Removal By Selective Chemical Etching, E.g., Selective Dry Etching Through Mask (epo) Patents (Class 257/E21.246)
  • Patent number: 7538028
    Abstract: A barrier layer forming method includes providing a porous dielectric layer over a substrate, the dielectric layer having a surface with exposed pores, and treating the dielectric layer with a plasma formed from a methane-containing gas. The treating seals the exposed pores. The method includes depositing a barrier layer over the surface, the barrier layer being continuous over the sealed pores. The porous dielectric may be low K. The plasma may be formed at a bias of at least about 100 volts.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: May 26, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej S. Sandu, Bradley J. Howard
  • Publication number: 20090117741
    Abstract: A patterning method for the creation of two-dimensional nanowire structures. Nanowire patterning methods are used with lithographical patterning approaches to form patterns in a layer of epoxy and resist material. These patterns are then transferred to an underlying thin film to produce a two-dimensional structure with desired characteristics.
    Type: Application
    Filed: May 21, 2008
    Publication date: May 7, 2009
    Inventors: James R. Heath, Dunwei Wang, Yuri Bunimovich, Akram Boukai
  • Patent number: 7528059
    Abstract: By forming a capping layer after a CMP process for planarizing the surface topography of an ILD layer, any surface irregularities may be efficiently sealed, thereby reducing the risk for forming conductive surface irregularities during the further processing. Consequently, yield loss effects caused by leakage paths or short circuits in the first metallization layer may be significantly reduced.
    Type: Grant
    Filed: November 14, 2006
    Date of Patent: May 5, 2009
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Kai Frohberg, Sandra Bau, Johannes Groschopf
  • Patent number: 7528075
    Abstract: A method for removing defects from a semiconductor surface is disclosed. The surface of the semiconductor is first coated with a protective layer, which is later thinned to selectively reveal portions of the protruding defects. The defects are then removed by etching. Finally, also the protective layer is removed. According to the method, inadvertent thinning of the surface is prevented and removal of the defects is obtained.
    Type: Grant
    Filed: February 25, 2004
    Date of Patent: May 5, 2009
    Assignee: HRL Laboratories, LLC
    Inventor: Peter D. Brewer
  • Patent number: 7498222
    Abstract: A high K layer, such as aluminum oxide or hafnium oxide, may be formed with a deposition process that uses an ion implantation to damage portions of the high K material that are to be later etched. More particularly, in one implementation, a semiconductor device is manufactured by forming a first dielectric over a substrate, forming a charge storage element over the first dielectric, forming a second dielectric above the charge storage element, implantation ions into select portions of the second dielectric, and etching the ion implanted select portions of the second dielectric.
    Type: Grant
    Filed: March 9, 2006
    Date of Patent: March 3, 2009
    Assignees: Advanced Micro Devices, Inc., Spansion LLC
    Inventors: John C. Foster, Scott Bell, Allison Holbrook, Simon S. Chan, Phillip Jones
  • Publication number: 20090032880
    Abstract: Methods and apparatuses to etch recesses in a silicon substrate having an isotropic character to undercut a transistor in preparation for a source/drain regrowth. In one embodiment, a cap layer of a first thickness is deposited over a transistor gate stack and spacer structure. The cap layer is then selectively etched in a first region of the substrate, such as a p-MOS region, using a first isotropic plasma etch process and a second anisotropic plasma etch process. In another embodiment, an at least partially isotropic plasma recess etch is performed to provide a recess adjacent to the channel region of the transistor. In a particular embodiment, the plasma etch process provides a recess sidewall that is neither positively sloped nor more than 10 nm re-entrant.
    Type: Application
    Filed: August 3, 2007
    Publication date: February 5, 2009
    Inventors: Mark Naoshi Kawaguchi, Meihua Shen, Hiroki Sasano, Rong Chen
  • Patent number: 7485582
    Abstract: The present invention provides a hardmask that is located on a surface of a low k dielectric material having at least one conductive feature embedded therein. The hardmask includes a lower region of a hermetic oxide material located adjacent to the low k dielectric material and an upper region comprising atoms of Si, C and H located above the hermetic oxide material. The present invention also provides a method of fabricating the inventive hardmask as well as a method to form an interconnect structure containing the same.
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: February 3, 2009
    Assignee: International Business Machines Corporation
    Inventors: Son Van Nguyen, Michael Lane, Stephen M. Gates, Xiao H. Liu, Vincent J. McGahay, Sanjay C. Mehta, Thomas M. Shaw
  • Publication number: 20090001595
    Abstract: In a method of fabricating a semiconductor structure, a carbon containing mask is fabricated over a dielectric layer. The mask exposes the surface of the dielectric layer at least partly in a region between two adjacent conducting lines. A contact hole is etched into the dielectric layer in the region between the two adjacent conducting lines.
    Type: Application
    Filed: June 29, 2007
    Publication date: January 1, 2009
    Inventors: Ulrike Roessner, Daniel Koehler, Ilona Juergensen, Mirko Vogt
  • Publication number: 20080305635
    Abstract: A method for fabricating a patter is provided as followed. First, a material layer is provided, whereon a patterned hard mask layer is formed. A spacer is deposited on the sidewalls of the patterned hard mask layer. Then, the patterned hard mask layer is removed, and an opening is formed between the adjacent spacers. Afterwards, a portion of the material layer is removed to form a patterned material layer by using the spacer as mask.
    Type: Application
    Filed: June 7, 2007
    Publication date: December 11, 2008
    Applicant: MACRONIX INTERNATIONAL CO., LTD.
    Inventors: Shih-Chang Tsai, Chun-Hung Lee, Ming-Cheng Deng, Ta-Hung Yang
  • Publication number: 20080305603
    Abstract: A capacitor may be formed of carbon nanotubes. Carbon nanotubes, grown on substrates, may be formed in a desired pattern. The pattern may be defined by placing catalyst in appropriate locations for carbon nanotube growth from a substrate. Then, intermeshing arrays of carbon nanotubes may be formed by juxtaposing the carbon nanotubes formed on opposed substrates. In some embodiments, the carbon nanotubes may be covered by a dielectric which may be adhered by functionalizing the carbon nanotubes.
    Type: Application
    Filed: August 11, 2008
    Publication date: December 11, 2008
    Inventors: Larry E. Mosley, James G. Maveety, Edward R. Prack
  • Patent number: 7459370
    Abstract: In one aspect, a method of fabricating a semiconductor memory device is provided which includes forming a mold insulating film over first and second portions of a semiconductor substrate, where the mold insulating film includes a plurality of storage node electrode holes spaced apart over the first portion of the semiconductor substrate. The method further includes forming a plurality of storage node electrodes on inner surfaces of the storage node electrode holes, respectively, and forming a capping film which covers the storage node electrodes and a first portion of the mold insulating film located over the first portion of the semiconductor substrate, and which exposes a second portion of the mold insulating film located over the second portion of the semiconductor substrate.
    Type: Grant
    Filed: October 12, 2006
    Date of Patent: December 2, 2008
    Assignee: Samsung Electronics Co., ltd.
    Inventors: Dae-hyuk Kang, Jung-min Oh, Chang-ki Hong, Sang-jun Choi, Woo-gwan Shim
  • Patent number: 7432137
    Abstract: A method of manufacturing a thin film transistor includes forming a gate electrode on a substrate; forming a gate insulating film on the gate electrode; forming a semiconductor layer on the gate insulating film; forming a bank including a first bank portion and a second bank portion, the first bank portion being located at substantially a central portion of the semiconductor layer, the second bank portion having a thin film portion for surrounding the semiconductor layer and a thick film portion for surrounding the thin film portion at a periphery of the semiconductor layer; arranging first functional liquid containing a conductive material in a region surrounded by the thin film portion and the first bank portion such that the first functional liquid covers the semiconductor layer; drying the first functional liquid to obtain a first conductive film; removing the thin film portion selectively after drying the first functional liquid; arranging second functional liquid including a conductive material on a reg
    Type: Grant
    Filed: August 5, 2005
    Date of Patent: October 7, 2008
    Assignee: Seiko Epson Corporation
    Inventor: Atsushi Denda
  • Patent number: 7429534
    Abstract: An improved solution for producing nitride-based heterostructure(s), heterostructure device(s), integrated circuit(s) and/or Micro-Electro-Mechanical System(s) is provided. A nitride-based etch stop layer that includes Indium (In) is included in a heterostructure. An adjacent layer of the heterostructure is selectively etched to expose at least a portion of the etch stop layer. The etch stop layer also can be selectively etched. In one embodiment, the adjacent layer can be etched using reactive ion etching (RIE) and the etch stop layer is selectively etched using a wet chemical etch. In any event, the selectively etched area can be used to generate a contact or the like for a device.
    Type: Grant
    Filed: February 21, 2006
    Date of Patent: September 30, 2008
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Remigijus Gaska, Xuhong Hu, Qhalid Fareed, Michael Shur
  • Publication number: 20080220612
    Abstract: A method of protecting a polymeric layer from contamination by a photoresist layer. The method includes: (a) forming a polymeric layer over a substrate; (b) forming a non-photoactive protection layer over the polymeric layer; (c) forming a photoresist layer over the protection layer; (d) exposing the photoresist layer to actinic radiation and developing the photoresist layer to form a patterned photoresist layer, thereby exposing regions of the protection layer; (e) etching through the protection layer and the polymeric layer where the protection layer is not protected by the patterned photoresist layer; (f) removing the patterned photoresist layer in a first removal process; and (g) removing the protection layer in a second removal process different from the first removal process.
    Type: Application
    Filed: March 6, 2007
    Publication date: September 11, 2008
    Inventors: Ute Drechsler, Urs T. Duerig, Jane Elizabeth Frommer, Bernd W. Gotsmann, James Lupton Hedrick, Armin W. Knoll, Tobias Kraus, Robert Dennis Miller
  • Patent number: 7413958
    Abstract: An etched grooved GaN-based permeable-base transistor structure is disclosed, along with a method for fabrication of same.
    Type: Grant
    Filed: October 1, 2004
    Date of Patent: August 19, 2008
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Liberty L Gunter, Kanin Chu, Charles R Eddy, Jr., Theodore D Moustakas, Enrico Bellotti
  • Publication number: 20080188083
    Abstract: A method of forming fine patterns of a semiconductor device includes double etching by changing a quantity of producing polymer by-products to etch a film with different thicknesses in regions having different pattern densities. In a first etching, reactive ion etching (RIE) is performed upon a buffer layer and a hardmask layer both in a low-density pattern region and a high-density pattern region under a first etching ambient until an etch film is exposed in the low-density pattern region using mask patterns as an etch mask. In second etching for forming the hardmask patterns, using the mask patterns as an etch mask, the hardmask layer is etched until the etch film is exposed in the high-density pattern region while accumulating polymer by-products on the etch film in the low-density pattern region under a second etching ambient having polymer by-products produced greater than in the first etching ambient.
    Type: Application
    Filed: June 5, 2007
    Publication date: August 7, 2008
    Inventors: Kyung-yub Jeon, Myeong-cheol Kim, Hak-sun Lee
  • Patent number: 7365017
    Abstract: A method for finishing a metal line for a semiconductor device is disclosed, in which polymer generated when forming the metal line including aluminum and its alloy is effectively removed and the metal line is prevented from being eroded. A chlorine radical and a chlorine compound remaining on a surface of the metal line are removed using H2O plasma and the polymer is removed using H2O gas and HF gas not plasma. Therefore, it is possible to improve reliability and yield of the semiconductor device.
    Type: Grant
    Filed: July 14, 2005
    Date of Patent: April 29, 2008
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Bo Yeoun Jo
  • Patent number: 7344954
    Abstract: A substrate is provided having an oxide layer, a first nitride-silicon, a STI, and a second nitride-silicon. A pattern poly-silicon layer on the second nitride-silicon layer is etched to form a deep trench opening. Etching the pattern poly-silicon layer also deepens the deep trench opening. Then, a conductive layer is filled in the deep trench opening.
    Type: Grant
    Filed: January 3, 2006
    Date of Patent: March 18, 2008
    Assignee: United Microelectonics Corp.
    Inventors: Ta-Chuan Yeh, Ni-Min Chung, Kao-Su Huang, Yung-Chang Lin, Ruey-Chyr Lee, Chien-Kuo Wang
  • Patent number: 7341935
    Abstract: A semiconductor interconnect structure includes an organic and/or photosensitive etch buffer layer disposed over a contact surface. The structure further provides an interlevel dielectric formed over the etch buffer layer. A method for forming an interconnect structure includes etching to form an opening in the interlevel dielectric, the etching operation being terminated at or above the etch buffer layer. The etch buffer layer is removed to expose the contact surface using a removal process that may include wet etching, ashing or DUV exposure followed by developing or other techniques that do not result in damage to contact surface. The contact surface may be a conductive material such as silicide, salicide or a metal alloy.
    Type: Grant
    Filed: June 25, 2004
    Date of Patent: March 11, 2008
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ju-Wang Hsu, Jyu-Horng Shieh, Yi-Chun Huang
  • Publication number: 20080050920
    Abstract: A method of manufacturing a semiconductor device according to an embodiment of the present invention includes: forming a first insulating film on a semiconductor substrate; forming a mask with an opening of a predetermined pattern in the first insulating film; performing anisotropic etching on the semiconductor substrate with the mask used as an etching mask to form a trench; forming a second insulating film on a surface of an inner wall of the trench with the mask used as a selective oxidation mask; removing the mask; forming a conductive film on the semiconductor substrate to fill the trench with the conductive film; and etching back the conductive film until at least a surface of the semiconductor substrate is exposed.
    Type: Application
    Filed: August 18, 2007
    Publication date: February 28, 2008
    Applicant: NEC ELECTRONICS CORPORATION
    Inventor: Minoru KAWAHARA
  • Patent number: 7335980
    Abstract: The present invention provides a hardmask that is located on a surface of a low k dielectric material having at least one conductive feature embedded therein. The hardmask includes a lower region of a hermetic oxide material located adjacent to the low k dielectric material and an upper region comprising atoms of Si, C and H located above the hermetic oxide material. The present invention also provides a method of fabricating the inventive hardmask as well as a method to form an interconnect structure containing the same.
    Type: Grant
    Filed: November 4, 2004
    Date of Patent: February 26, 2008
    Assignee: International Business Machines Corporation
    Inventors: Son Van Nguyen, Michael Lane, Stephen M. Gates, Xiao H. Liu, Vincent J. McGahay, Sanjay C. Mehta, Thomas M. Shaw
  • Patent number: 7148114
    Abstract: A method of patterning a layer of high-k dielectric material is provided, which may be used in the fabrication of a semiconductor device. A first etch is performed on the high-k dielectric layer. A portion of the high-k dielectric layer being etched with the first etch remains after the first etch. A second etch of the high-k dielectric layer is performed to remove the remaining portion of the high-k dielectric layer. The second etch differs from the first etch. Preferably, the first etch is a dry etch process, and the second etch is a wet etch process. This method further includes a process of plasma ashing the remaining portion of the high-k dielectric layer after the first etch and before the second etch.
    Type: Grant
    Filed: April 8, 2005
    Date of Patent: December 12, 2006
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsien-Kuang Chiu, Baw-Ching Perng, Hun-Jan Tao