Encapsulated Patents (Class 257/787)
  • Patent number: 9263335
    Abstract: Disclosed is a discrete semiconductor device package (100) comprising a semiconductor die (110) having a first surface and a second surface opposite said first surface carrying a contact (112); a conductive body (120) on said contact; an encapsulation material (130) laterally encapsulating said conductive body; and a capping member (140, 610) such as a solder cap, a further semiconductor die or a combination thereof in conductive contact with the solder portion, said solder cap extending over the encapsulation material. A further solder cap (150) may be provided over the first surface. A method of manufacturing such a discrete semiconductor device package is also disclosed.
    Type: Grant
    Filed: January 28, 2015
    Date of Patent: February 16, 2016
    Assignee: NXP B.V.
    Inventors: Tim Boettcher, Sven Walczyk, Roelf Anco Jacob Groenhuis, Rolf Brenner, Emiel De Bruin
  • Patent number: 9257368
    Abstract: A microelectronic package having a first bumpless build-up layer structure adjacent an active surface and sides of a microelectronic device and a second bumpless build-up layer structure adjacent a back surface of the microelectronic device, wherein conductive routes are formed through the first bumpless build-up layer from the microelectronic device active surface to conductive routes in the second bumpless build-up layer structure and wherein through-silicon vias adjacent the microelectronic device back surface and extending into the microelectronic device are electrically connected to the second bumpless build-up layer structure conductive routes.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: February 9, 2016
    Assignee: Intel Corporation
    Inventors: Eng Huat Goh, Hoay Tien Teoh
  • Patent number: 9230467
    Abstract: A display module and an assembly method thereof are provided. The display module includes a display region, at least one connection terminal, and a plurality of connective lines. The display region, the connection terminal, and the connective lines are disposed on a same flexible substrate. A plurality of pixels is arranged within the display region. The connection terminal is arranged at an extension portion of a non-display region of the flexible substrate. The connective lines respectively connect the pixels in the display region to the connection terminal at the extension portion. The connection terminal is connected to an external circuit for receiving signals and transmitting the same to the display region.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: January 5, 2016
    Assignee: Industrial Technology Research Institute
    Inventors: Janglin Chen, Tzeng-Shii Tsai, Hwa-Nien Yu
  • Patent number: 9224678
    Abstract: Methods and apparatus are disclosed for attaching the integrated circuit (IC) packages to printed circuit boards (PCBs) to form smooth solder joints. A polymer flux may be provided in the process to mount an IC package to a PCB. The polymer flux may be provided on connectors of the IC package, or provided on PCB contact pad and/or pre-solder of the PCB. When the IC package is mounted onto the PCB, the polymer flux may cover a part of the connector, and may extend to cover a surface of the molding compound on the IC package. The polymer flux may completely cover the connector as well. The polymer flux delivers a fluxing component that facilitates smooth solder joint formation as well as a polymer component that offers added device protection by encapsulating individual connectors. The polymer component may be an epoxy.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: December 29, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Hsien-Wei Chen
  • Patent number: 9215762
    Abstract: A method of manufacturing a light-emitting device includes placing a phosphor-containing film on a mold for compression molding, the mold having a concave portion of a predetermined shape and the film being placed along an inner wall of the concave portion, supplying a resin material on the phosphor-containing film in the concave portion, immersing a light-emitting element mounted on a substrate in the resin material in the concave portion, and applying pressure and heat to the resin material and the phosphor-containing film, thereby forming a transparent sealing resin for sealing the light-emitting element and a phosphor-containing layer covering a surface thereof.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: December 15, 2015
    Assignee: TOYODA GOSEI CO., LTD.
    Inventors: Shigeo Takeda, Shota Yamamori, Mitsushi Terakami, Makoto Ishida
  • Patent number: 9196774
    Abstract: In a solar module of the present invention, the ratio (T2/T1) of a thickness (T2) of a rear surface-side filling material layer at the end surface to a thickness (T1) of a rear surface-side filling material layer in a region where a solar cell (22) is provided is set smaller than the ratio (T4/T3) of a thickness (T4) of a light receiving surface-side filling material layer at the end surface to a thickness (T3) of the light receiving surface-side filling material layer in a region where the solar cell is provided. Consequently, entry of water into a filling material layer from the end surface of the filling material layer is effectively suppressed, and improved humidity resistance is achieved.
    Type: Grant
    Filed: April 8, 2014
    Date of Patent: November 24, 2015
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventor: Masanori Maeda
  • Patent number: 9196559
    Abstract: A method includes forming a passivation layer over a metal pad, wherein the metal pad is further overlying a semiconductor substrate of a wafer. A Post-Passivation Interconnect (PPI) is formed to electrically couple to the metal pad, wherein a portion of the PPI is overlying the passivation layer. A metal bump is formed over and electrically coupled to the PPI. The method further includes applying a molding compound over the metal bump and the PPI, applying a release film over the molding compound, pressing the release film against the molding compound, and curing the molding compound when the release film is pressed against the molding compound. The release film is then removed from the molding compound. The wafer is sawed into dies using a blade, with the blade cutting through the molding compound.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: November 24, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Peng Tsai, Wen-Hsiung Lu, Chia-Wei Tu, Ming-Da Cheng, Chung-Shi Liu
  • Patent number: 9140898
    Abstract: A hermetic package comprising a substrate (110) having a surface with a MEMS structure (101) of a first height (102), the substrate hermetically sealed to a cap (120) forming a cavity over the MEMS structure; the cap attached to the substrate surface by a vertical stack (130) of metal layers adhering to the substrate surface and to the cap, the stack having a continuous outline surrounding the MEMS structure while spaced from the MEMS structure by a distance (140); the stack having a bottom metal seed film (131) adhering to the substrate with a first width (131a), and further a top metal seed film (132) adhering to the cap with a second width (132a) smaller than the first width, the top metal seed film tied to a layer (135) including gold-indium intermetallic compounds, layer (135) having a height greater than the first height.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: September 22, 2015
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: John C. Ehmke, Virgil C. Ararao, Toby R. Linder, Lance W. Barron
  • Patent number: 9142739
    Abstract: A method and a system for a reliable LED semiconductor device are provided. In one embodiment, the device comprises a carrier, a light emitting diode disposed on the carrier, an encapsulating material disposed over the light emitting diode and the carrier, at least one through connection formed in the encapsulating material, and a metallization layer disposed and structured over the at least one through connection.
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: September 22, 2015
    Assignee: Infineon Technologies AG
    Inventors: Andreas Eder, Henrik Ewe, Stefan Landau, Joachim Mahler
  • Patent number: 9136245
    Abstract: An electronic device comprising a bond pad on a substrate and a wire bonded to the bond pad. The device further comprises an intermetallic compound interface located between the bond pad and the wire and a silicon nitride or silicon carbonyl layer covering the intermetallic compound interface.
    Type: Grant
    Filed: May 21, 2014
    Date of Patent: September 15, 2015
    Assignee: Avago Technologies General IP (Singapore) Pte. Ltd
    Inventors: John M. DeLucca, Ronald J. Weachock, Barry J. Dutt, Frank A. Baiocchi, John W. Osenbach
  • Patent number: 9123881
    Abstract: A sensor device includes an IC chip, a package which includes a base in which the IC chip is provided and houses the IC chip, the base having a through hole provided in a position that overlaps with the IC chip in the plan view, and a spacer which is provided between the IC chip and the base, and has an aperture communicating the through hole with the space on the opposite side to the base with respect to the IC chip in the package between the IC chip and the space.
    Type: Grant
    Filed: April 17, 2013
    Date of Patent: September 1, 2015
    Assignee: Seiko Epson Corporation
    Inventors: Kenji Sato, Norifumi Shimizu
  • Patent number: 9111937
    Abstract: Semiconductor devices with multilayer flex interconnect structures. In some embodiments, a semiconductor device may include a semiconductor chip coupled to a planar substrate and a multilayer flex interconnect structure coupled to the semiconductor chip, the multilayer flex interconnect structure including at least: a first conductive layer, a second conductive layer, and a dielectric layer disposed between the first and second conductive layers. The semiconductor device may also include another semiconductor chip coupled to the planar substrate and placed in a side-by-side configuration with respect to the semiconductor chip, where the multilayer flex interconnect structure provides electrical connections between at least two terminals of the semiconductor chip and at least two terminals of the other semiconductor chip.
    Type: Grant
    Filed: May 28, 2013
    Date of Patent: August 18, 2015
    Assignee: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Burton J. Carpenter, Jr., Twila J. Eichman
  • Patent number: 9105826
    Abstract: The invention relates to a frame structure for light emitting diodes comprises plastic stand having a containing room with a conical opening and at least two metal frames being not connected, relatively arranged in the containing room of the plastic stand and one of the metal frames having a concave chip bearing stand for bearing light emitting diodes wherein the conical opening of the plastic stand is greater than the concave chip bearing stand and the concave chip bearing stand has a bottom edge revealed at a bottom of the plastic stand; the area of the concave chip bearing stand is greater than 40% of the area of the conical opening of the plastic stand to increase the cooling area of the metal frames for the light-emitting diodes with the different wattage sharing the same specification frame structure to reduce the cost of metal frames molding.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: August 11, 2015
    Assignee: Lumenmax Optoelectronics Co., Ltd.
    Inventors: Chia-Han Hsieh, Jerrold Huang
  • Patent number: 9099451
    Abstract: Disclosed herein are a power module package and a method of manufacturing the same. The power module package includes first and second semiconductor devices mounted on sides of first and second lead frames, ends of which are separated from each other, respectively, a support pin corresponding to a mounting position of the first semiconductor device and formed adjacent to a lower portion of the first lead frame, and a molding portion formed to cover portions of the first and second lead frames and the first and second semiconductor devices.
    Type: Grant
    Filed: May 12, 2014
    Date of Patent: August 4, 2015
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventor: Job Ha
  • Patent number: 9076943
    Abstract: A lead frame structure, a packaging structure and a lighting unit are disclosed. The lead frame structure includes at least two first lead frame units having a space therebetween, and the two first lead frame units are arranged in an opposite manner. Each the first lead frame unit has a first conducting portion, a second conducting portion, and a first connection portion between the first and the second conducting portions. Moreover, the first connection portion has at least two grooves on a surface thereof.
    Type: Grant
    Filed: May 13, 2011
    Date of Patent: July 7, 2015
    Assignees: LITE-ON ELECTRONICS (GUANGZHOU) LIMITED, LITE-ON TECHNOLOGY CORPORATION
    Inventor: Chen-Hsiu Lin
  • Publication number: 20150145145
    Abstract: Disclosed herein is an IC embedded substrate that includes a core substrate having an opening, an IC chip provided in the opening, a lower insulating layer, and upper insulating layer. The IC chip and the core substrate is sandwiched between the lower insulating layer and the upper insulating layer. The upper insulating layer is formed in such a way as to fill a gap between a side surface of the IC chip and an inner peripheral surface of the opening of the core substrate. A first distance from the upper surface of the IC chip to an upper surface of the upper insulating layer is shorter than a second distance from the upper surface of the core substrate to the upper surface of the upper insulating layer.
    Type: Application
    Filed: November 26, 2014
    Publication date: May 28, 2015
    Applicant: TDK Corporation
    Inventors: Kazutoshi TSUYUTANI, Masashi KATSUMATA
  • Publication number: 20150145149
    Abstract: A method of manufacturing a semiconductor device package includes encapsulating at least partially a plurality of semiconductor chips with encapsulating material to form an encapsulation body. The encapsulation body has a first main surface and a second main surface. At least one of a metal layer and an organic layer is formed over the first main surface of the encapsulation body. At least one trace of the at least one of the metal layer and the organic layer is removed by laser ablation. The encapsulation body is then separated into a plurality of semiconductor device packages along the at least one trace.
    Type: Application
    Filed: November 26, 2013
    Publication date: May 28, 2015
    Inventors: Ulrich Wachter, Eva Wagner, Gottfried Beer
  • Patent number: 9040408
    Abstract: Semiconductor package devices, such as wafer-level package semiconductor devices, are described that have pillars for providing electrical interconnectivity. In an implementation, the wafer-level package devices include an integrated circuit chip having at least one pillar formed over the integrated circuit chip. The pillar is configured to provide electrical interconnectivity with the integrated circuit chip. The wafer-level package device also includes an encapsulation structure configured to support the pillar.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: May 26, 2015
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Tiao Zhou, Joseph W. Serpiello, Md. Kaysar Rahim, Yong L. Xu, Karthik Thambidurai, Viren Khandekar
  • Patent number: 9041228
    Abstract: A molding compound comprising a resin, a filler, and a carbon nano-tube dispersion is disclosed. The carbon nano-tube dispersion achieves a low average agglomeration size in the molding compound thereby providing desirable electromechanical properties and laser marking compatibility. A shallow laser mark may be formed in a mold cap with a maximum depth of less than 10 microns.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: May 26, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Myung Jin Yim, Jason Brand
  • Patent number: 9041226
    Abstract: In various embodiments, a chip arrangement is provided. The chip arrangement may include a chip carrier and a chip mounted on the chip carrier. The chip may include at least two chip contacts and an insulating adhesive between the chip and the chip carrier to adhere the chip to the chip carrier. The at least two chip contacts may be electrically coupled to the chip carrier.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: May 26, 2015
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Rainer Steiner, Edward Fuergut, Khalil Hosseini, Georg Meyer-Berg, Joachim Mahler
  • Patent number: 9041220
    Abstract: A semiconductor device includes a die coupled to a substrate, a first memory device coupled to a surface of the die opposite the substrate and a coupling device coupled between the surface of the die opposite the substrate and a second memory device such that the second memory device at least partially overlaps the first memory device. Also disclosed is method of mounting first and second memory devices on a die in an at least partially overlapping manner.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: May 26, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: Brian M. Henderson, Shiqun Gu
  • Patent number: 9040352
    Abstract: A semiconductor device package having a cavity formed using film-assisted molding techniques is provided. Through the use of such techniques the cavity can be formed in specific locations in the molded package, such as on top of a device die mounted on the package substrate or a lead frame. In order to overcome cavity wall angular limitations introduced by conformability issues associated with film-assisted molding, a gel reservoir feature is formed so that gel used to protect components in the cavity does not come in contact with a lid covering the cavity or the junction between the lid and the package attachment region. The gel reservoir is used in conjunction with a formed level setting feature that controls the height of gel in the cavity. Benefits include decreased volume of the cavity, thereby decreasing an amount of gel-fill needed and thus reducing production cost of the package.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: May 26, 2015
    Assignee: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Shun Meen Kuo, Li Li
  • Patent number: 9041168
    Abstract: According to one exemplary embodiment, an overmolded package includes a component situated on a substrate. The overmolded package further includes an overmold situated over the component and the substrate. The overmolded package further includes a wirebond cage situated over the substrate and in the overmold, where the wirebond cage surrounds the component, and where the wirebond cage includes a number of wirebonds. The wirebond cage forms an EMI shield around the component. According to this exemplary embodiment, the overmolded package further includes a conductive layer situated on a top surface of the overmold and connected to the wirebond cage, where the conductive layer forms an EMI shield over the component.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: May 26, 2015
    Assignee: Skyworks Solutions, Inc.
    Inventors: Dinhphuoc V. Hoang, Thomas E. Noll, Anil K. Agarwal, Robert W. Warren, Matthew S. Read, Anthony LoBianco
  • Patent number: 9041200
    Abstract: A method of forming an electronic device may include providing a solder structure on a surface of a substrate, and a surface of the solder structure spaced apart from the substrate may be planar. A mold layer may be formed on the surface of the substrate, wherein the mold layer surrounds the solder structure and wherein the planar surface of the solder structure is exposed through the mold layer. After forming the mold layer, the solder structure is heated to form a solder terminal having a curved surface spaced apart from the substrate. Related devices are also discussed.
    Type: Grant
    Filed: April 23, 2014
    Date of Patent: May 26, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Bongken Yu
  • Publication number: 20150137278
    Abstract: A semiconductor device package is assembled using a jig that alters the shape of gel material disposed in a cavity in the package. In one embodiment, a jig having a concave bottom surface is inserted onto uncured gel material disposed within a cavity in a housing of the package to change a top surface of the gel from having a concave shape to a convex shape. The gel is then cured with the jig in place. When the jig is subsequently removed, the cured gel retains the convex shape, which helps to avoid any bond wires from being exposed. The re-shaped gel material reduces internal stresses during thermal cycling and can therefore reduce permanent damage to the package otherwise resulting from such thermal cycling.
    Type: Application
    Filed: November 21, 2013
    Publication date: May 21, 2015
    Inventors: Stanley Job Doraisamy, Soon Kang Chan, Soo Choong Chee
  • Patent number: 9035446
    Abstract: Provided is a power module. The power module includes a power semiconductor chip. The power module further includes a case that accommodates the power semiconductor chip. A silicone gel seals the power semiconductor chip within the case. The silicone gel including a heat-resistant silicone gel containing 20 to 100 mass ppm of a metal complex comprising a metal selected from a group consisting of iron and platinum.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: May 19, 2015
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Daisuke Kimijima, Yuji Ichimura
  • Patent number: 9035472
    Abstract: In a semiconductor device, a conductor pattern is disposed in a position overlapped by a semiconductor chip in a thickness direction over the mounting surface (lower surface) of a wiring board. A solder resist film (insulating layer) covering the lower surface of the wiring board has apertures formed such that multiple portions of the conductor pattern are exposed. The conductor pattern has conductor apertures. The outlines of the apertures and the conductor apertures overlap with each other, in a plan view, respectively.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: May 19, 2015
    Assignee: Renesas Electronics Corporation
    Inventor: Takaharu Nagasawa
  • Patent number: 9034663
    Abstract: The invention relates to a sealed thin-film device (10, 12, 14), to a method of repairing a sealing layer (20) applied to a thin-film device (30) to produce the sealed thin-film device, to a system (200) for repairing the sealing layer applied to the thin-film device to generate the sealed thin-film device and to a computer program product. The sealed thin-film device comprises a thin-film device and a sealing layer applied on the thin-film device for protecting the thin-film device from environmental influence. The sealed thin-film device further comprises locally applied mending material (40; 42, 44) for sealing a local breach (50) in the sealing layer. An effect of this sealed thin-film device is that the operational life-time of the sealed thin-film device is improved. Furthermore, the production yield of the production of sealed thin-film devices is improved.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: May 19, 2015
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Coen A. Verschuren, Herbert Lifka, Rifat A. M. Hikmet
  • Patent number: 9033248
    Abstract: According to one embodiment, a semiconductor storage device is provided with a memory chip including a storage circuit, a controller chip that controls a memory chip, and a substrate having a first surface and a second surface opposing one another, on the first surface of which the controller chip is mounted. Further, the semiconductor storage device is provided with an external connection terminal formed on the second surface of the substrate, and resin that encapsulates the memory chip, the controller chip, and the substrate, includes a third surface and a fourth surface opposing one another, and has a predetermined mark directly printed only on the fourth surface that is adjacent to the second surface of the substrate.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: May 19, 2015
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Hidetoshi Suzuki, Yuichi Hotta, Yuji Shimoda, Yuuji Ogawa, Taku Nishiyama, Tadanobu Okubo, Junichi Onodera, Takeshi Ikuta, Naohisa Okumura, Katsuyoshi Watanabe, Kazuhide Doi
  • Patent number: 9035473
    Abstract: Provided are a thin circuit device with show-through of thin metal wires prevented and a method of manufacturing the circuit device. A circuit device mainly includes: a substrate including a first substrate and second substrates; pads formed respectively on upper surfaces of the second substrates; a semiconductor element fixed on an upper surface of the first substrate; thin metal wires each connecting the semiconductor elements and a corresponding one of the pads; and a sealing resin with which the semiconductor element and the thin metal wires are covered, and which thereby seals the circuit device with the semiconductor element and the thin metal wires disposed therein. Furthermore, filler particles located in the uppermost portion of the sealing resin are covered with a resin material constituting the sealing resin.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: May 19, 2015
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Isao Nakazato, Shigeharu Yoshiba, Takashi Sekibata
  • Patent number: 9029998
    Abstract: A semiconductor package device includes a lower package including a lower semiconductor chip mounted on the lower package substrate, a lower molding compound layer disposed on the lower package substrate, a first trench formed in the lower molding compound layer to surround the lower semiconductor chip, and a second trench connected to the first trench to extend to an outer wall of the lower package, the second trench being formed in the lower molding compound layer, an upper package disposed on the lower package. The upper package includes an upper package substrate and at least one upper semiconductor chip mounted on the upper package substrate and a heat transfer member disposed between the lower package and the upper package.
    Type: Grant
    Filed: April 2, 2014
    Date of Patent: May 12, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Eon Soo Jang, Kyol Park, Yunhyeok Im
  • Patent number: 9029198
    Abstract: A method of fabricating a semiconductor package includes forming a plurality of terminals on a sheet carrier, molding the sheet carrier with a first molding compound, creating electrical paths for a first routing layer, plating the first routing layer, placing dice on the first routing layer, encapsulating the dice with a second molding compound, removing at least a portion of the sheet carrier, and singulating the package from other packages.
    Type: Grant
    Filed: March 26, 2013
    Date of Patent: May 12, 2015
    Assignee: UTAC Thai Limited
    Inventors: Saravuth Sirinorakul, Suebphong Yenrudee
  • Patent number: 9029205
    Abstract: A method for manufacture of an integrated circuit packaging system includes: mounting an integrated circuit, having a planar interconnect, over a carrier with the planar interconnect at a non-active side of the integrated circuit and an active side of the integrated circuit facing the carrier; connecting the integrated circuit and the carrier; connecting the planar interconnect and the carrier; and forming an encapsulation over the integrated circuit, the carrier, and the planar interconnect.
    Type: Grant
    Filed: March 7, 2011
    Date of Patent: May 12, 2015
    Assignee: STATS ChipPAC Ltd.
    Inventors: Reza Argenty Pagaila, Byung Tai Do, Heap Hoe Kuan
  • Publication number: 20150123257
    Abstract: Various packages and methods of forming packages are disclosed. In an embodiment, a package includes a hybrid encapsulant encapsulating a chip attached to a substrate. The hybrid encapsulant comprises a first molding compound and a second molding compound that has a different composition than the first molding compound. In another embodiment, a package includes an encapsulant encapsulating a chip attached to a substrate. A surface of the chip is exposed through the encapsulant. The encapsulant comprises a recess in a surface of a first molding compound proximate the surface of the chip. A thermal interface material is on the surface of the chip and in the recess, and a lid is attached to the thermal interface material.
    Type: Application
    Filed: January 12, 2015
    Publication date: May 7, 2015
    Inventors: Wen-Yi Lin, Kuo-Chuan Liu, Po-Yao Lin, Cheng-Yi Hong, Ming-Chih Yew
  • Patent number: 9024424
    Abstract: A stacked electronic component comprises a first electronic component adhered on a substrate via a first adhesive layer, and a second electronic component adhered by using a second adhesive layer thereon. The second adhesive layer has a two-layer structure formed by a same material and having different modulus of elasticity. The second adhesive layer of the two-layer structure has a first layer disposed at the first electronic component side and a second layer disposed at the second electronic component side. The first layer softens or melts at an adhesive temperature. The second layer maintains a layered shape at the adhesive temperature. According to the stacked electronic component, occurrences of an insulation failure and a short circuiting are prevented, and in addition, a peeling failure between the electronic components, an increase of a manufacturing cost, and so on, can be suppressed.
    Type: Grant
    Filed: August 16, 2012
    Date of Patent: May 5, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Atsushi Yoshimura, Naoyuki Komuta, Hideo Numata
  • Patent number: 9018749
    Abstract: Described herein is a stacked package using laser direct structuring. The stacked package includes a die attached to a substrate. The die is encapsulated with a laser direct structuring mold material. The laser direct structuring mold material is laser activated to form circuit traces on the top and side surfaces of the laser direct structuring mold material. The circuit traces then undergo metallization. A package is then attached to the metalized circuit traces and is electrically connected to the substrate via the metalized circuit traces.
    Type: Grant
    Filed: January 2, 2014
    Date of Patent: April 28, 2015
    Assignee: Flextronics AP, LLC
    Inventors: Samuel Tam, Bryan Lee Sik Pong, Dick Pang
  • Patent number: 9018751
    Abstract: A semiconductor module system includes a module substrate and a semiconductor substrate having a through wire interconnect bonded to an electrode on the module substrate. The through wire interconnect includes a via, a wire in the via having a first end bonded to a substrate contact on the semiconductor substrate and a polymer layer at least partially encapsulating the wire. The semiconductor module system can also include a second substrate stacked on the semiconductor substrate having a second through wire interconnect in electrical contact with the through wire interconnect.
    Type: Grant
    Filed: April 21, 2014
    Date of Patent: April 28, 2015
    Assignee: Micron Technology, Inc.
    Inventors: David R Hembree, Alan G. Wood
  • Publication number: 20150108666
    Abstract: A method of forming a thinned encapsulated chip structure, wherein the method comprises providing a separation structure arranged within an electronic chip, encapsulating part of the electronic chip by an encapsulating structure, and thinning selectively the electronic chip partially encapsulated by the encapsulating structure so that the encapsulating structure remains with a larger thickness than the thinned electronic chip, wherein the separation structure functions as a thinning stop.
    Type: Application
    Filed: October 18, 2013
    Publication date: April 23, 2015
    Applicant: Infineon Technologies AG
    Inventors: Manfred ENGELHARDT, Edward Fuergut, Hannes Eder
  • Publication number: 20150108667
    Abstract: An approach is provided for placing and securing a chip package portion in an aligned position during a curing process. The approach involves providing an apparatus having a first reservoir configured to receive a first chip package, a second reservoir, and a third reservoir. The approach also involves placing the first chip package portion into the first reservoir, the second chip package portion into the second reservoir, and the third chip package portion into the third reservoir. The approach further involves causing the first chip package portion to be secured in a first curing position, the second chip package portion to be secured in a second curing position and the third chip package portion to be secured in a third curing position.
    Type: Application
    Filed: October 23, 2013
    Publication date: April 23, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jui Hsieh LAI, Ying-Hao KUO, Kuo-Chung YEE
  • Patent number: 9013047
    Abstract: A semiconductor device includes a semiconductor element, a capacitor, a first resin, lead frames and a second resin. The first resin forms a resin molding which covers the semiconductor element and the capacitor. The lead frames are attached to two surfaces of the resin molding and are connected to the semiconductor element and the capacitor. The second resin directly covers the capacitor and has a rigidity lower than a rigidity of the first resin. An outside of the second resin is directly covered with the first resin.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: April 21, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Makoto Imai, Toru Tanaka
  • Patent number: 9013035
    Abstract: Methods and apparatuses for improved integrated circuit (IC) packages are described herein. In an aspect, an IC device package includes an IC die having a contact pad, where the contact pad is located on a hotspot of the IC die. The hotspot is thermally coupled to a thermal interconnect member. In an aspect, the package is encapsulated in a mold compound. In a further aspect, a heat spreader is attached to the mold compound, and is thermally coupled to the thermal interconnect member. In another aspect, a thermal interconnect member thermally is coupled between the heat spreader and the substrate.
    Type: Grant
    Filed: September 5, 2006
    Date of Patent: April 21, 2015
    Assignee: Broadcom Corporation
    Inventors: Sam Ziqun Zhao, Rezaur Rahman Khan
  • Patent number: 9013048
    Abstract: A semiconductor device manufacturing method includes sealing a first surface of a semiconductor wafer with a resin, causing a resin-made warp suppression member to be adhered to a second surface on the opposite side of the first surface of the semiconductor wafer and causing the warp suppression member to shrink, measuring the amount of warp of the semiconductor wafer, and forming cuts in the warp suppression member in accordance with the amount of warp of the semiconductor wafer.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: April 21, 2015
    Assignee: Fujitsu Limited
    Inventor: Norio Kainuma
  • Publication number: 20150102479
    Abstract: Method for manufacturing an electronic semiconductor package, in which method an electronic chip (100) is coupled to a carrier, the electronic chip is at least partially encapsulated by means of an encapsulation structure having a discontinuity, and the carrier is partially encapsulated, and at least one part of the discontinuity and a volume connected thereto adjoining an exposed surface section of the carrier are covered by an electrically insulating thermal interface structure, which electrically decouples at least one part of the carrier with respect to its surroundings.
    Type: Application
    Filed: September 30, 2014
    Publication date: April 16, 2015
    Inventors: Edward FUERGUT, Manfred MENGEL
  • Patent number: 9005736
    Abstract: An electronic component manufacturing method that efficiently grinds a cover layer provided on a substrate even when the substrate is warped includes the step of forming first grooves at intervals in a cover layer provided on a substrate by repeating grinding with a rotary blade at a pitch more than a thickness W of the rotary blade. Next, at least portions provided in the cover layer along the first grooves are removed to reduce the thickness of the cover layer by repeating grinding at a pitch equal to or less than the thickness W of the rotary blade.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: April 14, 2015
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Hidemasa Kawai
  • Patent number: 9006904
    Abstract: An electronic package includes a substrate wafer with an interconnect network. A first chip is fixed to a front of the substrate, connected to the interconnect network and encapsulated by a body. A second chip is placed on a back side of the substrate wafer and connected to the interconnect network by back-side connection elements interposed between the back side of the substrate and a front side of the second chip. Front-side connection elements are placed on the front side of the substrate and connected to the interconnect network. The connection elements extend beyond the frontal face of the body. The package may be mounted on a board with an interposed thermally conductive material.
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: April 14, 2015
    Assignee: STMicroelectronics (Grenoble 2) SAS
    Inventors: Dominique Marais, Jacques Chavade, RĂ©mi Brechignac, Eric Saugier, Romain Coffy, Luc Petit
  • Patent number: 9000587
    Abstract: A wafer-level package device and techniques for fabricating the device are described that include embedding a silicon chip onto an active device wafer or a passive device wafer, where the embedded silicon chip is a thin chip (e.g., <50 ?m). In implementations, the wafer-level package device that employs the techniques of the present disclosure includes an active device wafer, a thin integrated circuit chip, an encapsulation structure covering at least a portion of the active device wafer and the thin integrated circuit chip, a redistribution layer structure, and at least one solder bump for providing electrical interconnectivity. Once the wafer is singulated into semiconductor devices, each semiconductor device including the embedded thin integrated circuit chip may be mounted to a printed circuit board.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: April 7, 2015
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Amit S. Kelkar, Vivek S. Sridharan
  • Patent number: 8999763
    Abstract: Embodiments include but are not limited to apparatuses and systems including semiconductor packages, e.g. memory packages, having an interposer including at least one topological feature, such as a depression in a surface of the interposer, a die coupled to the surface of the interposer, and an encapsulant material formed over the die and the interposer, and disposed in the at least one depression to resist movement of the encapsulant material relative to the interposer. Other embodiments may be described and claimed.
    Type: Grant
    Filed: June 9, 2014
    Date of Patent: April 7, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Steven Eskildsen, Aravind Ramamoorthy
  • Patent number: 9000595
    Abstract: To provide a semiconductor device having a reduced size and thickness while suppressing deterioration in reliability. After a semiconductor wafer is ground at a back surface thereof with a grinding material into a predetermined thickness, the resulting semiconductor wafer is diced along a cutting region to obtain a plurality of semiconductor chips. While leaving grinding grooves on the back surface of each of the semiconductor chips, the semiconductor chip is placed on the upper surface of a die island via a conductive resin paste so as to face the back surface of the semiconductor chip and the upper surface of the die island each other. The die island has, on the upper surface thereof, a concave having a depth of from 3 ?m to 10 ?m from the edge of the concave to the bottom of the concave.
    Type: Grant
    Filed: April 3, 2014
    Date of Patent: April 7, 2015
    Assignee: Renesas Electronics Corporation
    Inventors: Eiji Ono, Eiji Osugi
  • Patent number: 9000584
    Abstract: The mechanisms of forming a molding compound on a semiconductor device substrate to enable fan-out structures in wafer-level packaging (WLP) are provided. The mechanisms involve covering portions of surfaces of an insulating layer surrounding a contact pad. The mechanisms improve reliability of the package and process control of the packaging process. The mechanisms also reduce the risk of interfacial delamination, and excessive outgassing of the insulating layer during subsequent processing. The mechanisms further improve planarization end-point. By utilizing a protective layer between the contact pad and the insulating layer, copper out-diffusion can be reduced and the adhesion between the contact pad and the insulating layer may also be improved.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: April 7, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jing-Cheng Lin, Jui-Pin Hung, Nai-Wei Liu, Yi-Chao Mao, Wan-Ting Shih, Tsan-Hua Tung
  • Publication number: 20150091196
    Abstract: A mechanism is provided by which delamination of a substrate of a system-in-package is prevented. A mold lock feature is provided within the substrate that allows the mold compound forming the encapsulant to flow into the mold lock feature, thereby anchoring the encapsulant to the substrate. The mold lock features can be provided in areas of the substrate where higher stresses due to component configuration are predicted. Aspects of the present invention provide for a method of forming the mold lock features that is compatible with current methods of forming laminate substrates, and thereby do not require an increase in cost for manufacturing the substrate.
    Type: Application
    Filed: September 30, 2013
    Publication date: April 2, 2015
    Inventor: Thomas H. Koschmieder