Stacked Capacitor Patents (Class 257/306)
  • Patent number: 8487406
    Abstract: At least a first capacitor is formed on a substrate and connected to a first differential node of a differential circuit, and the first capacitor may be variable in capacitance. A second capacitor is formed on the substrate and connected to a second differential node of the differential circuit, and the second capacitor also may be variable. A third capacitor is connected between the first differential node and the second differential node, and is formed at least partially above the first capacitor. In this way, a size of the first capacitor and/or the second capacitor may be reduced on the substrate, and capacitances of the first and/or second capacitor(s) may be adjusted in response to a variable characteristic of one or more circuit components of the differential circuit.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: July 16, 2013
    Assignee: Broadcom Corporation
    Inventors: Hooman Darabi, Qiang Li, Bo Zhang
  • Patent number: 8486831
    Abstract: A miniaturized semiconductor device is provided by reducing the design thickness of a wiring line protecting film covering the surface of a wiring layer, and reducing the distance between the wiring layer and via plugs formed by a self-aligning process. Dummy mask layers extending in the same layout pattern as the wiring layer is formed above the wiring layer covered with a protecting film composed of a cap layer and side wall layers. In the self-aligning process for forming via plugs in a self-aligned manner with the wiring layer and its protecting film, the thickness of the cap layer is reduced and the design interval between the via plugs is reduced, whereby the miniaturization of the semiconductor device is achieved.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: July 16, 2013
    Assignee: Elpida Memory, Inc
    Inventor: Hirotaka Kobayashi
  • Patent number: 8487363
    Abstract: The present invention relates to a method for manufacturing a semiconductor device, and provides to reduce a contact resistance of a landing plug by forming the landing plug in such a manner that a polysilicon layer is deposited only on the surface of a landing plug contact hole, and a metal layer is buried in the rest of the landing plug contact hole in the process of forming a storage node contact or a bit line contact.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: July 16, 2013
    Assignee: Hynix Semiconductor Inc.
    Inventor: Sung Hyun Kim
  • Patent number: 8487361
    Abstract: Devices and methods for preventing capacitor leakage caused by sharp tip. The formation of sharp tip is avoided by a thicker bottom electrode which fully fills a micro-trench that induces formation of the sharp tip. Alternatively, formation of the sharp tip can be avoided by recessing the contact plug to substantially eliminate the micro-trench.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: July 16, 2013
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Kuo-Chi Tu
  • Patent number: 8486801
    Abstract: A fabricating method of a DRAM structure includes providing a substrate comprising a memory array region and a peripheral region. A buried gate transistor is disposed within the memory array region, and a planar gate transistor is disposed within the peripheral region. Furthermore, an interlayer dielectric layer covers the memory array region, the buried gate transistor and the planar gate transistor. Then, a capping layer of the planar gate transistor and part of the interlayer dielectric layer are removed simultaneously so that a first contact hole, a second contact hole and a third contact hole are formed in the interlayer dielectric layer. A drain doping region of the buried gate transistor is exposed through the first contact hole, a doping region of the planar gate transistor is exposed through the second contact hole, and a gate electrode of the planar gate transistor is exposed through the third contact hole.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: July 16, 2013
    Assignee: Inotera Memories, Inc.
    Inventors: Tzung-Han Lee, Chung-Lin Huang, Ron Fu Chu
  • Patent number: 8482097
    Abstract: A method of manufacturing a semiconductor device including a plurality of capacitors each of which has bottom electrode, dielectric layer, and top electrode includes stacking a bottom electrode layer, a dielectric layer and an top electrode layer, patterning the top electrode layer to form a plurality of top electrodes arranged in a column, forming a mask pattern that covers the plurality of top electrodes and leaves an end part of the outermost top electrode of the arrangement of the plurality of top electrodes exposed, and patterning the dielectric layer using the mask pattern.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: July 9, 2013
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Satoru Mihara
  • Patent number: 8476688
    Abstract: A semiconductor device that prevents the leaning of storage node when forming a capacitor having high capacitance includes a plurality of cylinder-shaped storage nodes formed over a semiconductor substrate; and support patterns formed to fix the storage nodes in the form of an ‘L’ or a ‘+’ when viewed from the top. This semiconductor device having support patterns in the form of an ‘L’ or a ‘+’ reduces stress on the storage nodes when subsequently forming a dielectric layer and plate nodes that prevents the capacitors from leaking.
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: July 2, 2013
    Assignee: Hynix Semiconductor Inc.
    Inventors: Ho Jin Cho, Cheol Hwan Park, Jae Wook Seo, Jong Kuk Kim
  • Publication number: 20130161715
    Abstract: A vertical transistor structure includes a substrate, a plurality of pillars located on the substrate and spaced from each other at a selected distance, a gate line and a plurality of conductors. The pillars are aligned in a straight line in a first direction and have respectively a primary control wall along the first direction and two ancillary control walls perpendicular to the primary control wall. The gate line is connected to the primary control wall in the first direction through a first isolated layer. The conductors are interposed between the ancillary control walls through second isolated layers. By providing the gate line merely on the primary control wall and the conductors to aid the gate line to control ON/OFF of the pillars, problems of etching and separating gate material during gradually shrunken feature size process that are difficult to control etching positions and etching duration can be prevented.
    Type: Application
    Filed: December 27, 2011
    Publication date: June 27, 2013
    Inventor: Yukihiro NAGAI
  • Publication number: 20130153908
    Abstract: A pixel structure including a first scan line, a second scan line, a data line and a power line substantially perpendicular to the first scan line and the second scan line, a reference signal line and an emission signal line substantially parallel with the first scan line and the second scan line, a common thin film transistor (C-TFT), a first pixel unit, and a second pixel unit is provided. The common thin film transistor has a common gate electrode, a common source electrode and a common drain electrode. The common gate electrode is electrically connected to the first scan line, the common drain electrode is electrically connected to the reference signal line. The first and the second pixel units respectively have a first TFT, a second TFT, a third TFT, a fourth TFT, a fifth TFT, a sixth TFT, a capacitor, and an emission device.
    Type: Application
    Filed: February 8, 2013
    Publication date: June 20, 2013
    Applicant: AU OPTRONICS CORPORATION
    Inventor: Au Optronics Corporation
  • Publication number: 20130140619
    Abstract: A method for fabricating a DRAM capacitor stack is described wherein the dielectric material is a multi-layer stack formed from a highly-doped material combined with a lightly or non-doped material. The highly-doped material remains amorphous with a crystalline content of less than 30% after an annealing step. The lightly or non-doped material becomes crystalline with a crystalline content of equal to or greater than 30% after an annealing step. The dielectric multi-layer stack maintains a high k-value while minimizing the leakage current and the EOT value.
    Type: Application
    Filed: January 10, 2013
    Publication date: June 6, 2013
    Applicant: INTERMOLECULAR, INC.
    Inventor: Intermolecular, Inc.
  • Patent number: 8450786
    Abstract: A semiconductor device capable of reducing a thickness, an electronic product employing the same, and a method of fabricating the same are provided. The method of fabricating a semiconductor device includes preparing a semiconductor substrate having first and second active regions. A first transistor in the first active region includes a first gate pattern and first impurity regions. A second transistor the second active region includes a second gate pattern and second impurity regions. A first conductive pattern is on the first transistor, wherein at least a part of the first conductive pattern is disposed at a same distance from an upper surface of the semiconductor substrate as at least a part of the second gate pattern. The first conductive pattern may be formed on the first transistor while the second transistor is formed.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: May 28, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dae-Ik Kim, Yong-Il Kim
  • Patent number: 8450785
    Abstract: Disclosed are methods of forming transistors. In one embodiment, the transistors are formed by forming a plurality of elliptical bases in a substrate and forming fins form the elliptical bases. The transistors are formed within the fin such that they may be used as access devices in a memory array.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: May 28, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Werner Juengling
  • Patent number: 8445951
    Abstract: A semiconductor integrated circuit device, includes a first electrode including a first semiconductor layer formed on a substrate, a side surface insulating film formed on at least a part of a side surface of the first electrode, an upper surface insulating film formed on the first electrode and the side surface insulating film, a second electrode which covers the side surface insulating film and the upper surface insulating film, and a fin-type field effect transistor. The first electrode, the side surface insulating film, and the second electrode constitute a capacitor element. A thickness of the upper surface insulating film between the first electrode and the second electrode is larger than a thickness of the side surface insulating film between the first electrode and the second electrode, and the fin-type field effect transistor includes a second semiconductor layer which protrudes with respect to the plane of the substrate.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: May 21, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Hiroshi Furuta, Takayuki Shirai, Shunsaku Naga
  • Patent number: 8441097
    Abstract: Methods to form memory devices having a MIM capacitor with a recessed electrode are described. In one embodiment, a method of forming a MIM capacitor with a recessed electrode includes forming an excavated feature defined by a lower portion that forms a bottom and an upper portion that forms sidewalls of the excavated feature. The method includes depositing a lower electrode layer in the feature, depositing an electrically insulating layer on the lower electrode layer, and depositing an upper electrode layer on the electrically insulating layer to form the MIM capacitor. The method includes removing an upper portion of the MIM capacitor to expose an upper surface of the electrode layers and then selectively etching one of the electrode layers to recess one of the electrode layers. This recess isolates the electrodes from each other and reduces the likelihood of a current leakage path between the electrodes.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: May 14, 2013
    Assignee: Intel Corporation
    Inventors: Joseph M. Steigerwald, Nick Lindert, Steven J. Keating, Christopher J. Jezewski, Timothy E. Glassman
  • Patent number: 8441103
    Abstract: Trench capacitors and methods of manufacturing the trench capacitors are provided. The trench capacitors are very dense series capacitor structures with independent electrode contacts. In the method, a series of capacitors are formed by forming a plurality of insulator layers and a plurality of electrodes in a trench structure, where each electrode is formed in an alternating manner with each insulator layer. The method further includes planarizing the electrodes to form contact regions for a plurality of capacitors.
    Type: Grant
    Filed: January 12, 2012
    Date of Patent: May 14, 2013
    Assignee: International Business Machines Corporation
    Inventors: Timothy W. Kemerer, James S. Nakos, Steven M. Shank
  • Publication number: 20130105875
    Abstract: A semiconductor device and a method for fabricating the same are provided to enable a bit line to be formed easily, increase a bit line process margin and reduce capacitance between the adjacent bit lines. The semiconductor device comprises: a first pillar and a second pillar each extended vertically from a semiconductor substrate and including a vertical channel region; a first bit line located in the lower portion of the vertical channel region inside the first pillar and the second pillar; and an interlayer insulating film located between the first pillar and the second pillar that include the first bit line.
    Type: Application
    Filed: April 13, 2012
    Publication date: May 2, 2013
    Applicant: Hynix Semiconductor Inc.
    Inventor: Seung Hwan KIM
  • Patent number: 8431982
    Abstract: A semiconductor device includes capacitors connected in parallel. Electrode active portions and a discharge active portion are defined on a semiconductor substrate, and capping electrodes are disposed respectively on the electrode active portions. A capacitor-dielectric layer is disposed between each of the capping electrodes and each of the electrode active portions that overlap each other. A counter doped region is disposed in the discharge active portion. A lower interlayer dielectric covers the entire surface of the semiconductor substrate. Electrode contact plugs respectively contact the capping electrodes through the lower interlayer dielectric, and a discharge contact plug contacts the counter doped region through the lower interlayer dielectric. A lower interconnection is disposed on the lower interlayer dielectric and contacts the electrode contact plugs and the discharge contact plug.
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: April 30, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Myoungsoo Kim, Yoonkyung Choi, Eun Young Lee, Sungil Jo
  • Patent number: 8426867
    Abstract: A plurality of thin film capacitor parts are provided in respective regions each surrounded by a plurality of gate metal lines (12) and a plurality of data signal lines (11) intersecting perpendicularly to each other on a glass substrate (1), and each of the thin film capacitor parts has a lower electrode (3), a gate insulating film, and an upper electrode (5), which are provided in this order. Adjacent upper electrodes (5) are electrically connected to each other via a corresponding first wire (8), which is positioned above the adjacent upper electrodes (5) and intersects with one of the data signal lines (11). This makes it possible to provide a thin film capacitor, which includes the lower electrodes (3) each having the same thickness in a center portion and an edge portion, and the upper electrodes (5) that are connected to each other by using a corresponding connecting wire with low possibility of disconnection.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: April 23, 2013
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Hiroyuki Moriwaki
  • Publication number: 20130087842
    Abstract: According to example embodiments, a semiconductor device includes a lower active portion protruding from a substrate, an active pillar protruding from the lower active portion, a surround gate electrode surrounding the active pillar, a buried bit line extending along a first direction and being on the lower active portion and electrically connected to the lower active portion, and a contact gate electrode contacting both the surround gate electrode and a word line extending a second direction crossing the first direction.
    Type: Application
    Filed: September 13, 2012
    Publication date: April 11, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jiyoung KIM, Yongchul OH, Kyuhyun LEE, Hyun-Woo CHUNG, Gyoyoung JIN, HyeongSun HONG, Yoosang HWANG
  • Patent number: 8410535
    Abstract: A capacitor and a manufacturing method thereof are provided. The capacitor includes a first electrode, a first metal layer, a dielectric layer and a second electrode. The first electrode is disposed on a substrate. The first metal layer is disposed on the first electrode. The dielectric layer is disposed on the first metal layer, wherein the material of the first metal layer does not react with the material of the dielectric layer. The second electrode is disposed on the dielectric layer.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: April 2, 2013
    Assignee: Nanya Technology Corporation
    Inventors: Kuo-Hui Su, Yi-Nan Chen, Hsien-Wen Liu
  • Publication number: 20130075766
    Abstract: A thin film transistor device, disposed on a substrate, includes a gate electrode, a semiconductor channel layer, a gate insulating layer disposed between the gate electrode and the semiconductor channel layer, a source electrode and a drain electrode disposed at two opposite sides of the semiconductor channel layer and partially overlapping the semiconductor channel layer, respectively, a capacitor electrode at least partially overlapping the gate electrode, and a capacitor dielectric layer disposed between the capacitor electrode and the gate electrode. The capacitor electrode, the gate electrode and the capacitor dielectric layer form a capacitor device.
    Type: Application
    Filed: April 16, 2012
    Publication date: March 28, 2013
    Inventors: Che-Chia Chang, Sheng-Chao Liu, Wu-Liu Tsai, Chuan-Sheng Wei, Chih-Hung Lin
  • Patent number: 8404555
    Abstract: A fabricating method of a semiconductor device is provided. Pillars are formed on a substrate. A first oxide layer is continuously formed on upper surfaces and side walls of the pillars by non-conformal liner atomic layer deposition. The first oxide layer continuously covers the pillars and has at least one first opening. The first oxide layer is partially removed to expose the upper surfaces of the pillars, and a first supporting element is formed on the side wall of each of the pillars. The first supporting element is located at a first height on the side wall of the corresponding pillar and surrounds the periphery of the corresponding pillar. The first supporting elements around two adjacent pillars are connected and the first supporting elements around two opposite pillars do not mutually come into contact and have a second opening therebetween.
    Type: Grant
    Filed: August 10, 2010
    Date of Patent: March 26, 2013
    Assignee: Nanya Technology Corporation
    Inventor: Charles C. Wang
  • Patent number: 8399917
    Abstract: A semiconductor device, including a semiconductor substrate including isolations defining active regions of the semiconductor substrate, a plurality of buried gate electrodes extending below an upper surface of the active regions of the semiconductor device, a plurality of bit lines extending on the semiconductor substrate along a first direction, a plurality of insulating patterns extending on the semiconductor substrate along a second direction that crosses the first direction, and a plurality of capping patterns extending over the bit lines, wherein the insulating patterns and the capping pattern both include insulating material and at least a portion of corresponding ones of the insulating patterns and the capping patterns are in direct contact with each other.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: March 19, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Kye-Hee Yeom
  • Publication number: 20130062678
    Abstract: Semiconductor memory devices having recessed access devices are disclosed. In some embodiments, a method of forming the recessed access device includes forming a device recess in a substrate material that extends to a first depth in the substrate that includes a gate oxide layer in the recess. The device recess may be extended to a second depth that is greater that the first depth to form an extended portion of the device recess. A field oxide layer may be provided within an interior of the device recess that extends inwardly into the interior of the device recess and into the substrate. Active regions may be formed in the substrate that abut the field oxide layer, and a gate material may be deposited into the device recess.
    Type: Application
    Filed: November 12, 2012
    Publication date: March 14, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Micron Technology, Inc.
  • Publication number: 20130062679
    Abstract: A device includes a semiconductor region surrounded with the isolation region and includes a first active region, a channel region and a second active region arranged in that order in a first direction. A first side portion of the first active region and a second side portion of the second active region faces each other across a top surface of the channel region in the first direction. A gate electrode covers the top surface and the first and second side portions and extends in a second direction that intersects the first direction. A first diffusion layer is formed in the first active region. A second diffusion layer is formed in the second active region. An embedded contact plug is formed in the first active region and extends downwardly from the upper surface of the semiconductor region and contacts with the first diffusion layer.
    Type: Application
    Filed: August 27, 2012
    Publication date: March 14, 2013
    Applicant: ELPIDA MEMORY, INC.
    Inventor: Kazutaka MANABE
  • Patent number: 8395236
    Abstract: The semiconductor device according to the present invention includes a plurality of capacitance elements. Each capacitance element has a structure obtained by holding a capacitance film made of an insulating material between first and second electrodes made of a metallic material. The first and second electrodes are so arranged as to partially overlap each other while relatively positionally deviating from each other in a direction orthogonal to the opposed direction thereof. The plurality of capacitance elements are stacked in the opposed direction.
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: March 12, 2013
    Assignee: Rohm Co., Ltd.
    Inventor: Satoshi Kageyama
  • Patent number: 8395200
    Abstract: A method for manufacturing a capacitor on an integrated circuit includes providing an inter-metal dielectric layer on a substrate, a bottom layer having a first and second portions, a first insulating layer having via plug openings on the bottom layer, and via plugs disposed in the via plug openings. The via plugs include a first and second via plugs and are electrically coupled to the first portion of the bottom layer. The method further includes providing a capacitor layer having a first barrier metal layer coupled to the first via plug. The capacitor layer also has a capacitor dielectric layer overlying the first barrier metal layer and a second barrier metal overlying the capacitor dielectric layer. The method further includes defining a first and second capacitor layer portions. The first capacitor layer portion has two opposite sides and spacers disposed on their surface.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: March 12, 2013
    Assignee: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: Zhen Chen, Yung Feng Lin, Lin Huang
  • Patent number: 8395235
    Abstract: A semiconductor device may include, but is not limited to a first electrode upwardly extending, and a second electrode upwardly extending along the first electrode. The first electrode includes a lower portion and an upper portion. The second electrode covers a bottom surface and an outer side surface of the lower portion of the first electrode. The upper portion of the first electrode is positioned higher than the second electrode.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: March 12, 2013
    Assignee: Elpida Memory, Inc.
    Inventor: Keiichi Tsuchiya
  • Patent number: 8389374
    Abstract: The present invention is a method for producing a capacitor. The method includes applying a dielectric substance (ex.—silicon nitride) to a first gold seed layer, the first gold seed layer being formed on a wafer. A second gold seed layer is formed upon the dielectric substance and first gold seed layer. Gold is electroplated into a photoresist to form a first set of 3-D capacitor elements on the second gold seed layer. A first copper layer is electroplated onto the second gold seed layer. Gold is electroplated into a photoresist to form a second set of 3-D capacitor elements, the second set of 3-D elements being formed at least partially within the first copper layer and being connected to the first set of 3-D elements. A second copper layer is electroplated onto the first copper layer. Then, both copper layers are removed to provide (ex.—form) the capacitor.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: March 5, 2013
    Assignee: Rockwell Collins, Inc.
    Inventors: Nathan P. Lower, Mark M. Mulbrook, Robert L. Palandech
  • Patent number: 8389373
    Abstract: Techniques for manufacturing an electronic device. In certain embodiments, a substrate includes a lower patterned layer that has a target conductor. A hybrid-vertical contact may be disposed directly on the target conductor. The hybrid vertical contact may include a lower-vertical contact directly on the target conductor and an upper-vertical contact directly on the lower-vertical contact. The upper-vertical contact may have an upper width that is greater than a lower width of the lower-vertical contact.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: March 5, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Jonathan Doebler
  • Publication number: 20130049090
    Abstract: An embodiment of the invention provides a semiconductor fabrication method. The method comprises forming an isolation region between a first and a second region in a substrate, forming a recess in the substrate surface, and lining the recess with a uniform oxide. Embodiments further include doping a channel region under the bottom recess surface in the first and second regions and depositing a gate electrode material in the recess. Preferred embodiments include forming source/drain regions adjacent the channel region in the first and second regions, preferably after the step of depositing the gate electrode material. Another embodiment of the invention provides a semiconductor device comprising a recess in a surface of the first and second active regions and in the isolation region, and a dielectric layer having a uniform thickness lining the recess.
    Type: Application
    Filed: October 25, 2012
    Publication date: February 28, 2013
    Applicant: Infineon Technologies AG
    Inventor: Infineon Technologies AG
  • Patent number: 8384226
    Abstract: A device fabricated on a chip is disclosed. The device generally includes (A) a first pattern and a second pattern both created in an intermediate conductive layer of the chip, (B) at least one via created in an insulating layer above the intermediate conductive layer and (C) a first bump created in a top conductive layer above the insulating layer. The first pattern generally establishes a first of a plurality of plates of a first capacitor. The via may be aligned with the second pattern. The first bump may (i) be located directly above the first plate, (ii) establish a second of the plates of the first capacitor, (iii) be suitable for flip-chip bonding, (iv) connect to the second pattern through the via such that both of the plates of the first capacitor are accessible in the intermediate conductive layer. The first pattern and the second pattern may be shaped as interlocking combs.
    Type: Grant
    Filed: September 20, 2010
    Date of Patent: February 26, 2013
    Assignee: LSI Corporation
    Inventors: Yikui (Jen) Dong, Steven L. Howard, Freeman Y. Zhong, David S. Lowrie
  • Patent number: 8378405
    Abstract: A capacitor under bitline DRAM memory cell and method for its fabrication provides a high density memory cell with the capacitor formed in the PMD layer. The memory cell utilizes several variations of storage contact pillar structures as, for example, a storage plate of the memory cell capacitor formed within a trench in the PMD layer. This capacitor plate structure is overlaid with a capacitor dielectric layer which is overlaid with another conductive layer, for example, the M1 layer to form the other capacitor plate. An access transistor formed between substrate active regions and a word line, is in electrical communication with a bit line contact, the storage contact capacitor plate, and the word line respectively. The high density memory cell benefits from the simple standard processes common to logic processes, and in one embodiment requiring only one additional masking step.
    Type: Grant
    Filed: September 19, 2003
    Date of Patent: February 19, 2013
    Assignee: Texas Instruments Incorporated
    Inventor: Theodore W. Houston
  • Patent number: 8378452
    Abstract: Disclosed is a wafer level package having a cylindrical capacitor, which is capable of increasing electrostatic capacity thanks to the use of a cylindrical capacitor structure and which includes a wafer chip having a bonding pad formed thereon and an insulating layer formed thereon and exposing the bonding pad, a redistribution layer connected to the bonding pad and extending to one side of the insulating layer, a cylindrical outer electrode connected to the redistribution layer and having a center opening therein, a cylindrical inner electrode formed in the center opening of the outer electrode so as to be separated from the outer electrode, a dielectric layer formed between the outer electrode and the inner electrode, and a resin sealing portion formed on the insulating layer to cover the redistribution layer, the inner electrode, the outer electrode and the dielectric layer and having a first recess for exposing an upper surface of the inner electrode.
    Type: Grant
    Filed: April 29, 2010
    Date of Patent: February 19, 2013
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Seung Seoup Lee, Soon Gyu Yim
  • Patent number: 8372748
    Abstract: A method for manufacturing semiconductor device includes forming an interlayer dielectric layer including a contact plug defined therein to electrically couple a semiconductor substrate on which a cell region and a dummy region are defined. A sacrificial layer is formed over the interlayer dielectric layer. An etch stop pattern is formed over the sacrificial layer, the etch stop pattern being vertically aligned to the dummy region. A storage electrode region through the sacrificial layer is defined to expose a first storage electrode contact of the cell region, the second storage electrode contact of the dummy region remaining covered by the sacrificial layer. A conductive layer is deposited within the storage electrode region to form a storage electrode contacting the first storage electrode contact of the cell region.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: February 12, 2013
    Assignee: Hynix Semiconductor Inc.
    Inventors: Dae Jin Park, Jong Won Jang
  • Patent number: 8368136
    Abstract: A semiconductor device is provided which includes a semiconductor substrate having a first region and a second region, transistors having metal gates formed in the first region, and at least one capacitor formed in the second region. The capacitor includes a top electrode having at least one stopping structure formed in the top electrode, the at least one stopping structure being of a different material from the top electrode, a bottom electrode, and a dielectric layer interposed between the top electrode and the bottom electrode.
    Type: Grant
    Filed: October 22, 2008
    Date of Patent: February 5, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Harry Chuang, Tzung-Chi Lee, Kong-Beng Thei, Sheng-Chen Chung, Mong-Song Liang
  • Patent number: 8368175
    Abstract: Provided is a capacitor that realizes a capacitance insulation film having a large relative permittivity and has sufficient capacitance even if an occupied space is small with a reduced amount of leakage current. A capacitor includes: a capacitance insulation film; and an upper electrode and lower electrode each formed on both sides of the capacitance insulation film. The capacitance insulation film is a complex oxide whose main ingredients are Zr, Al and O with the composition ratio of Zr to Al being set at (1?x): x (0.01?x?0.15) and is composed of a dielectric substance having a crystal structure. The lower electrode is composed of a conductor whose surface contiguous to at least the dielectric film has an amorphous structure.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: February 5, 2013
    Assignee: NEC Corporation
    Inventors: Takashi Nakagawa, Kaoru Mori, Nobuyuki Ikarashi, Makiko Oshida
  • Patent number: 8368173
    Abstract: The present invention relates to a semiconductor package and a method for making the same. The semiconductor package includes a base material, a first metal layer, a first dielectric layer, a first upper electrode and a first protective layer. The first metal layer is disposed on a first surface of the base material, and includes a first inductor and a first lower electrode. The first dielectric layer is disposed on the first lower electrode. The first upper electrode is disposed on the first dielectric layer, and the first upper electrode, the first dielectric layer and the first lower electrode form a first capacitor. The first protective layer encapsulates the first inductor and the first capacitor. Whereby, the first inductor and the first lower electrode of the first capacitor are disposed on the same layer, so that the thickness of the product is reduced.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: February 5, 2013
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventors: Chien-Hua Chen, Teck-Chong Lee
  • Patent number: 8357964
    Abstract: A three-dimensional dynamic random access memory with an ancillary electrode structure includes a substrate, at least one bit line formed on the substrate, at least one pillar element formed on a growth zone of the bit line, an ancillary electrode, a character line parallel with the substrate and perpendicular to the bit line, and at least one capacitor connecting to the pillar element. The bit line is formed on the substrate by doping and diffusing a doping element. The ancillary electrode is located on a separation zone of the bit line and adjacent to the pillar element. The character line is insulated from the ancillary electrode and incorporates with the bit line to output or input electronic data to the capacitor. Through the ancillary electrode, impedance of the bit line can be controlled to enhance conductivity of the bit line.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: January 22, 2013
    Assignee: Rexchip Electronics Corporation
    Inventors: Chih-Yuan Chen, Meng-Hsien Chen, Chih-Wei Hsiung
  • Patent number: 8354703
    Abstract: A semiconductor capacitor and its method of fabrication are disclosed. A non-linear nitride layer is used to increase the surface area of a capacitor plate, resulting in increased capacitance without increase in chip area used for the capacitor.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: January 15, 2013
    Assignee: International Business Machines Corporation
    Inventors: David Vaclav Horak, Shom Ponoth, Hosadurga Shobha, Chih-Chao Yang
  • Patent number: 8350306
    Abstract: A wiring substrate in which a capacitor is provided, the capacitor comprising a capacitor body including a plurality of dielectric layers and internal electrode layers provided between the different dielectric layers, wherein said capacitor body has, in at least one side face of said capacitor body, recesses extending in a thickness direction of said capacitor body from at least one of a first principal face of said capacitor body and a second principal face positioned on the side opposite to the first principal face.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: January 8, 2013
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Motohiko Sato, Kazuhiro Hayashi, Kenji Murakami, Motonobu Kurahashi, Yusuke Kaieda, Jun Otsuka, Manabu Sato
  • Patent number: 8344439
    Abstract: Integrated circuit capacitors have composite dielectric layers therein. These composite dielectric layers include crystallization inhibiting regions that operate to increase the overall crystallization temperature of the composite dielectric layer. An integrated circuit capacitor includes first and second capacitor electrodes and a capacitor dielectric layer extending between the first and second capacitor electrodes. The capacitor dielectric layer includes a composite of a first dielectric layer extending adjacent the first capacitor electrode, a second dielectric layer extending adjacent the second capacitor electrode and an electrically insulating crystallization inhibiting layer extending between the first and second dielectric layers. The electrically insulating crystallization inhibiting layer is formed of a material having a higher crystallization temperature characteristic relative to the first and second dielectric layers.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: January 1, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-hyoung Choi, Jung-hee Chung, Cha-young Yoo, Young-sun Kim, Se-hoon Oh
  • Patent number: 8344434
    Abstract: The present invention provides a method for manufacturing a semiconductor device, including the steps of: forming a first ferroelectric film on a first conductive film by a film-forming method including at least a step of forming a film by a sol-gel method; forming a second ferroelectric film on the first ferroelectric film by a sputtering method; forming a second conductive film on the second ferroelectric film; and forming a capacitor provided with a lower electrode, a capacitor dielectric film and an upper electrode by patterning the first conductive film, the first and second ferroelectric films and the second conductive film.
    Type: Grant
    Filed: May 4, 2011
    Date of Patent: January 1, 2013
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Wensheng Wang, Yoshimasa Horii
  • Patent number: 8344438
    Abstract: The present invention refers to an electrode comprising a first metallic layer and a compound comprising at least one of a nitride, oxide, and oxynitride of a second metallic material.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: January 1, 2013
    Assignee: Qimonda AG
    Inventors: Uwe Schroeder, Stefan Jakschik, Johannes Heitmann, Tim Boescke, Annette Saenger
  • Patent number: 8338870
    Abstract: A layout of a semiconductor device is disclosed, which forms one transistor in one active region to reduce the number of occurrences of a bridge encountered between neighboring layers, thereby improving characteristics of the semiconductor device. Specifically, the landing plug connected to the bit line contact is reduced in size, so that a process margin of word lines is increased to increase a channel length, thereby reducing the number of occurrences of a bridge encountered between the landing plug and the word line.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: December 25, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventor: Sang Heon Kim
  • Patent number: 8334556
    Abstract: A semiconductor device includes a semiconductor substrate having an active region and an isolation region. A gate structure is provided on the semiconductor device. First and second impurity regions are provided in the substrate on both sides of the gate structure. A pad electrode is provided to contact the first impurity region. Because the pad electrode is provided on the first impurity region of the semiconductor device, the contact plug does not directly contact the active region. Accordingly, failures caused by damage to the active region may be prevented.
    Type: Grant
    Filed: September 10, 2009
    Date of Patent: December 18, 2012
    Assignee: SAMSUNG Electronics Co., Ltd.
    Inventors: Joo-Young Lee, Ki-Nam Kim
  • Publication number: 20120305999
    Abstract: Provided are a semiconductor device capable of increasing an ON current with a reduced channel resistance, and also capable of stably and independently operating respective transistors, and a method of manufacturing the semiconductor device. A semiconductor device includes a fin portion located in a manner that a part of an active region protrudes from a bottom portion of a gate groove, a gate insulating film for covering the gate groove and a surface of the fin portion, a gate electrode which is embedded within a lower portion of the gate groove and formed so as to straddle the fin portion via the gate insulating film, a first diffusion region, a second diffusion region, and a carrier capture region provided in the surface of the fin portion.
    Type: Application
    Filed: May 31, 2012
    Publication date: December 6, 2012
    Applicant: ELPIDA MEMORY, INC.
    Inventor: Kensuke OKONOGI
  • Patent number: 8324710
    Abstract: According to one embodiment, a capacitor includes a substrate, a first electrode, a second electrode, and a first dielectric portion. The substrate includes an insulating layer and a semiconductor layer provided on the insulating layer. The semiconductor layer includes a dummy active region electrically isolated from an active region including an active element. The first electrode and the second electrode are located to oppose each other above the dummy active region. The first dielectric portion is provided between the first electrode and the second electrode.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: December 4, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Toshiyuki Shimizu, Masayuki Sugiura
  • Patent number: 8309999
    Abstract: The method includes the steps of forming an upper electrode of a capacitor by patterning a second conductive film; forming a capacitor dielectric film by patterning a ferroelectric film; and forming a lower electrode by patterning a first conductive film. A step of forming the first conductive film includes the steps of forming a lower conductive layer made of a noble metal other than iridium over a first interlayer insulating film; and forming an upper conductive layer made of a conductive material, which is different from a material for the lower conductive layer, and which is other than platinum.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: November 13, 2012
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Wensheng Wang
  • Patent number: 8304824
    Abstract: A semiconductor device includes: an isolation layer for defining a plurality of active areas of a substrate, where the isolation layer is disposed on the substrate; a plurality of buried word lines having upper surfaces that are lower than the upper surfaces of the active areas, being surrounded by the active areas, and extending in a first direction parallel to a main surface of the substrate; a gate dielectric film interposed between the buried word lines and the active areas; and a plurality of buried bit lines having upper surfaces that are lower than the upper surfaces of the plurality of buried word lines and extending parallel to the main surface of the substrate in a second direction that differs from the first direction.
    Type: Grant
    Filed: March 8, 2010
    Date of Patent: November 6, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hui-Jung Kim, Yong-Chul Oh, Hyun-Woo Chung, Hyun-Gi Kim, Kang-Uk Kim