Stacked Capacitor Patents (Class 257/306)
  • Patent number: 8138536
    Abstract: To provide a semiconductor device including: plural capacitors each including a cylindrical lower electrode having an internal wall and an external wall, and an upper electrode that covers the external wall of the lower electrode via a capacitance dielectric film; and a supporting film having a buried portion buried in an internal region surrounded by the internal wall of the lower electrode, and a supporting portion a part of which is positioned within the internal region and remaining parts of which are positioned at outside of the internal region. The supporting portion sandwiches an upper end of the lower electrode at both ends of the upper end by covering the internal wall and the external wall of the upper end of the lower electrode.
    Type: Grant
    Filed: December 24, 2009
    Date of Patent: March 20, 2012
    Assignee: Elpida Memory, Inc.
    Inventors: Satoru Isogai, Takahiro Kumauchi
  • Patent number: 8138539
    Abstract: Semiconductor devices and methods of manufacture thereof are disclosed. In one embodiment, a capacitor plate includes a plurality of first parallel conductive members, and a plurality of second parallel conductive members disposed over the plurality of first parallel conductive members. A first base member is coupled to an end of the plurality of first parallel conductive members, and a second base member is coupled to an end of the plurality of second parallel conductive members. A connecting member is disposed between the plurality of first parallel conductive members and the plurality of second parallel conductive members, wherein the connecting member includes at least one elongated via.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: March 20, 2012
    Assignee: Infineon Technologies AG
    Inventors: Hans-Joachim Barth, Erwin Ruderer, Alexander Von Glasow, Philipp Riess, Erdem Kaltalioglu, Peter Baumgartner, Thomas Benetik, Helmut Horst Tews
  • Patent number: 8134196
    Abstract: An integrated circuit system is provided including forming a substrate, forming a first contact having multiple conductive layers over the substrate and a layer of the multiple conductive layers on other layers of the multiple conductive layers, forming a dielectric layer on the first contact, and forming a second contact on the dielectric layer and over the first contact.
    Type: Grant
    Filed: September 1, 2006
    Date of Patent: March 13, 2012
    Assignee: STATS ChipPAC Ltd.
    Inventors: Yaojian Lin, Haijing Cao, Wan Lay Looi, Eng Seng Lim
  • Patent number: 8129770
    Abstract: A semiconductor device includes a silicon substrate having an active region, a memory transistor having a pair of source/drain regions and a gate electrode layer, a hard mask layer on the gate electrode layer having a plane pattern shape identical with that of the gate electrode layer, and plug conductive layers each electrically connected to each of the pair of source/drain regions. An extending direction of the active region is not perpendicular to that of the gate electrode layer, but is oblique. Upper surfaces of the hard mask layer and each of the plug conductive layers form substantially an identical plane. This can attain a semiconductor device allowing significant enlargement of a margin in a photolithographic process, suppression of an “aperture defect” as well as ensuring of a process tolerance of a “short” by decreasing a microloading effect, and decrease in a contact resistance, and a manufacturing method thereof.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: March 6, 2012
    Assignee: Renesas Electronics Corporation
    Inventor: Shigeru Shiratake
  • Patent number: 8129251
    Abstract: A METAL-INSULATOR-METAL structured capacitor is formed with polysilicon instead of an oxide film as a sacrificial layer material that defines a storage electrode region. A MPS (Meta-stable Poly Silicon) process is performed to increase the surface area of the sacrificial layer that defines the storage electrode region and also increase the area of the storage electrode formed over sacrificial layer. This process results in increasing the capacity of the capacitor in a stable manner.
    Type: Grant
    Filed: November 13, 2006
    Date of Patent: March 6, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventor: Won Sun Seo
  • Publication number: 20120049263
    Abstract: A semiconductor device includes a semiconductor substrate having a conductive type, a source metal layer, a gate metal layer, at least one transistor device, a heavily doped region having the conductive type, a capacitor dielectric layer, a conductive layer. The source metal layer and the gate metal layer are disposed on the semiconductor substrate. The transistor device is disposed in the semiconductor substrate under the source metal layer. The heavily doped region, the capacitor dielectric layer and the conductive layer constitute a capacitor structure, disposed under the gate metal layer, and the capacitor structure is electrically connected between a source and a drain of the transistor device.
    Type: Application
    Filed: January 19, 2011
    Publication date: March 1, 2012
    Inventor: Wei-Chieh Lin
  • Patent number: 8125014
    Abstract: Openings are formed by lithography and subsequent dry etching at the portions of a first protective film which correspond to connecting holes of second plugs which will be described later, namely at the portions thereof which align with first plugs, wherein the openings have a diameter greater than that of connecting holes by about 0.4 ?m.
    Type: Grant
    Filed: December 5, 2005
    Date of Patent: February 28, 2012
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Yasutaka Ozaki
  • Patent number: 8125050
    Abstract: A semiconductor device is described includes a wiring layer, an insulating layer stacked on the wiring layer, a trench formed by digging down the insulating layer from the surface thereof, a film-shaped lower electrode formed along the inner surface of the trench, a capacitor film formed along the surface of the lower electrode, and an upper electrode opposed to the lower electrode with the capacitor film sandwiched therebetween.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: February 28, 2012
    Assignee: Rohm Co., Ltd.
    Inventor: Satoshi Kageyama
  • Patent number: 8125011
    Abstract: Magnetoelectronic devices are fabricated by joining the edge of one ferromagnetic thin film element with the top, or bottom, portion of a second ferromagnetic, or nonmagnetic, thin film element. The devices also employ a new operational geometry in which the transport of bias current is in the film plane of at least one of the thin film elements, but is substantially perpendicular to the film plane of at least one of the thin film elements. Additionally, any of the variety magnetoelectronic devices (e.g., current-in-plane spin valves, current-perpendicular-to-the-plane spin valves, magnetic tunnel junctions, and lateral spin valves can be fabricated using these features.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: February 28, 2012
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Mark B Johnson
  • Patent number: 8125085
    Abstract: A semiconductor device includes an interlayer film formed over a semiconductor substrate. A groove is formed in the interlayer film. A wiring formed in the groove is a copper alloy including copper and a metal element. An oxide layer of the metal element is formed over the surface of the wiring. The oxide layer is formed in a first region along a grain boundary of a copper crystal and a second region surrounded by the grain boundary, over the surface of the wiring. The oxide layer formed in the first region has a thickness greater than that of the oxide layer formed in the second region.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: February 28, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Kazuyoshi Maekawa, Kenichi Mori, Kazuyuki Omori, Yuki Koyama
  • Patent number: 8125021
    Abstract: A non-volatile memory device includes a first oxide layer, a second oxide layer and a buffer layer formed on a lower electrode. An upper electrode is formed on the buffer layer. In one example, the lower electrode is composed of at least one of Pt, Ru, Ir, IrOx and an alloy thereof, the second oxide layer is a transition metal oxide, the buffer layer is composed of a p-type oxide and the upper electrode is composed of a material selected from Ni, Co, Cr, W, Cu or an alloy thereof.
    Type: Grant
    Filed: April 18, 2007
    Date of Patent: February 28, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Choong-Rae Cho, Eun-Hong Lee, El Mostafa Bourim, Chang-Wook Moon
  • Patent number: 8124978
    Abstract: A capacitor and method of manufacturing the same include an insulating interlayer, a lower electrode, a protection structure, a dielectric layer and an upper electrode. The insulating interlayer may include a conductive pattern formed on a substrate. The lower electrode may be electrically connected to the conductive pattern. The protection structure may be formed on an outer sidewall of the cylindrical lower electrode and on the insulating interlayer.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: February 28, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyun-Young Kim, Rak-Hwan Kim, Young-Joo Cho, Won-sik Shin
  • Patent number: 8120084
    Abstract: Described is a modulatable injection barrier and a semiconductor element comprising same. More particularly, the invention relates to a two-terminal, non-volatile programmable resistor. Such a resistor can be applied in non-volatile memory devices, and as an active switch e.g. in displays. The device comprises, in between electrode layers, a storage layer comprising a blend of a ferro-electric material and a semiconductor material. Preferably both materials in the blend are polymers.
    Type: Grant
    Filed: May 22, 2008
    Date of Patent: February 21, 2012
    Assignee: Rijksuniversiteit Groningen
    Inventors: Paulus Wilhelmus Maria Blom, Bert de Boer, Kamal Asadi
  • Patent number: 8120083
    Abstract: Apparatus and systems may comprise electrode structures that include two or more dissimilar and abutting metal layers on a surface, some of the electrode structures separated by a gap; and a polymer-based ferroelectric layer overlying and directly abutting some of the electrode structures. Methods may comprise actions to form and operate the apparatus and systems. Additional apparatus, systems, and methods are disclosed.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: February 21, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Vishnu K. Agarwal, Howard E. Rhodes
  • Patent number: 8106438
    Abstract: The present teachings relate to a method of forming a container capacitor structure on a substrate. In one embodiment, the method comprises etching a recess in the substrate, depositing a first conductive layer on the substrate so as to overlie the substrate and the recess, depositing a filler layer so as to overlie the first conductive layer and fill the recess, and etching the first and second conductive layers so as to define a lower electrode within the recess. The method further comprises forming a cap layer on the lower electrode so as to overlie the first conductive layer and the filler layer and etching at least a portion of the substrate away from the lower electrode to thereby at least partially isolate the lower electrode. Subsequently, the remainder of the capacitor structure may be formed by depositing a dielectric layer on the lower electrode and depositing a second conductive layer on the dielectric layer so as to form an upper electrode.
    Type: Grant
    Filed: August 22, 2005
    Date of Patent: January 31, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Guy Blalock, Scott Meikle
  • Publication number: 20120018789
    Abstract: Disclosed are methods of forming transistors. In one embodiment, the transistors are formed by forming a plurality of elliptical bases in a substrate and forming fins form the elliptical bases. The transistors are formed within the fin such that they may be used as access devices in a memory array.
    Type: Application
    Filed: July 14, 2011
    Publication date: January 26, 2012
    Applicant: Micron Technology, Inc.
    Inventor: Werner Juengling
  • Patent number: 8101986
    Abstract: In a DRAM-incorporated semiconductor device (SOC) which has a DRAM section and a logic section being formed on one and the same substrate, with the object of providing, with low cost, a SOC having necessary and sufficient characteristics in the DRAM section, while attaining higher-speed performance of the whole elements, silicide is formed at least on all the surfaces of the source-drain regions (10) and the gate surfaces (6) of transistors in the DRAM section and the logic section, concurrently in one and the same step.
    Type: Grant
    Filed: January 7, 2005
    Date of Patent: January 24, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Ken Inoue, Masayuki Hamada
  • Patent number: 8101985
    Abstract: Capacitors are formed in metallization layers of semiconductor device in regions where functional conductive features are not formed, more efficiently using real estate of integrated circuits. The capacitors may be stacked and connected in parallel to provide increased capacitance, or arranged in arrays. The plates of the capacitors are substantially the same dimensions as conductive features, such as conductive lines or vias, or are substantially the same dimensions as fill structures of the semiconductor device.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: January 24, 2012
    Assignee: Infineon Technologies AG
    Inventor: Matthias Hierlemann
  • Publication number: 20120012914
    Abstract: The invention includes methods of utilizing compositions containing iridium and tantalum in semiconductor constructions, and includes semiconductor constructions comprising compositions containing iridium and tantalum. The compositions containing iridium and tantalum can be utilized as barrier materials, and in some aspects can be utilized as barriers to copper diffusion.
    Type: Application
    Filed: July 19, 2011
    Publication date: January 19, 2012
    Applicant: Micron Technology Inc.
    Inventor: Yongjun Jeff Hu
  • Publication number: 20120007160
    Abstract: A semiconductor device capable of reducing a thickness, an electronic product employing the same, and a method of fabricating the same are provided. The method of fabricating a semiconductor device includes preparing a semiconductor substrate having first and second active regions. A first transistor in the first active region includes a first gate pattern and first impurity regions. A second transistor the second active region includes a second gate pattern and second impurity regions. A first conductive pattern is on the first transistor, wherein at least a part of the first conductive pattern is disposed at a same distance from an upper surface of the semiconductor substrate as at least a part of the second gate pattern. The first conductive pattern may be formed on the first transistor while the second transistor is formed.
    Type: Application
    Filed: September 23, 2011
    Publication date: January 12, 2012
    Inventors: Dae-Ik Kim, Yong-Il Kim
  • Patent number: 8093717
    Abstract: A chip package includes a microstrip spacer disposed between a first die and a second die. The microstrip spacer includes electrically conductive planes that are ground planes for at least one of the first die and the second die. A method includes operating the first die at a first clock speed and operating the second die at a second clock speed. A system includes a chip package with a microstrip spacer and a system housing.
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: January 10, 2012
    Assignee: Intel Corporation
    Inventors: Joan Rey V. Buot, Christian Orias
  • Patent number: 8093641
    Abstract: An integrated circuit including a storage capacitor suitable for use in a DRAM cell, as well as to a method of manufacturing such a storage capacitor is disclosed. The storage capacitor is formed at least partially above a semiconductor substrate surface. The invention also includes a memory array employing the storage capacitor.
    Type: Grant
    Filed: September 17, 2007
    Date of Patent: January 10, 2012
    Assignee: Qimonda AG
    Inventor: Rolf Weis
  • Patent number: 8093643
    Abstract: A capacitor for use in integrated circuits comprises a layer of conductive material. The layer of conductive material including at least a first portion and a second portion, wherein the first portion and the second portion are arranged in a predetermined pattern relative to one another to provide a maximum amount of capacitance per semiconductor die area.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: January 10, 2012
    Assignee: Micron Technology, Inc.
    Inventors: R. Jacob Baker, Kurt D. Beigel
  • Patent number: 8093637
    Abstract: An MIM capacitor includes a first capacitor electrode, which is formed in the surface of a first intermediate dielectric, a second intermediate dielectric, which is formed on the first intermediate dielectric and has an opening that exposes the first capacitor electrode, and a first electrically conducting diffusion barrier layer, which is formed on the surface of the exposed first capacitor electrode. On the diffusion barrier layer and on the side walls of the opening there is also formed a capacitor dielectric and a second capacitor electrode on top.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: January 10, 2012
    Assignee: Infineon Technologies AG
    Inventors: Manfred Engelhardt, Andreas Stich, Guenther Schindler, Michael Schrenk
  • Patent number: 8093642
    Abstract: A semiconductor memory device includes a memory cell portion and a peripheral circuit portion. The memory cell portion includes a pillar capacitor with a lower electrode, a dielectric film, and an upper electrode sequentially formed on a side surface of a first insulating portion which is parallel to a predetermined direction, and a transistor electrically connected to the lower electrode. The peripheral circuit portion includes a plate electrode, a cylinder capacitor with an upper electrode, a dielectric film, and a lower electrode sequentially formed on a side surface of the plate electrode which is parallel to the predetermined direction, and a transistor electrically connected to the lower electrode.
    Type: Grant
    Filed: April 9, 2009
    Date of Patent: January 10, 2012
    Assignee: Elpida Memory, Inc.
    Inventor: Mitsunari Sukekawa
  • Patent number: 8089113
    Abstract: The present method of fabricating a memory device includes the steps of providing a dielectric layer, providing an opening in the dielectric layer, providing a first conductive body in the opening in the dielectric layer, providing a switching body in the opening, and providing a second conductive body in the opening.
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: January 3, 2012
    Assignee: Spansion LLC
    Inventors: Suzette K. Pangrle, Steven Avanzino, Sameer Haddad, Michael VanBuskirk, Manuj Rathor, James Xie, Kevin Song, Christie Marrian, Bryan Choo, Fei Wang, Jeffrey A. Shields
  • Patent number: 8084803
    Abstract: A capacitor with a mixed structure of a Metal Oxide Semiconductor (MOS) capacitor and a Poly-silicon Insulator Poly-silicon (PIP) capacitor includes a substrate and a diffusion junction region formed over the substrate. A high concentration diffusion junction region may be formed in a portion of the diffusion junction region. An oxide layer may be formed over the substrate, the oxide layer having an opening that exposes a portion of the high concentration diffusion junction region. A first polysilicon plate may be formed over a portion of the oxide layer and spaced from the opening, and a nitride layer may be formed over a portion of the first polysilicon plate. A sidewall may be formed over a side of the first polysilicon layer, over a side of the nitride layer, and over a portion of the oxide layer between the side of the polysilicon layer and the opening. A second polysilicon plate may be formed over the nitride layer, over the sidewall, and over the high concentration diffusion junction region.
    Type: Grant
    Filed: December 27, 2008
    Date of Patent: December 27, 2011
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Nam-Joo Kim
  • Publication number: 20110303957
    Abstract: Disclosed are embodiments for a container capacitor structure in which at least two container capacitors, e.g., an inner and outer container capacitor, are made concentric and nested with respect to one another. The nested capacitors are formed in one embodiment by defining a hole in a dielectric layer for the nested container capacitors in the vicinity of two capacitor contact plugs. An outer capacitor plate is formed by etching back poly 1 to leave it substantially on the vertical edges of the hole and in contact with one of the plugs. At least one sacrificial sidewall is formed on the poly 1, and poly 2 is deposited over the sidewalls to form an inner capacitor plate in contact with the other plug. The structure is planarized, the sacrificial sidewalls are removed, a capacitor dielectric is formed, and is topped with poly 3. Additional structures such as a protective layer (to prevent poly 1-to-poly 2 shorting) and a conductive layer (to strap the plugs to their respective poly layers) can also be used.
    Type: Application
    Filed: August 23, 2011
    Publication date: December 15, 2011
    Applicant: Micron Technology, Inc.
    Inventor: Werner Juengling
  • Patent number: 8076706
    Abstract: A ferroelectric memory device includes: a substrate; a first insulating film formed above the substrate, the first insulating film including a plug; a ferroelectric capacitor formed above the first insulating film; the ferroelectric capacitor including a lower electrode formed above the plug, a ferroelectric film formed on the lower electrode, an upper electrode formed on the ferroelectric film; a hydrogen barrier film formed on the ferroelectric capacitor, a first thickness of the hydrogen barrier film formed on the upper electrode being greater than a second thickness of the hydrogen barrier film formed on a side surface of the ferroelectric capacitor; and the hydrogen barrier film including a first hydrogen barrier film and the second hydrogen barrier film, the first hydrogen barrier film formed on an upper surface of the upper electrode and a side surface of the upper electrode, the second hydrogen barrier film formed above the ferroelectric capacitor.
    Type: Grant
    Filed: February 13, 2008
    Date of Patent: December 13, 2011
    Assignee: Seiko Epson Corporation
    Inventors: Hiroaki Tamura, Teruo Tagawa
  • Patent number: 8076212
    Abstract: According to the method for manufacturing a semiconductor device, a surface of a lower insulating film (55) is planarized by CMP or the like, and an upper insulating film (56) and a protective metal film (59) are formed on the lower insulating film (55). Accordingly, the upper insulating film (56) and the protective metal film (59) are formed in such a manner they have an excellent coverage and the water/hydrogen blocking capability of the upper insulating film (56) and the protective metal film (59) is maximized.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: December 13, 2011
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Makoto Takahashi, Kouichi Nagai
  • Publication number: 20110298030
    Abstract: In a 4F2 memory cell designed using an SGT as a vertical transistor, a bit line has a high resistance because it is comprised of a diffusion layer underneath a pillar-shaped silicon layer, which causes a problem of slowdown in memory operation speed. The present invention provides a semiconductor storage device comprising an SGT-based 4F2 memory cell, wherein a bit line-backing cell having the same structure as that of a memory cell is inserted into a memory cell array to allow a first bit line composed of a diffusion layer to be backed with a low-resistance second bit line through the bit line backing cell, so as to provide a substantially low-resistance bit line, while suppressing an increase in area of the memory cell array.
    Type: Application
    Filed: August 12, 2011
    Publication date: December 8, 2011
    Applicant: Unisantis Electronics (Japan) Ltd.
    Inventors: Fujio MASUOKA, Shintaro Arai
  • Publication number: 20110298029
    Abstract: In a 4F2 memory cell designed using an SGT as a vertical transistor, a bit line has a high resistance because it is comprised of a diffusion layer underneath a pillar-shaped silicon layer, which causes a problem of slowdown in memory operation speed. The present invention provides a semiconductor storage device comprising an SGT-based 4F2 memory cell, wherein a bit line-backing cell having the same structure as that of a memory cell is inserted into a memory cell array to allow a first bit line composed of a diffusion layer to be backed with a low-resistance second bit line through the bit line backing cell, so as to provide a substantially low-resistance bit line, while suppressing an increase in area of the memory cell array.
    Type: Application
    Filed: August 12, 2011
    Publication date: December 8, 2011
    Applicant: Unisantis Electronics (Japan) Ltd.
    Inventors: Fujio MASUOKA, Shintaro Arai
  • Publication number: 20110278656
    Abstract: A stacked capacitor for double-poly flash memory is provided. The stacked capacitor is formed by a lower electrode, a lower dielectric layer, a central electrode, an upper dielectric layer, and an upper electrode, wherein the lower electrode is a doped region in a substrate. The manufacturing process of this stacked capacitor can be fully integrated in to the manufacturing process of the double-poly flash memory cell.
    Type: Application
    Filed: May 17, 2010
    Publication date: November 17, 2011
    Applicant: CHINGIS TECHNOLOGY CORPORATION
    Inventors: Julian CHANG, An-Xing SHEN, Soon-Won KANG
  • Patent number: 8058678
    Abstract: Provided is a semiconductor memory device including cylinder type storage nodes and a method of fabricating the semiconductor memory device. The semiconductor memory device includes: a semiconductor substrate including switching devices; a recessed insulating layer including storage contact plugs therein, wherein the storage contact plugs are electrically connected to the switching devices and the recessed insulating layer exposes at least some portions of upper surfaces and side surfaces of the storage contact plugs. The semiconductor device further includes cylinder type storage nodes each having a lower electrode. The lower electrode contacting the at least some portions of the exposed upper surfaces and side surfaces of the storage node contact plugs.
    Type: Grant
    Filed: August 7, 2009
    Date of Patent: November 15, 2011
    Assignee: Samsunge Electronics Co., Ltd.
    Inventors: Gil-Sub Kim, Won-Mo Park, Seong-Ho Kim, Dong-Kwan Yang
  • Patent number: 8053317
    Abstract: Method of forming a semiconductor device which includes the steps of obtaining a semiconductor substrate having a logic region and an STI region; sequentially depositing layers of high K material, metal gate, first silicon and hardmask; removing the hardmask and first silicon layers from the logic region; applying a second layer of silicon on the semiconductor substrate such that the logic region has layers of high K material, metal gate and second silicon and the STI region has layers of high K material, metal gate, first silicon, hardmask and second silicon. There may also be a second hardmask layer between the metal gate layer and the first silicon layer in the STI region. There may also be a hardmask layer between the metal gate layer and the first silicon layer in the STI region but no hardmask layer between the first and second layers of silicon in the STI region.
    Type: Grant
    Filed: August 15, 2009
    Date of Patent: November 8, 2011
    Assignee: International Business Machines Corporation
    Inventors: Satya N. Chakravarti, Dechao Guo, Wilfried Ernst-August Haensch, Pranita Kulkarni, Fei Liu, Philip J. Oldiges, Keith Kwong Hon Wong
  • Patent number: 8053824
    Abstract: Apparatuses and methods for increasing well distributed, high quality-factor on-chip capacitance of integrated circuit devices are disclosed. In one aspect, an integrated circuit device structure includes a first metal line implemented on a metallization layer of a semiconductor substrate, the first metal line having a first set of metal fingers extending therefrom; and a second metal line electrically isolated from the first metal line, the second metal line having a second set of metal fingers extending therefrom, the first set of metal fingers and the second set of metal fingers capacitively coupled. The basic structure of metal lines with interlocking metal fingers may be repeated on multiple adjacent metallization layers, with the metal lines oriented either in parallel or perpendicular.
    Type: Grant
    Filed: April 3, 2006
    Date of Patent: November 8, 2011
    Assignee: LSI Corporation
    Inventors: Greg Winn, Steve Howard
  • Patent number: 8053307
    Abstract: A semiconductor device may include a substrate having a cell active region. A cell gate electrode may be formed in the cell active region. A cell gate capping layer may be formed on the cell gate electrode. At least two cell epitaxial layers may be formed on the cell active region. One of the at least two cell epitaxial layers may extend to one end of the cell gate capping layer and another one of the at least two cell epitaxial layers may extend to an opposite end of the cell gate capping layer. Cell impurity regions may be disposed in the cell active region. The cell impurity regions may correspond to a respective one of the at least two cell epitaxial layers.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: November 8, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyeoung-Won Seo, Jae-Man Yoon, Kang-Yoon Lee, Bong-Soo Kim
  • Publication number: 20110266603
    Abstract: A semiconductor device may include, but is not limited to: a semiconductor substrate; a memory capacitor; and a first compensation capacitor. The semiconductor substrate has at least first and second regions. The memory capacitor is positioned over the first region. The memory capacitor may include, but is not limited to: a first lower electrode; and a first dielectric film covering inner and outer surfaces of the first lower electrode. The first compensation capacitor is positioned over the second region. The first compensation capacitor includes, but is not limited to: a second lower electrode; a second dielectric film covering an inner surface of the second lower electrode; and a first insulating film covering an outer surface of the second lower electrode.
    Type: Application
    Filed: April 26, 2011
    Publication date: November 3, 2011
    Inventors: Yoshitaka NAKAMURA, Yasushi Yamazaki
  • Patent number: 8049259
    Abstract: A semiconductor device includes MOS transistors, capacitor elements, a voltage generating circuit, a contact plug, and a memory cell. The MOS transistor and the capacitor element are formed on a first one of the element regions and a second one of the element regions, respectively. In the voltage generating circuit, current paths of the MOS transistors are series-connected and the capacitor elements are connected to the source or drain of the MOS transistors. The contact plug is formed on the source or the drain to connect the MOS transistors or one of the MOS transistors and one of the capacitor elements. A distance between the gate and the contact plug both for a first one of the MOS transistors located in the final stage in the series connection is larger than that for a second one of the MOS transistors located in the initial stage in the series connection.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: November 1, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Mitsuhiro Noguchi, Kenji Gomikawa
  • Patent number: 8048736
    Abstract: By forming metal capacitors in the metallization structures of semiconductor devices, complex manufacturing sequences in the device level may be avoided. The process of manufacturing the metal capacitors may be performed on the basis of well-established patterning regimes of modern metallization systems by using appropriately selected etch stop materials, which may enable a high degree of compatibility for forming via openings in a metallization layer while providing a capacitor dielectric of a desired high dielectric constant in the capacitor.
    Type: Grant
    Filed: July 15, 2008
    Date of Patent: November 1, 2011
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Thomas Werner, Frank Feustel, Kai Frohberg
  • Patent number: 8049302
    Abstract: At least a first capacitor is formed on a substrate and connected to a first differential node of a differential circuit, and the first capacitor may be variable in capacitance. A second capacitor is formed on the substrate and connected to a second differential node of the differential circuit, and the second capacitor also may be variable. A third capacitor is connected between the first differential node and the second differential node, and is formed at least partially above the first capacitor. In this way, a size of the first capacitor and/or the second capacitor may be reduced on the substrate, and capacitances of the first and/or second capacitor(s) may be adjusted in response to a variable characteristic of one or more circuit components of the differential circuit.
    Type: Grant
    Filed: April 26, 2006
    Date of Patent: November 1, 2011
    Assignee: Broadcom Corporation
    Inventors: Hooman Darabi, Oiang Li, Bo Zhang
  • Patent number: 8049117
    Abstract: A method for manufacturing a printed circuit board with a capacitor embedded therein which has a dielectric film using laser lift off, and a capacitor manufactured thereby. In the method, a dielectric film is formed on a transparent substrate and heat-treated. A first conductive layer is formed on the heat-treated dielectric film. A laser beam is irradiated onto a stack formed, from below the transparent substrate, to separate the transparent substrate from the stack. After the transparent substrate is separated from the stack, a second conductive layer is formed with a predetermined pattern on the dielectric film. Also, an insulating layer and a third conductive layer are formed on the first and second conductive layers to alternate with each other in a predetermined number.
    Type: Grant
    Filed: May 15, 2009
    Date of Patent: November 1, 2011
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Jung Won Lee, Yul Kyo Chung, In Hyung Lee
  • Patent number: 8049263
    Abstract: A capacitor has an MIM (Metal Insulator Metal) structure comprising a lower electrode formed in the interior of an electrode trench which is formed in an interlayer insulating film, a dielectric film formed over the lower electrode, and an upper electrode formed over the dielectric film. The upper electrode and the dielectric film are each formed with an area larger than the area of the lower electrode so that the whole of the lower electrode is positioned inside the upper electrode and the dielectric film. The reliability and production yield of the capacitor are improved.
    Type: Grant
    Filed: April 6, 2009
    Date of Patent: November 1, 2011
    Assignee: Renesas Electronics Corporation
    Inventor: Katsuhiro Torii
  • Patent number: 8049262
    Abstract: A semiconductor device includes a trench formed in a predetermined portion of a substrate and a first recess region beneath the trench. A field oxide layer is buried into both the trench and the first recess region. An active region is defined by the field oxide layer, having a first active region and a second active region. The latter has a second recess region formed in a lower portion of the active region than the former. A step gate pattern is formed on a border region between the first active region and the second active region. The gate pattern has a step structure whose one side extends to a surface of the first active region and the other side extends to a surface of the second active region. Other embodiments are also described.
    Type: Grant
    Filed: August 13, 2007
    Date of Patent: November 1, 2011
    Assignee: Hynix Semiconductor, Inc.
    Inventor: Jun-Hee Cho
  • Publication number: 20110260230
    Abstract: A memory cell with surrounding word line structures includes an active area; a plurality of first trenches formed on the active area in a first direction, each first trench has a bit line on a sidewall therein; a plurality of second trenches formed on the active area in a second direction, each second trench has two word lines formed correspondingly on the sidewalls in the second trench; and a plurality of transistors formed on the active area. The word line pairs are arranged into a surrounding word line structure. The transistor is controlled by the bit line and the two word lines, thus improving the speed of the transistor.
    Type: Application
    Filed: July 2, 2010
    Publication date: October 27, 2011
    Applicant: INOTERA MEMORIES, INC.
    Inventors: TZUNG HAN LEE, CHUNG-LIN HUANG, HSIEN-WEN LIU
  • Patent number: 8039759
    Abstract: A method for manufacturing a printed circuit board with a capacitor embedded therein which has a dielectric film using laser lift off, and a capacitor manufactured thereby. In the method, a dielectric film is formed on a transparent substrate and heat-treated. A first conductive layer is formed on the heat-treated dielectric film. A laser beam is irradiated onto a stack formed, from below the transparent substrate, to separate the transparent substrate from the stack. After the transparent substrate is separated from the stack, a second conductive layer is formed with a predetermined pattern on the dielectric film. Also, an insulating layer and a third conductive layer are formed on the first and second conductive layers to alternate with each other in a predetermined number.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: October 18, 2011
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Jung Won Lee, Yul Kyo Chung, In Hyung Lee
  • Patent number: 8035193
    Abstract: A capacitor includes a bottom electrode, a dielectric layer and a top electrode over a substrate. A RuXTiYOZ film is included in at least one of the bottom and top electrodes, where x, y and z are positive real numbers. A method of fabricating the capacitor through a sequential formation of a bottom electrode, a dielectric layer and a top electrode over a substrate includes forming a RuXTiYOZ film during a formation of at least one of the bottom electrode and top electrode, where x, y and z are positive real numbers.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: October 11, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventors: Kwan-Woo Do, Kee-Jeung Lee, Deok-Sin Kil, Young-Dae Kim, Jin-Hyock Kim, Kyung-Woong Park, Jeong-Yeop Lee
  • Patent number: 8034684
    Abstract: Semiconductor devices with an improved overlay margin and methods of manufacturing the same are provided. In one aspect, a method includes forming a buried bit line in a substrate; forming an isolation layer in the substrate to define an active region, the isolation layer being parallel to the bit line without overlapping the bit line; and forming a gate line including a gate pattern and a conductive line by forming the gate pattern in the active region and forming a conductive line that extends at a right angle to the bit line across the active region and is electrically connected to the gate pattern disposed thereunder. The gate pattern and the conductive line can be integrally formed.
    Type: Grant
    Filed: April 29, 2010
    Date of Patent: October 11, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Joon-Soo Park
  • Patent number: 8030697
    Abstract: A cell structure of a semiconductor device includes an active region, having a concave portion, and an inactive region that defines the active region. A gate pattern in the active region is arranged perpendicular to the active region. A landing pad on the active region and the inactive region contacts the active region. A bit line pattern on the inactive region intersects the gate pattern perpendicularly, the bit line pattern being electrically connected to the landing pad and having a first protrusion corresponding to the concave portion of the active region.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: October 4, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Min-Hee Cho, Seung-Bae Park
  • Patent number: 8030700
    Abstract: A semiconductor memory device includes: a semiconductor substrate; a stacked body provided on the semiconductor substrate and having a plurality of insulator layers and a plurality of conductive layers alternately stacked; a semiconductor layer provided inside a through-hole formed so as to pass through the stacked body and extending in a stacking direction of the insulator layers and the conductive layers; and a charge trap layer provided between the conductive layer and the semiconductor layer. A lower part in the semiconductor layer is narrower than an upper part therein, and at least the lowermost layer in the conductive layers is thinner than the uppermost layer therein.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: October 4, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Wataru Sakamoto