Stacked Capacitor Patents (Class 257/306)
  • Publication number: 20110233635
    Abstract: In one embodiment, a semiconductor device is formed having a trench structure. The trench structure includes a single crystalline semiconductor plug formed along exposed upper surfaces of the trench. In one embodiment, the single crystalline semiconductor plug seals the trench to form a sealed core.
    Type: Application
    Filed: January 13, 2011
    Publication date: September 29, 2011
    Inventors: Gordon M. Grivna, Gary H. Loechelt, John Michael Parsey, JR., Mohammed Tanvir Quddus
  • Publication number: 20110233634
    Abstract: Integrated circuits having combined memory and logic functions are provided. In one aspect, an integrated circuit is provided. The integrated circuit comprises: a substrate comprising a silicon layer over a BOX layer, wherein a select region of the silicon layer has a thickness of between about three nanometers and about 20 nanometers; at least one eDRAM cell comprising: at least one pass transistor having a pass transistor source region, a pass transistor drain region and a pass transistor channel region formed in the select region of the silicon layer; and a capacitor electrically connected to the pass transistor.
    Type: Application
    Filed: June 6, 2011
    Publication date: September 29, 2011
    Applicant: International Business Machines Corporation
    Inventors: Jin Cai, Josephine Chang, Leland Chang, Brian L. Ji, Steven John Koester, Amlan Majumdar
  • Patent number: 8026547
    Abstract: A semiconductor memory device has side surfaces of neighboring bit lines that do not face each other to reduce a capacitance of a parasitic capacitor formed between adjacent bit lines. The semiconductor memory device includes contact plugs formed on a semiconductor substrate. Each contact plug is disposed between gate patterns. First and second conductive pads extend in different directions and are connected to the contact plugs. First and second pad contact plugs are formed on extended peripheries of the first and second conductive pads, respectively. Each of the first pad contact plugs has a height which differs from a height of each of the second pad contact plugs. First bit lines are connected to the first pad contact plugs, and second bit lines are connected to the second pad contact plugs.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: September 27, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Sang Min Kim
  • Patent number: 8022458
    Abstract: A semiconductor structure including a capacitor having increased capacitance and improved electrical performance is provided. The semiconductor structure includes a substrate; and a capacitor over the substrate. The capacitor includes a first layer including a first capacitor electrode and a second capacitor electrode, wherein the first capacitor electrode is formed of a metal-containing material and is free from polysilicon. The semiconductor structure further includes a MOS device including a gate dielectric over the substrate; and a metal-containing gate electrode on the gate dielectric, wherein the metal-containing gate electrode is formed of a same material, and has a same thickness, as the first capacitor electrode.
    Type: Grant
    Filed: October 8, 2007
    Date of Patent: September 20, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Long Chang, David Ding-Chung Lu, Chia-Yi Chen, I-Lu Wu
  • Patent number: 8022457
    Abstract: Channels of two transistors are vertically formed on portions of two opposite side surfaces of one active region, and gate electrodes are vertically formed on a device isolation layer contacting the channels of the active region. A common bit line contact plug is formed in the central portions of the active region, two storage node contact plugs are formed on both sides of the bit line contact plug, and an insulating spacer is formed on a side surface of the bit line contact plug. A word line, a bit line, and a capacitor are sequentially stacked on the semiconductor substrate, like a conventional semiconductor memory device. Thus, effective space arrangement of a memory cell is possible such that a 4F2 structure is constituted, and a conventional line and contact forming process can be applied such that highly integrated semiconductor memory device is readily fabricated.
    Type: Grant
    Filed: November 16, 2006
    Date of Patent: September 20, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyeoung-won Seo, Bong-soo Kim, Dong-gun Park, Kang-yoon Lee, Jae-man Yoon, Seong-goo Kim, Seung-bae Park
  • Patent number: 8017493
    Abstract: A process of forming a semiconductor process fabricated device which contains a trench, hole or gap filled with a conformally deposited material is disclosed. A sacrificial planarizing layer is formed on the fill material, and the device is planarized using a selective RIE process which etches the fill material faster than the sacrificial planarizing layer. An overetch step completes the planarization process.
    Type: Grant
    Filed: May 7, 2009
    Date of Patent: September 13, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Abbas Ali, Seetharaman Sridhar
  • Patent number: 8018009
    Abstract: A movable substrate is placed over a bottom substrate where both substrates contain Coulomb islands. The Coulomb islands can be adjusted in charge and are used to develop a force between two opposing Coulomb islands. Information from sensors is applied to a control unit to control the movement of the movable substrate. Coulomb islands are formed in the juxtaposed edges of a first substrate and second substrate, respectively. The islands generate edge Coulomb forces. These edge Coulomb forces can be used to detach, repel, move, attract and reattach the edges of substrates into new configurations. One possibility is to combine a plurality of individual substrates into one large planar substrate.
    Type: Grant
    Filed: December 7, 2007
    Date of Patent: September 13, 2011
    Assignee: MetaMEMS Corp.
    Inventor: Thaddeus John Gabara
  • Publication number: 20110215391
    Abstract: A semiconductor device includes an isolation region, a semiconductor region, a groove, and an insulating film. The semiconductor region is defined by the isolation region. The groove is in the semiconductor region. The groove has first and second ends. At least one of the first and second ends reaches the isolation region. The insulating film is in the groove.
    Type: Application
    Filed: March 4, 2011
    Publication date: September 8, 2011
    Applicant: ELPIDA MEMORY, INC.
    Inventor: Yoshihiro TAKAISHI
  • Publication number: 20110215390
    Abstract: A semiconductor device includes capacitors connected in parallel. Electrode active portions and a discharge active portion are defined on a semiconductor substrate, and capping electrodes are disposed respectively on the electrode active portions. A capacitor-dielectric layer is disposed between each of the capping electrodes and each of the electrode active portions that overlap each other. A counter doped region is disposed in the discharge active portion. A lower interlayer dielectric covers the entire surface of the semiconductor substrate. Electrode contact plugs respectively contact the capping electrodes through the lower interlayer dielectric, and a discharge contact plug contacts the counter doped region through the lower interlayer dielectric. A lower interconnection is disposed on the lower interlayer dielectric and contacts the electrode contact plugs and the discharge contact plug.
    Type: Application
    Filed: January 19, 2011
    Publication date: September 8, 2011
    Inventors: Myoungsoo Kim, Yoonkyung Choi, Eun Young Lee, Sungil Jo
  • Patent number: 8012836
    Abstract: Semiconductor devices and methods for fabricating the same are provided. An exemplary embodiment of a semiconductor device comprises a substrate with a plurality of isolation structures formed therein, defining first and second areas over the substrate. A transistor is formed on a portion of the substrate in the first and second areas, respectively, wherein the transistor in the second area is formed with merely a pocket doping region in the substrate adjacent to a drain region thereof. A first dielectric layer is formed over the substrate, covering the transistor formed in the first and second areas. A plurality of first contact plugs is formed through the first dielectric layer, electrically connecting a source region and a drain region of the transistor in the second area, respectively. A second dielectric layer is formed over the first dielectric layer with a capacitor formed therein, wherein the capacitor electrically connects one of the first contact plugs.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: September 6, 2011
    Assignee: Taiwan Semiconductor Manufacuturing Co., Ltd.
    Inventors: Kuo-Chyuan Tzeng, Jian-Yu Shen, Kuo-Chi Tu, Kuo-Ching Huang, Chin-Yang Chang
  • Patent number: 8013377
    Abstract: Embodiments of the invention relate to an integrated circuit comprising a carrier, having a capacitor with a first electrode and a second electrode. The first electrode has a dielectric layer A layer sequence is arranged on the carrier, the capacitor being introduced in said layer sequence, wherein the layer sequence has a first supporting layer and a second supporting layer arranged at a distance above the first supporting layer, wherein the first and the second supporting layer adjoin the first electrode of the capacitor. Methods of manufacturing the integrated circuit are also provided.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: September 6, 2011
    Assignee: Qimonda AG
    Inventors: Peter Baars, Stefan Tegen, Klaus Muemmler
  • Patent number: 8004030
    Abstract: Provided is a semiconductor device that includes: a base insulating film 25 formed above a silicon substrate 10; a ferroelectric capacitor Q formed on the base insulating film 25; multiple interlayer insulating films 35, 48, and 62, and metal interconnections 45, 58, and 72 which are alternately formed on and above the capacitor Q; and conductive plugs 57 which are respectively formed inside holes 54a provided in the interlayer insulating films 48 and are electrically connected to the metal interconnections 45. In the semiconductor device, a first capacitor protection insulating film 50 is formed on an upper surface of the interlayer insulating film 48 by sequentially stacking a first insulating metal oxide film 50a, an intermediate insulating film 50b having a relative dielectric constant lower than that of the interlayer insulating film 48, and a second insulating metal oxide film 50c; and the holes 54a are also formed in the first capacitor protection insulating film 50.
    Type: Grant
    Filed: August 17, 2009
    Date of Patent: August 23, 2011
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Kouichi Nagai
  • Publication number: 20110198679
    Abstract: The present invention provides a semiconductor device having a plurality of vertical transistors, which includes, on a substrate, a semiconductor pillar 5; gate electrode 11 provided on the side of the pillar via gate insulating film 10; first diffusion layer 9 connected to the bottom of the pillar; and second diffusion layer 16 connected to the top of the pillar, second diffusion layer 16 includes first portion 14 formed within the area over the pillar, and second portion 15 which is an epitaxial growth layer, formed on the first portion and contacting with insulating film 17 which is provided between adjacent vertical transistors.
    Type: Application
    Filed: February 14, 2011
    Publication date: August 18, 2011
    Applicant: ELPIDA MEMORY, INC.
    Inventors: Yoshinori IKEBUCHI, Yoshihiro TAKAISHI
  • Patent number: 7999330
    Abstract: The invention includes methods of utilizing compositions containing iridium and tantalum in semiconductor constructions, and includes semiconductor constructions comprising compositions containing iridium and tantalum. The compositions containing iridium and tantalum can be utilized as barrier materials, and in some aspects can be utilized as barriers to copper diffusion.
    Type: Grant
    Filed: June 24, 2005
    Date of Patent: August 16, 2011
    Assignee: Micron Technology, Inc.
    Inventor: Yongjun Jeff Hu
  • Patent number: 7999301
    Abstract: After a ferroelectric capacitor (1) is formed and before a wiring (15) to be a pad is formed, an alumina film (11) is formed as a diffusion suppressing film suppressing diffusion of hydrogen and moisture. Subsequently, the wiring (15) is formed and an SOG film (16) is formed thereon. Then, a silicon nitride film (17) is formed on the SOG film (16).
    Type: Grant
    Filed: October 11, 2006
    Date of Patent: August 16, 2011
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Kouichi Nagai
  • Patent number: 7999297
    Abstract: A semiconductor device having transistors formed on different layers of a stack structure includes a stacked capacitor cluster, wherein a stacked capacitor of the stacked capacitor cluster includes an insulation layer of a transistor of the semiconductor device, and at least a first conduction layer and a second conduction layer disposed above and below the insulation layer, wherein the stacked capacitor is a decoupling capacitor of the stacked capacitor cluster connected in parallel between a first line and a second line.
    Type: Grant
    Filed: March 8, 2006
    Date of Patent: August 16, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Hyang-Ja Yang
  • Publication number: 20110193150
    Abstract: A method of manufacturing a semiconductor memory device includes forming a first capacitor using a metal oxide semiconductor (MOS) transistor, forming a second capacitor being a pillar type corresponding to a cell capacitor formed in a cell region, and forming a third capacitor over the first and the second capacitors
    Type: Application
    Filed: July 19, 2010
    Publication date: August 11, 2011
    Applicant: Hynix Semiconductor Inc.
    Inventor: Dong Chul KOO
  • Patent number: 7989866
    Abstract: DRAM cell arrays having a cell area of about 4 F2 comprise an array of vertical transistors with buried bit lines and vertical double gate electrodes. The buried bit lines comprise a silicide material and are provided below a surface of the substrate. The word lines are optionally formed of a silicide material and form the gate electrode of the vertical transistors. The vertical transistor may comprise sequentially formed doped polysilicon layers or doped epitaxial layers. At least one of the buried bit lines is orthogonal to at least one of the vertical gate electrodes of the vertical transistors.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: August 2, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Todd R. Abbott, Homer M. Manning
  • Patent number: 7989864
    Abstract: Structures and methods for making a semiconductor structure are discussed. The semiconductor structure includes a rough surface having protrusions formed from an undoped silicon film. If the semiconductor structure is a capacitor, the protrusions help to increase the capacitance of the capacitor. The semiconductor structure also includes a relatively smooth surface abutting the rough surface, wherein the relatively smooth surface is formed from a polycrystalline material.
    Type: Grant
    Filed: August 10, 2009
    Date of Patent: August 2, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Randhir P. S. Thakur, Garry A. Mercaldi, Michael Nuttall, Shenline Chen, Er-Xuan Ping
  • Publication number: 20110180863
    Abstract: Some embodiments include methods of forming capacitors. A first capacitor storage node may be formed within a first opening in a first sacrificial material. A second sacrificial material may be formed over the first capacitor storage node and over the first sacrificial material, and a retaining structure may be formed over the second sacrificial material. A second opening may be formed through the retaining structure and the second sacrificial material, and a second capacitor storage node may be formed within the second opening and against the first storage node. The first and second sacrificial materials may be removed, and then capacitor dielectric material may be formed along the first and second storage nodes. Capacitor electrode material may then be formed along the capacitor dielectric material. Some embodiments include methods of forming DRAM unit cells, and some embodiments include DRAM unit cell constructions.
    Type: Application
    Filed: April 5, 2011
    Publication date: July 28, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: John Kennedy
  • Patent number: 7985997
    Abstract: A semiconductor device is manufactured by forming a hole as being extended through a first insulating film and an insulating interlayer stacked over a semiconductor substrate, allowing side-etching of the inner wall of the hole to proceed specifically in a portion of the insulating interlayer, to thereby form a structure having the first insulating film projected out from the edge towards the center of the hole; forming a lower electrode film as being extended over the top surface, side face and back surface of the first insulating film, and over the inner wall and bottom surface of the hole; filling a protective film in the hole; removing the lower electrode film specifically in portions fallen on the top surface and side face of the first insulating film; removing the protective film; and forming a cylindrical capacitor in the hole.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: July 26, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Ryo Kubota, Nobutaka Nagai, Satoshi Kura
  • Patent number: 7985999
    Abstract: A semiconductor device having a capacitor and a method of fabricating the same may be provided. A method of fabricating a semiconductor device may include forming an etch stop layer and a mold layer sequentially on a substrate, patterning the mold layer to form a mold electrode hole exposing a portion of the etch stop layer, etching selectively the exposed etch stop layer by an isotropic dry etching process to form a contact electrode hole through the etch stop layer to expose a portion of the substrate, forming a conductive layer on the substrate and removing the conductive layer on the mold layer on the mold layer to form a cylindrical bottom electrode in the mold and contact electrode holes. The isotropic dry etching process may utilize a process gas including main etching gas and selectivity adjusting gas. The selectivity adjusting gas may increase an etch rate of the etch stop layer by more than an etch rate of the mold layer by the isotropic wet etching process.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: July 26, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-Min Oh, Jeong-Nam Han, Chang-Ki Hong, Woo-Gwan Shim, Im-Soo Park
  • Publication number: 20110175152
    Abstract: An integrated circuit is provided that includes a fully depleted semiconductor device and a capacitor present on a semiconductor on insulator (SOI) substrate. The fully depleted semiconductor device may be a finFET semiconductor device or a planar semiconductor device. In one embodiment, the integrated circuit includes a substrate having a first device region and a second device region. The first device region of the substrate includes a first semiconductor layer that is present on a buried insulating layer. The buried insulating layer that is in the first device region is present on a second semiconductor layer of the substrate. The second device region includes the second semiconductor layer, but the first semiconductor layer and the buried insulating layer are not present in the second device region. The first device region includes the fully depleted semiconductor device. A capacitor is present in the second device region.
    Type: Application
    Filed: January 19, 2010
    Publication date: July 21, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Roger A. Booth, JR., Kangguo Cheng, Bruce B. Doris, Ghavam G. Shahidi
  • Patent number: 7982254
    Abstract: A protective film (56) having a water/hydrogen blocking function is formed so as to cover the periphery of a pad electrode (54a) while being electrically isolated from the pad electrode. A material selected in the embodiment for composing the protective film is a highly moisture-proof material having a water/hydrogen blocking function considerably superior to that of the insulating material, such as palladium (Pd) or palladium-containing material, and iridium (Ir) or iridium oxide (IrOx: typically x=2) or an iridium- or iridium oxide-containing material. An FeRAM capable of reliably preventing water/hydrogen from entering inside, and of maintaining high performance of the ferroelectric capacitor structure (30) may be realized only by a simple configuration.
    Type: Grant
    Filed: January 3, 2008
    Date of Patent: July 19, 2011
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Kouichi Nagai, Katsuhiro Sato, Kaoru Sugawara, Makoto Takahashi, Masahito Kudou, Kazuhiro Asai, Yukimasa Miyazaki, Kaoru Saigoh
  • Patent number: 7981764
    Abstract: A method for fabricating a semiconductor device includes: forming a stack structure including pillar regions whose upper portion has a wider width than a lower portion over a substrate, the lower portion including at least a conductive layer; forming a gate insulation layer on sidewalls of the pillar regions; forming active pillars to gap-fill the pillar regions; and forming vertical gates that serve as both gate electrode and word lines by selectively etching the conductive layer.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: July 19, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Young-Kyun Jung
  • Publication number: 20110169066
    Abstract: Semiconductor devices and dynamic random access memory devices including a buried gate electrode are provided, the semiconductor devices include a substrate with a gate trench, a buried gate electrode partially filling the inside of the gate trench, a capping layer pattern in the gate trench and over the buried gate electrode, source/drain regions below an upper surface of the substrate and adjacent to both sides of the buried gate electrode, and a gate insulation layer interposed between the trench and the buried gate electrode. The capping layer pattern includes a high-k material layer that directly contacts an upper surface of the buried gate electrode.
    Type: Application
    Filed: December 2, 2010
    Publication date: July 14, 2011
    Inventors: Joon-Seok MOON, Dong-Soo WOO, Jaerok KAHNG, Jinwoo LEE, Keeshik PARK
  • Patent number: 7977124
    Abstract: A semiconductor device includes a first wiring layer, a second wiring layer and an insulating layer provided between the first wiring layer and the second wiring layer. A capacitor has a first electrode formed on the first wiring layer and a second electrode formed on the second wiring layer in such a manner that the second electrode overlaps with the first electrode. To the first electrode, two connection wirings are connected and, to the second electrode, two connection wirings are connected. The two connection wirings are connected to each other with low DC impedance substantially only through the first electrode. Similarly, the two connection wirings are connected to each other with low DC impedance substantially only through the second electrode.
    Type: Grant
    Filed: September 2, 2008
    Date of Patent: July 12, 2011
    Assignee: Rohm Co., Ltd.
    Inventor: Nobuaki Umeki
  • Patent number: 7977722
    Abstract: Non-volatile memory with programmable capacitance is disclosed. Illustrative data memory units include a substrate including a source region and a drain region. A first insulating layer is over the substrate. A second insulating layer is over the substrate and between the source region and drain region. A solid electrolyte layer is between the first insulating layer and second insulating layer. The solid electrolyte layer has a capacitance that is controllable between at least two states. A first electrode is electrically coupled to a first side of the solid electrolyte layer and is electrically coupled to a voltage source. A second electrode is electrically coupled to a second side of the solid electrolyte layer and is electrically coupled to the voltage source. Multi-bit memory units are also disclosed.
    Type: Grant
    Filed: May 20, 2008
    Date of Patent: July 12, 2011
    Assignee: Seagate Technology LLC
    Inventors: Xuguang Wang, Shuiyuan Huang, Dimitar V. Dimitrov, Michael Xuefei Tang, Song S. Xue
  • Patent number: 7977725
    Abstract: An integrated circuit semiconductor device includes a first transistor formed at a lower substrate and configured with at least one of a vertical transistor and a planar transistor. A bonding insulation layer is formed on the first transistor, and an upper substrate is bonded on the bonding insulation layer. A second transistor configured with at least one of a vertical transistor and a planar transistor is formed at the upper substrate. The first transistor and the second transistor are connected by an interconnection layer.
    Type: Grant
    Filed: July 10, 2008
    Date of Patent: July 12, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-man Yoon, Yong-chul Oh, Hui-jung Kim, Hyun-woo Chung, Kang-uk Kim, Dong-gun Park, Woun-suck Yang
  • Patent number: 7977726
    Abstract: A dynamic random access memory (DRAM) cell and the method of manufacturing the same are provided. The DRAM cell includes a cell transistor and a cell capacitor. The cell capacitor includes a first, second and third dielectric layer, and a first, second and third capacitor electrode. The first dielectric layer is located on a first capacitor electrode. The second capacitor electrode is located on top of the first dielectric layer. The second dielectric layer is located on the second capacitor electrode. The third capacitor electrode is located on the second dielectric layer and is electrically connected with the drain. The third dielectric layer is located between the third capacitor electrode and the gate for isolating the gate from the third capacitor electrode.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: July 12, 2011
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Jai-Hoon Sim
  • Patent number: 7977724
    Abstract: A capacitor includes a cylindrical storage electrode formed on a substrate. A ring-shaped stabilizing member encloses an upper portion of the storage electrode to structurally support the storage electrode and an adjacent storage electrode. The ring-shaped stabilizing member is substantially perpendicular to the storage electrode and extends in a direction where the adjacent storage electrode is arranged. A dielectric layer is formed on the storage electrode. A plate electrode is formed on the dielectric layer.
    Type: Grant
    Filed: October 22, 2007
    Date of Patent: July 12, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Je-Min Park
  • Patent number: 7977200
    Abstract: A semiconductor device including at least one capacitor formed in wiring levels on a silicon-on-insulator (SOI) substrate, wherein the at least one capacitor is coupled to an active layer of the SOI substrate. A method of fabricating a semiconductor structure includes forming an SOI substrate, forming a BOX layer over the SOI substrate, and forming at least one capacitor in wiring levels on the BOX layer, wherein the at least one capacitor is coupled to an active layer of the SOI substrate.
    Type: Grant
    Filed: March 12, 2008
    Date of Patent: July 12, 2011
    Assignee: International Business Machines Corporation
    Inventors: William F. Clark, Jr., Stephen E. Luce
  • Patent number: 7977720
    Abstract: To securely prevent hydrogen from entering a ferroelectric layer of a ferroelectric memory. A first hydrogen barrier layer 5 is formed on the lower side of ferroelectric capacitors 7. Upper surfaces and side surfaces of the ferroelectric capacitors 7 are covered by a second hydrogen barrier layer. All upper electrodes 7c of the plural ferroelectric capacitors 7 to be connected to a common plate line P are connected to one another by an upper wiring layer 91. The upper wiring layer 91 is connected to the plate line P through a lower wiring 32 provided below the ferroelectric capacitors 7. A third hydrogen barrier layer 92 is formed on the upper wiring layer 91 such that all edge sections 92a of the third hydrogen barrier layer 92 come in contact with the first hydrogen barrier layer 5.
    Type: Grant
    Filed: July 2, 2010
    Date of Patent: July 12, 2011
    Assignee: Seiko Epson Corporation
    Inventor: Shinichi Fukada
  • Patent number: 7973352
    Abstract: Integrated circuit capacitors have composite dielectric layers therein. These composite dielectric layers include crystallization inhibiting regions that operate to increase the overall crystallization temperature of the composite dielectric layer. An integrated circuit capacitor includes first and second capacitor electrodes and a capacitor dielectric layer extending between the first and second capacitor electrodes. The capacitor dielectric layer includes a composite of a first dielectric layer extending adjacent the first capacitor electrode, a second dielectric layer extending adjacent the second capacitor electrode and an electrically insulating crystallization inhibiting layer extending between the first and second dielectric layers. The electrically insulating crystallization inhibiting layer is formed of a material having a higher crystallization temperature characteristic relative to the first and second dielectric layers.
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: July 5, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-hyoung Choi, Jung-hee Chung, Cha-young Yoo, Young-sun Kim, Se-hoon Oh
  • Publication number: 20110156120
    Abstract: There are provided: a silicon pillar that is formed almost perpendicularly to a main surface of a substrate; first and second impurity diffused layers that are arranged in a lower part and an upper part of the silicon pillar, respectively; a gate electrode that is arranged horizontally through the silicon pillar; and a gate insulating film that is arranged between the gate electrode and the silicon pillar. The silicon pillar consequently has a small volume, which makes it possible to reduce the leak current of the transistor or thyristor formed in the silicon pillar.
    Type: Application
    Filed: December 27, 2010
    Publication date: June 30, 2011
    Applicant: ELPIDA MEMORY, INC.
    Inventor: Hiroshi KUJIRAI
  • Publication number: 20110156118
    Abstract: A method for fabricating a semiconductor substrate includes defining an active region by forming a device isolation layer over the substrate, forming a first trench dividing the active region into a first active region and a second active region, forming a buried bit line filling a portion of the first trench, forming a gap-filling layer gap-filling an upper portion of the first trench over the buried bit line, forming second trenches by etching the gap-filling layer and the device isolation layer in a direction crossing the buried bit line, and forming a first buried word line and a second buried word line filling the second trenches, wherein the first buried word line and the second buried word line are shaped around sidewalls of the first active region and the second active region, respectively.
    Type: Application
    Filed: July 6, 2010
    Publication date: June 30, 2011
    Inventor: Jung-Woo Park
  • Publication number: 20110156119
    Abstract: Semiconductor memory devices and methods of forming the same are provided, the semiconductor memory devices include a first and a second buried gate respectively disposed on both inner sidewalls of a groove formed in an active portion and a device isolation pattern. The first and second buried gates are controlled independently from each other.
    Type: Application
    Filed: November 1, 2010
    Publication date: June 30, 2011
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Hyun-Woo Chung, Kang-Uk Kim, Yongchul Oh, Hui-Jung Kim, Hyun-Gi Kim
  • Patent number: 7968447
    Abstract: A semiconductor device may include plugs disposed in a zigzag pattern, interconnections electrically connected to the plugs and a protection pattern which is interposed between the plugs and the interconnections to selectively expose the plugs. The interconnections may include a connection portion which is in contact with plugs selectively exposed by the protection pattern. A method of manufacturing a semiconductor device includes, after forming a molding pattern and a mask pattern, selectively etching a protection layer using the mask pattern to form a protection pattern exposing a plug.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: June 28, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-Ho Lee, Jae-Hwang Sim, Jae-Kwan Park, Mo-Seok Kim, Jong-Min Lee, Dong-Sik Lee
  • Patent number: 7968929
    Abstract: The present disclosure provides on-chip decoupling capacitor structures having trench capacitors integrated with a passive capacitor formed in the back-end-of-line wiring to provide an improved overall capacitance density. In some embodiments, the structure includes at least one deep trench capacitor and a passive capacitor formed in at least two back-end-of-line wiring levels. The trench and passive capacitors are in electrical communication through one of the wiring levels. In other embodiments, the structure includes at least one deep trench capacitor, a first back-end-of-line wiring level, and a second back-end-of-line wiring level. The deep trench capacitor with a dielectric that has an upper edge that terminates at a lower surface of a shallow trench isolation region. The first wiring level is in electrical communication with the trench capacitor. The second wiring level is vertically electrically connected to the first wiring level by vertical connectors so as to form a passive capacitor.
    Type: Grant
    Filed: August 7, 2007
    Date of Patent: June 28, 2011
    Assignee: International Business Machines Corporation
    Inventors: Anil K. Chinthakindi, Eric Thompson
  • Patent number: 7969008
    Abstract: A semiconductor device has: a circuit portion having semiconductor elements formed on a semiconductor substrate; insulating lamination formed above the semiconductor substrate and covering the circuit portion; a multilevel wiring structure formed in the insulating lamination and including wiring patterns and via conductors; and a pad electrode structure formed above the semiconductor substrate and connected to the multilevel wiring structure. The pad electrode structure includes pad wiring patterns and pad via conductors interconnecting the pad wiring patterns, the uppermost pad wiring pattern includes a pad pattern and a sealing pattern surrounding the pad pattern in a loop shape. Another pad wiring pattern has continuous extended pad pattern of a size overlapping the sealing pattern. The pad via conductors include a plurality of columnar via conductors disposed in register with the pad pattern and a loop-shaped wall portion disposed in register with the sealing pattern.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: June 28, 2011
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Kouichi Nagai
  • Publication number: 20110140187
    Abstract: A method of forming a vertical field effect transistor includes etching an opening into semiconductor material. Sidewalls and radially outermost portions of the opening base are lined with masking material. A semiconductive material pillar is epitaxially grown to within the opening adjacent the masking material from the semiconductor material at the opening base. At least some of the masking material is removed from the opening. A gate dielectric is formed radially about the pillar. Conductive gate material is formed radially about the gate dielectric. An upper portion of the pillar is formed to comprise one source/drain region of the vertical transistor. Semiconductive material of the pillar received below the upper portion is formed to comprise a channel region of the vertical transistor. Semiconductor material adjacent the opening is formed to comprise another source/drain region of the vertical transistor. Other aspects and implementations are contemplated.
    Type: Application
    Filed: February 28, 2011
    Publication date: June 16, 2011
    Applicant: Micron Technology, Inc.
    Inventors: Larson Lindholm, David Hwang
  • Patent number: 7960227
    Abstract: After a first via hole leading to a ferroelectric capacitor structure are formed in an interlayer insulating film by dry etching, a second via hole to expose part of the ferroelectric capacitor structure is formed in a hydrogen diffusion preventing film so as to be aligned with the first via hole by wet etching, and a via hole constructed by the first via hole and the second via hole communicating with each other is formed.
    Type: Grant
    Filed: August 18, 2009
    Date of Patent: June 14, 2011
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Yasuhiro Hayashi, Kazutoshi Izumi
  • Patent number: 7956440
    Abstract: A capacitor includes a first capacitor structure on a substrate, the first capacitor structure including a first electrode, a first dielectric layer pattern, and a second electrode, a second capacitor structure on the first capacitor structure, the second capacitor structure including a third electrode, a second dielectric layer pattern, and a fourth electrode, at least one first contact pad on a side of the first electrode, and a wiring structure connecting the at least one first contact pad and the fourth electrode.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: June 7, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Kwan-Young Yun
  • Patent number: 7956400
    Abstract: An integrated metal-insulator-metal capacitor is formed so that there is an extension portion of its top plate that does not face any portion of the bottom plate, and an extension portion of its bottom plate that does not face any portion of the top plate. Vias connecting the MIM capacitor plates to conductors in an overlying metallization layer are formed so as to contact the extension portions of the top and bottom plates. Etching of the via holes is simplified because it is permissible for the via holes to punch through the extension portions of the capacitor plates. The bottom plate of the MIM capacitor is inlaid. The top plate of the MIM capacitor may be inlaid.
    Type: Grant
    Filed: June 15, 2006
    Date of Patent: June 7, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Brad Smith
  • Patent number: 7956396
    Abstract: A method for forming a floating gate semiconductor device such as an electrically erasable programmable read only memory is provided. The device includes a silicon substrate having an electrically isolated active area. A gate oxide, as well as other components of a FET (e.g., source, drain) are formed in the active area. A self aligned floating gate is formed by depositing a conductive layer (e.g., polysilicon) into the recess and over the gate oxide. The conductive layer is then chemically mechanically planarized to an endpoint of the isolation layer so that all of the conductive layer except material in the recess and on the gate oxide is removed. Following formation of the floating gate an insulating layer is formed on the floating gate and a control gate is formed on the insulating layer.
    Type: Grant
    Filed: November 1, 2007
    Date of Patent: June 7, 2011
    Assignee: Round Rock Research, LLC
    Inventors: Trung Tri Doan, Tyler A. Lowrey
  • Patent number: 7952130
    Abstract: In an eDRAM-type semiconductor device, a dynamic random access memory (DRAM) section and a logic circuit section are formed on a semiconductor substrate, and an insulating layer is formed on the semiconductor substrate. A first capacitor is formed in the insulating layer at the DRAM section, the first capacitor defining a part of memory cell of the DRAM section. A second capacitor is formed in the insulating layer at the logic circuit section. The first capacitor comprises a lower electrode layer formed on an inner wall face of a hole formed in the insulating layer, and the second capacitor comprises a first lower electrode layer portion formed on an inner wall face of a groove formed in the insulating layer, and a second lower electrode layer portion formed on a surface of the insulating layer so as to be integrated with the first lower electrode portion.
    Type: Grant
    Filed: February 17, 2006
    Date of Patent: May 31, 2011
    Assignee: Renesas Electronics Corporation
    Inventor: Shintaro Arai
  • Patent number: 7952129
    Abstract: Embodiments according to the inventive concept can provide semiconductor devices including a substrate and a plurality of active pillars arranged in a matrix on the substrate. Each of the pillars includes a channel part that includes a channel dopant region disposed in a surface of the channel part. A gate electrode surrounds an outer surface of the channel part. The plurality of active pillars may be arranged in rows in a first direction and columns in a second direction crossing the first direction.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: May 31, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyeoung-won Seo, Jae-man Yoon, Dong-gun Park, Seong-goo Kim
  • Patent number: 7952127
    Abstract: A storage node structure includes a substrate having thereon a conductive block region; an etching stop layer covering the conductive block region; a conductive layer penetrating the etching stop layer and electrically connecting the conductive block region; an annular shaped conductive spacer on sidewall of the conductive layer, wherein the annular shaped conductive spacer is disposed on the etching stop layer and wherein the annular shaped conductive spacer and the conductive layer constitute a storage node pedestal; and an upper node portion stacked on the storage node pedestal.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: May 31, 2011
    Assignee: Nanya Technology Corp.
    Inventor: Hsiao-Ting Wu
  • Publication number: 20110115008
    Abstract: A means for selectively electrically connecting an electrical interconnect line, such as a bit line of a memory cell, with an associated contact stud and electrically isolating the interconnect line from other partially underlying contact studs for other electrical features, such as capacitor bottom electrodes. The interconnect line can be formed partially-connected to all contact studs, thereby allowing the electrical features to be formed in closer proximity to one another for higher levels of integration, and in subsequent steps of fabrication, the contact studs associated with memory cell features other than the interconnect line can be isolated from the interconnect line by the removal of a silicide cap, or the selective etching of a portion of these contact studs, and the formation of an insulating sidewall between the non-selected contact stud and the interconnect line.
    Type: Application
    Filed: January 24, 2011
    Publication date: May 19, 2011
    Inventor: John M. Drynan
  • Patent number: 7943474
    Abstract: A method for forming a memory device is provided by first forming at least one trench in a semiconductor substrate. Next, a lower electrode is formed in the at least one trench, and thereafter a conformal dielectric layer is formed on the lower electrode. An upper electrode is then formed on the conformal dielectric layer. The forming of the upper electrode may include a conformal deposition of metal nitride layer, and a non-conformal deposition of an electrically conductive material atop the metal nitride layer, in which the electrically conductive material encloses the at least one trench.
    Type: Grant
    Filed: February 24, 2009
    Date of Patent: May 17, 2011
    Assignee: International Business Machines Corporation
    Inventors: Thomas W. Dyer, Keith Kwong Hon Wong, Mahender Kumar