lines include a first metallic material. A second metal layer includes third signal lines. The third signal lines include a second metallic material. First contacts connect the diffusion lines to (i) a first set of the second signal lines, or (ii) a first set of the third signal lines. Second contacts connect a first set of the first signal lines to a second set of the third signal lines. Each signal line in a first set of the second signal lines includes first portions and second portions. The first portions extend towards and are not connected to the second contacts. The first portions are not parallel to the second portions.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: April 29, 2014
    Assignee: Marvell International Ltd.
    Inventors: Qiang Tang, Min She, Ken Liao
  • Patent number: 8698234
    Abstract: A semiconductor device including a connecting structure includes an edge region, a first trench and a second trench running toward the edge region, a first electrode within the first trench, and a second electrode within the second trench, the first and second electrodes being arranged in a same electrode plane with regard to a main surface of a substrate of the electronic device within the trenches, and the first electrode extending, at an edge region side end of the first trench, farther toward the edge region than the second electrode extends, at an edge region side end of the second trench, toward the edge region.
    Type: Grant
    Filed: October 19, 2011
    Date of Patent: April 15, 2014
    Assignee: Infineon Technologies Austria AG
    Inventors: Franz Hirler, Markus Zundel
  • Patent number: 8698203
    Abstract: A semiconductor device includes a semiconductor layer having a plurality of active regions that are separated by element isolation grooves, a capacitive film having a sidewall covering portion covering a sidewall of the element isolation grooves, and an electrode film laminated on the capacitive film, and a capacitor element is formed by the semiconductor layer, the capacitive film and the electrode film.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: April 15, 2014
    Assignee: Rohm Co., Ltd.
    Inventor: Bungo Tanaka
  • Patent number: 8698273
    Abstract: A layout structure of a semiconductor integrated circuit is provided with which narrowing and breaking of metal interconnects near a cell boundary can be prevented without increasing the data amount and processing time for OPC. A cell A and a cell B are adjacent to each other along a cell boundary. The interconnect regions of metal interconnects from which to the cell boundary no other interconnect region exists are placed to be substantially axisymmetric with respect to the cell boundary, while sides of diffusion regions facing the cell boundary are asymmetric with respect to the cell boundary.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: April 15, 2014
    Assignee: Panasonic Corporation
    Inventors: Tomoaki Ikegami, Hidetoshi Nishimura, Kazuyuki Nakanishi
  • Patent number: 8692296
    Abstract: Semiconductor devices and manufacturing methods thereof are disclosed. In one embodiment, a semiconductor device includes a workpiece with a first region having a plurality of first features and a second region having a plurality of second features proximate the first region. The first region and the second region share a patterning overlap region disposed between the first region and the second region. The patterning overlap region includes a residue feature with an aspect ratio of about 4 or less.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: April 8, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Chang Chen, Shun-Shing Yang, Shih-Chi Fu, Wang-Pen Mo, Hung-Chang Hsieh
  • Patent number: 8687161
    Abstract: A new TFT arrangement is demonstrated, which enables prevention of TFT to be formed over a joint portion between the adjacent SOI layers prepared by the process including the separation of a thin single crystal semiconductor layer from a semiconductor wafer. The TFT arrangement is characterized by the structure where a plurality of TFTs each belonging to different pixels is gathered and arranged close to an intersection portion of a scanning line and a signal line. This structure allows the distance between regions, which are provided with the plurality of TFTs, to be extremely large compared with the distance between adjacent TFTs in the conventional TFT arrangement in which all TFTs are arranged in at a regular interval. The formation of a TFT over the joint portion can be avoided by the present arrangement, which leads to the formation of a display device with a negligible amount of display defects.
    Type: Grant
    Filed: September 24, 2011
    Date of Patent: April 1, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Takahiro Kasahara
  • Patent number: 8674410
    Abstract: A method of manufacturing a metal silicide is disclosed below. A substrate having a first region and a second region is proviced. A silicon layer is formed on the substrate. A planarization process is performed to make the silicon layer having a planar surface. A part of the silicon layer is removed to form a plurality of first gates on the first region and to form a plurality of second gates on the second region. The height of the first gates is greater than the height of the second gates, and top surfaces of the first gates and the second gates have the same height level. A dielectric layer covering the first gates and the second gates is formed and exposes the top surfaces of the first gates and the second gates. A metal silicide is formed on the top surfaces of the first gates and the second gates.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: March 18, 2014
    Assignee: Macronix International Co., Ltd.
    Inventors: Yen-Hao Shih, Ying-Tso Chen, Shih-Chang Tsai, Chun-Fu Chen
  • Patent number: 8653565
    Abstract: Various aspects of the technology includes a quad semiconductor power and/or switching FET comprising a pair of control/sync FET devices. Current may be distributed in parallel along source and drain fingers. Gate fingers and pads may be arranged in a serpentine configuration for applying gate signals to both ends of gate fingers. A single continuous ohmic metal finger includes both source and drain regions and functions as a source-drain node. A set of electrodes for distributing the current may be arrayed along the width of the source and/or drain fingers and oriented to cross the fingers along the length of the source and drain fingers. Current may be conducted from the electrodes to the source and drain fingers through vias disposed along the surface of the fingers. Heat developed in the source, drain, and gate fingers may be conducted through the vias to the electrodes and out of the device.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: February 18, 2014
    Assignee: Sarda Technologies, Inc.
    Inventor: James L. Vorhaus
  • Patent number: 8652909
    Abstract: A method of forming a nonvolatile memory cell includes forming a first electrode and a second electrode of the memory cell. Sacrificial material is provided between the first second electrodes. The sacrificial material is exchanged with programmable material. The sacrificial material may additionally be exchanged with select device material.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: February 18, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Scott E. Sills, Gurtej S. Sandhu
  • Patent number: 8653857
    Abstract: An exclusive-or circuit includes a pass gate controlled by a second input node. The pass gate is connected to pass through a version of a logic state present at a first input node to an output node when so controlled. A transmission gate is controlled by the first input node. The transmission gate is connected to pass through a version of the logic state present at the second input node to the output node when so controlled. Pullup logic is controlled by both the first and second input nodes. The pullup logic is connected to drive the output node low when both the first and second input nodes are high. An exclusive-nor circuit is defined similar to the exclusive-or circuit, except that the pullup logic is replaced by pulldown logic which is connected to drive the output node high when both the first and second input nodes are high.
    Type: Grant
    Filed: May 5, 2009
    Date of Patent: February 18, 2014
    Assignee: Tela Innovations, Inc.
    Inventor: Scott T. Becker
  • Publication number: 20140042496
    Abstract: A programmable analog device in which data can be held even when supply of a power supply potential is stopped. The programmable circuit includes unit cells connected in parallel or in series, and each of the unit cells includes an analog element. A conduction state of each of the unit cells is changed between an on state and an off state. Each of the unit cells includes, as a switch of the unit cell, a first transistor having a sufficiently low off-state current and a second transistor, a gate electrode of the second transistor being electrically connected to a source or drain electrode of the first transistor. The conduction state of the unit cell is controlled with a potential of the gate electrode of the second transistor, which can be kept even when no power is supplied thanks to the low off-state current of the first transistor.
    Type: Application
    Filed: October 22, 2013
    Publication date: February 13, 2014
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Takuro OHMARU, Yutaka SHIONOIRI
  • Publication number: 20140027819
    Abstract: A corner layout for a semiconductor device that maximizes the breakdown voltage is disclosed. The device includes first and second subsets of the striped cell arrays. The ends of each striped cell in the first array is spaced a uniform distance from the nearest termination device structure. In the second subset, the ends of striped cells proximate a corner of the active cell region are configured to maximize breakdown voltage by spacing the ends of each striped cell a non-uniform distance from the nearest termination device structure. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Application
    Filed: July 30, 2012
    Publication date: January 30, 2014
    Applicant: Alpha and Omega Semiconductor Incorporated
    Inventors: Lingpeng Guan, Anup Bhalla
  • Patent number: 8637906
    Abstract: A semiconductor integrated circuit includes a substrate, an oxide layer formed on an upper surface of the substrate, a plurality of polysilicon members arranged at constant intervals in a matrix on an upper surface of the oxide layer and including at least one first polysilicon member and a plurality of second polysilicon members, and a diffusion layer formed in the substrate under the first polysilicon member and electrically coupled to an interconnect for supplying a first power supply voltage, wherein the first polysilicon member is situated at an outermost periphery of the matrix and electrically coupled to an interconnect for supplying a second power supply voltage, and the plurality of second polysilicon members are situated inside the outermost periphery of the matrix.
    Type: Grant
    Filed: June 15, 2009
    Date of Patent: January 28, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Hideyuki Komuro, Koji Nozoe
  • Publication number: 20140021515
    Abstract: A micromechanical structure, in particular a sensor arrangement, includes at least one micromechanical functional layer, a CMOS substrate region arranged below the at least one micromechanical functional layer, and an arrangement of one or more contact elements. The CMOS substrate region has at least one configurable circuit arrangement. The arrangement of one or more contact elements is arranged between the at least one micromechanical functional layer and the CMOS substrate region and is electrically connected to the micromechanical functional layer and the circuit arrangement. The configurable circuit arrangement is designed in such a way that the one or more contact elements are configured to be selectively connected to electrical connection lines in the CMOS substrate region.
    Type: Application
    Filed: July 16, 2013
    Publication date: January 23, 2014
    Applicant: Robert Bosch GmbH
    Inventors: Johannes Classen, Miko Hattass, Lars Tebje, Daniel Christoph Meisel
  • Patent number: 8634222
    Abstract: Memory devices and methods of operating memory devices are shown. Configurations described include a memory cell string having an elongated n type body region and having select gates with p type bodies. Configurations and methods shown can provide a reliable bias to a body region for memory operations such as erasing.
    Type: Grant
    Filed: March 25, 2013
    Date of Patent: January 21, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Akira Goda
  • Patent number: 8624298
    Abstract: A flat panel display includes a gate line, a data line, and a power supply line and a plurality of pixels connected to the lines, wherein each of the pixels includes a first thin film transistor that includes an active layer having a channel region, a source region, and a drain region and a bias supply layer in contact with the channel region so as to apply a voltage to the channel region of the first thin film transistor, wherein the bias supply layer of the first thin film transistor is connected to the power supply line.
    Type: Grant
    Filed: June 11, 2007
    Date of Patent: January 7, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Byoung-Deog Choi, Sung-Sik Bae, Won-Sik Kim
  • Publication number: 20130334575
    Abstract: The technology relates to a damascene word line for a three dimensional array of nonvolatile memory cells. Partly oxidized lines of material such as silicon are made over a plurality of stacked nonvolatile memory structures. Word line trenches are made in the partly oxidized lines, by removing the unoxidized lines from the intermediate parts of the partly oxidized lines, leaving the plurality of oxidized lines at the outer parts of the plurality of partly oxidized lines. Word lines are made in the word line trenches over the plurality of stacked nonvolatile memory structures.
    Type: Application
    Filed: June 19, 2012
    Publication date: December 19, 2013
    Applicant: Macronix International Co., Ltd.
    Inventors: Shih-Hung Chen, Yen-Hao Shih, Hang-Ting Lue
  • Patent number: 8610176
    Abstract: An apparatus fabricated using a standard cell architecture including devices having different voltage thresholds may include a first set of polylines associated with a first channel length, where each polyline within the first set of polylines is separated by a substantially constant pitch. The apparatus may further include a second set of polylines associated with a second channel length and aligned with the first set of polylines, where each polyline within the second set of polylines is laterally separated by the substantially constant pitch. The apparatus may further include a first active region below the first set of polylines, and a second active region below the second set of polylines, where the first active region and the second active region are separated by a distance of less than 170 nm.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: December 17, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: Prayag B. Patel, Pratyush Kamal, Foua Vang, Chock H. Gan, Pr Chidambaram, Chethan Swamynathan