Amorphous Silicon Or Polysilicon Transistor (epo) Patents (Class 257/E21.412)
  • Patent number: 7998800
    Abstract: A method for manufacturing a semiconductor device is provided, which comprises at least a steps of forming a gate insulating film over a substrate, a step of forming a microcrystalline semiconductor film over the gate insulating film, and a step of forming an amorphous semiconductor film over the microcrystalline semiconductor film. The microcrystalline semiconductor film is formed by introducing a silicon hydride gas or a silicon halide gas when a surface of the gate insulating film is subjected to hydrogen plasma to generate a crystalline nucleus over the surface of the gate insulating film, and by increasing a flow rate of the silicon hydride gas or the silicon halide gas.
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: August 16, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Publication number: 20110195534
    Abstract: A four-mask process and a three-mask process proposal are constructed for a TN-type liquid crystal display device and an IPS-type liquid crystal device in which the formation of a passivation insulating layer is not required by streamlining the formation of a scan line and a pseudo-pixel element, both comprising a laminate made of a transparent conductive layer and a metal layer, at the same time and the formation of the transparent conductive pixel electrode by removing the metal layer on the pseudo-pixel electrode at the time of the formation of the opening in the gate insulating layer, by streamlining the treatment of the formation process of the contact and the formation process of the protective insulating layer using one photomask due to the introduction of half-tone exposure technology, and the formation of source-drain wires for etch-stop type insulating gate-type transistor using a photosensitive organic insulating layer and leaving the photosensitive organic insulating layer unchanged on source-drai
    Type: Application
    Filed: February 14, 2011
    Publication date: August 11, 2011
    Applicant: AU OPTRONICS CORPORATION
    Inventor: Kiyohiro KAWASAKI
  • Publication number: 20110186844
    Abstract: A display substrate includes a substrate, a pixel electrode and a dummy pattern part. The substrate includes a display area and a peripheral area surrounding the display area. The pixel electrode is disposed in the display area and electrically connected to gate and data lines. The dummy pattern part is disposed in the peripheral area and includes a plurality of first dummy electrodes connected to each other in a network form through connection electrodes and a plurality of second dummy electrodes respectively disposed over the first dummy electrodes.
    Type: Application
    Filed: June 23, 2010
    Publication date: August 4, 2011
    Inventor: BON-YONG KOO
  • Patent number: 7989326
    Abstract: A thin film transistor and method of fabricating the same are provided. The thin film transistor includes: a metal catalyst layer formed on a substrate, and a first capping layer and a second capping layer pattern sequentially formed on the metal catalyst layer. The method includes: forming a first capping layer on a metal catalyst layer; forming and patterning a second capping layer on the first capping layer; forming an amorphous silicon layer on the patterned second capping layer; diffusing the metal catalyst; and crystallizing the amorphous silicon layer to form a polysilicon layer. The crystallization catalyst diffuses at a uniform low concentration to control a position of a seed formed of the catalyst such that a channel region in the polysilicon layer is close to a single crystal. Therefore, the characteristics of the thin film transistor device may be improved and uniformed.
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: August 2, 2011
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventors: Jin-Wook Seo, Ki-Yong Lee, Tae-Hoon Yang, Byoung-Keon Park
  • Publication number: 20110175091
    Abstract: To provide a display device having a thin film transistor with high electric characteristics and excellent reliability and a manufacturing method thereof. A gate electrode, a gate insulating film provided over the gate electrode, a first semiconductor layer provided over the gate insulating film and having a microcrystalline semiconductor, a second semiconductor layer provided over the first semiconductor layer and having an amorphous semiconductor, and a source region and a drain region provided over the second semiconductor layer are provided. The first semiconductor layer has high crystallinity than the second semiconductor layer. The second semiconductor layer includes an impurity region having a conductivity type different from a conductivity type of the source region and the drain region between the source region and the drain region.
    Type: Application
    Filed: March 30, 2011
    Publication date: July 21, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Satoshi KOBAYASHI, Yoshiyuki KUROKAWA, Shunpei YAMAZAKI, Daisuke KAWAE
  • Publication number: 20110175535
    Abstract: A semiconductor device 100 includes a thin-film transistor, which is supported by a substrate 101 and which includes a crystalline semiconductor layer 107 with a channel region 115 and source and drain regions 113, a gate insulating film 108 that is arranged to cover the crystalline semiconductor layer 107, and a gate electrode 109 that is arranged on the gate insulating film 108 to control the conductivity of the channel region; and a thin-film diode, which is also supported by the substrate 101 and which includes an amorphous semiconductor layer 110 that has at least an n-type region 114 and a p-type region 118. The amorphous semiconductor layer 110 has been deposited on the gate insulating film 108 in contact with the surface of the gate insulating film 108. The n-type or p-type region 114 or 118 and the source and drain regions 113 have the same dopant element.
    Type: Application
    Filed: September 29, 2009
    Publication date: July 21, 2011
    Applicant: SHARP KABUSHIKI KAISHA
    Inventor: Naoki Makita
  • Publication number: 20110165740
    Abstract: An object is to provide a semiconductor device including a microcrystalline semiconductor film with favorable quality and a method for manufacturing the semiconductor device. In a thin film transistor formed using a microcrystalline semiconductor film, yttria-stabilized zirconia having a fluorite structure is formed in the uppermost layer of a gate insulating film in order to improve quality of a microcrystalline semiconductor film to be formed in the initial stage of deposition. The microcrystalline semiconductor film is deposited on the yttria-stabilized zirconia, so that the microcrystalline semiconductor film around an interface with a base particularly has favorable crystallinity while by crystallinity of the base.
    Type: Application
    Filed: March 17, 2011
    Publication date: July 7, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Toru Takayama, Kengo Akimoto
  • Patent number: 7968389
    Abstract: Methods for manufacturing thin film transistor arrays utilizing three steps of lithography and one step of laser ablation while the lithography procedure is used four to five times in conventional processes are disclosed. The use of the disclosed methods assists in improving throughput and saving of manufacturing cost.
    Type: Grant
    Filed: April 16, 2010
    Date of Patent: June 28, 2011
    Assignee: AU Optronics Corp.
    Inventor: Chih-Hung Shih
  • Patent number: 7960295
    Abstract: A method for fabricating a thin film transistor and a thin film transistor includes a polycrystalline silicon layer formed by irradiating an amorphous silicon layer with a laser beam through an organic layer formed on the amorphous silicon layer and removing the organic layer.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: June 14, 2011
    Assignee: LG Display Co., Ltd.
    Inventor: Jae Bum Park
  • Publication number: 20110133180
    Abstract: One embodiment of the present invention is to achieve high mobility in a device using an oxide semiconductor and provide a highly reliable display device. An oxide semiconductor layer including a crystal region in which c-axis is aligned in a direction substantially perpendicular to a surface is formed and an oxide insulating layer is formed over and in contact with the oxide semiconductor layer. Oxygen is supplied to the oxide semiconductor layer by third heat treatment. A nitride insulating layer containing hydrogen is formed over the oxide insulating layer and fourth heat treatment is performed, so that hydrogen is supplied at least to an interface between the oxide semiconductor layer and the oxide insulating layer.
    Type: Application
    Filed: December 2, 2010
    Publication date: June 9, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventor: Shunpei YAMAZAKI
  • Patent number: 7955958
    Abstract: The present invention, in one embodiment, provides a method of producing a PN junction the method including at least the steps of providing a Si-containing substrate; forming an insulating layer on the Si-containing substrate; forming a via through the insulating layer to expose at least a portion of the Si-containing substrate; forming a seed layer of the exposed portion of the Si containing substrate; forming amorphous Si on at least the seed layer; converting at least a portion of the amorphous Si to provide crystalline Si; and forming a first dopant region abutting a second dopant region in the crystalline Si.
    Type: Grant
    Filed: February 7, 2008
    Date of Patent: June 7, 2011
    Assignees: International Business Machines Corporation, Qimonda AG, Macronix International Co., Ltd.
    Inventors: Bipin Rajendran, Thomas Happ, Hsiang-Lan Lung, Min Yang
  • Publication number: 20110121298
    Abstract: A method includes the steps of preparing a multilayer film 80 formed by sequentially stacking a first metal layer 10, an inorganic insulating layer 20, a semiconductor layer 30, and a second metal layer 40; forming a source electrode 42s and a drain electrode 42d comprised of the second metal layer 40 by etching the second metal layer 40; pressure-bonding a resin layer 50 onto a surface of the multilayer film 80 provided with the source electrode 42s and the drain electrode 42d to burry the source electrode 42s and the drain electrode 42d in the resin layer 50; and forming a gate electrode 10g comprised of the first metal layer 10 by etching the first metal layer 10. The inorganic insulating layer 20g functions as a gate insulating film. The semiconductor layer 30 functions as a channel.
    Type: Application
    Filed: February 5, 2010
    Publication date: May 26, 2011
    Inventors: Takashi Ichiryu, Seiichi Nakatani, Koichi Hirano
  • Publication number: 20110108847
    Abstract: A thin film transistor (TFT), a method of fabricating the same, an organic light emitting diode (OLED) display device having the same, and a method of fabricating the same. The TFT includes a substrate; a buffer layer disposed on the substrate; a semiconductor layer disposed on the buffer layer; a gate insulating layer disposed on the semiconductor layer; a gate electrode disposed on the gate insulating layer and corresponding to the semiconductor layer; and source and drain electrodes insulated from the gate electrode, and electrically connected to the semiconductor layer. Here, the semiconductor layer includes a plurality of seed regions separated from each other by a distance of 50 ?m or more.
    Type: Application
    Filed: August 16, 2010
    Publication date: May 12, 2011
    Applicant: Samsung Mobile Display Co., Ltd.
    Inventor: Yong-Woo PARK
  • Patent number: 7935586
    Abstract: A thin film transistor that has improved characteristics and uniformity is developed by uniformly controlling low concentration of crystallization catalyst and controlling crystallization position so that no seed exists and no grain boundary exists, or one grain boundary exists in a channel layer of the thin film transistor. The thin film transistor includes a substrate; a semiconductor layer pattern which is formed on the substrate, the semiconductor layer pattern having a channel layer of which no seed exists and no gram boundary exists; a gate insulating film formed on the semiconductor layer pattern; and a gate electrode formed on the gate insulating film.
    Type: Grant
    Filed: August 9, 2010
    Date of Patent: May 3, 2011
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventors: Tae-Hoon Yang, Ki-Yong Lee, Jin-Wook Seo, Byoung-Keon Park
  • Patent number: 7935579
    Abstract: A TFT array substrate includes a gate line, a gate electrode, and a gate pad on a substrate, each of which including stacked layers of a first metal and a transparent conductive material, respectively, a pixel electrode formed of the transparent conductive material, a gate insulation layer on the substrate including the gate line and the gate electrode, the gate insulation layer having first and second open areas exposing the pixel electrode and the gate pad, a semiconductor layer formed on the gate insulation layer, a data line crossing the gate line to define a sub-pixel region, a source electrode diverging from the data line, a drain electrode spaced apart from the source electrode and connected to the pixel electrode, a data pad at an end of the data line; a masking layer covering the data line, the source electrode and the drain electrode, and an oxidation-prevention layer covering the gate pad and the data pad.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: May 3, 2011
    Assignee: LG Display Co., Ltd.
    Inventors: Yong In Park, Jae Young Oh, Sang Chul Han
  • Patent number: 7932520
    Abstract: An organic light emitting device is formed by assembling a first substrate and a second substrate. The second substrate includes several sub-pixels. The first substrate includes several transistors and, for each subpixel, a first connecting electrode. The transistors are electrically connected to each other, and the first connecting electrode is electrically connected to the respective one of the transistors. Each sub-pixel includes a light-emitting region and a non light-emitting region. A second connecting electrode is formed within the non light-emitting region and projects toward the first substrate. The first and second substrates are electrically connected via the connection of the first and second connecting electrodes.
    Type: Grant
    Filed: April 3, 2007
    Date of Patent: April 26, 2011
    Assignees: Chimei Innolux Corporation, Chi Mei El Corporation
    Inventors: Seok-Woon Lee, Sung-Soo Park, Biing-Seng Wu
  • Patent number: 7928445
    Abstract: A disclosed semiconductor device includes a MOS transistor that causes no problems concerning the formation of a thick gate insulating film and that is applicable to high withstand voltage devices. A drain region has a double diffusion structure including an N-drain region 3d and an N+ drain region 11d. A gate electrode includes a first gate electrode 9 formed on an insulating film 7 and a second gate electrode 13 formed on the first gate electrode 9 via a gate electrode insulating film 11. Between the gate insulating film 7 and the N+ source region 11s, a field insulating film 15 is disposed, over which an edge of the first gate electrode 9 is disposed. A gate voltage applied to the second gate electrode 13 via a gate wiring 13g is divided between the gate insulating film 7 and the gate electrode insulating film 11.
    Type: Grant
    Filed: March 11, 2008
    Date of Patent: April 19, 2011
    Assignee: Ricoh Company, Ltd.
    Inventor: Naohiro Ueda
  • Publication number: 20110084283
    Abstract: A thin film transistor and a manufacturing method thereof are provided. An insulating pattern layer having at least one protrusion is formed on a substrate. Afterwards, at least one spacer and a plurality of amorphous semiconductor patterns separated from each other are formed on the insulating pattern layer. The spacer is formed at one side of the protrusion and connected between the amorphous semiconductor patterns. Later, the spacer and the amorphous semiconductor patterns are crystallized. Subsequently, the protrusion and the insulating pattern layer below the spacer are removed so that a beam structure having a plurality of corners is formed and suspended over the substrate. Then, a carrier tunneling layer, a carrier trapping layer and a carrier blocking layer are sequentially formed to compliantly wrap the corners of the beam structure. Hereafter, a gate is formed on the substrate to cover the beam structure and wrap the carrier blocking layer.
    Type: Application
    Filed: January 12, 2010
    Publication date: April 14, 2011
    Applicant: CHUNGHWA PICTURE TUBES, LTD.
    Inventors: Huang-Chung Cheng, Ta-Chuan Liao, Sheng-Kai Chen, Ying-Hui Chen, Chi-Neng Mo
  • Publication number: 20110073860
    Abstract: A thin film transistor comprising an insulating film, a gate electrode embedded in a superficial portion of the insulating film, a gate insulating film on the gate electrode and the insulating film, a semiconductor film on the gate insulating film, a channel protection film on a portion of the semiconductor film with end surfaces which have a forward tapered slope, a first electrode on the semiconductor film which mounts onto one tapered side of the channel protection film, and a second electrode on the semiconductor film which mounts onto the other tapered side of the channel protection film, where an edge of the gate electrode closest to the first electrode is offset towards the second electrode from the point where the first electrode abuts the semiconductor film.
    Type: Application
    Filed: September 21, 2010
    Publication date: March 31, 2011
    Applicant: SONY CORPORATION
    Inventors: Michihiro Kanno, Takahiro Kawamura
  • Patent number: 7902680
    Abstract: A layered structure comprises a variable wettability layer including a material that changes a critical surface tension in response to energy provided thereto, the wettability changing layer including at least a high surface energy part of large critical surface tension and a low surface energy part of low critical surface tension, a conductive layer formed on the variable wettability layer at the high surface energy tension part, and a semiconductor layer formed on the variable wettability layer at the low surface energy part.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: March 8, 2011
    Assignee: Ricoh Company, Ltd.
    Inventors: Takanori Tano, Koh Fujimura, Hidenori Tomono, Hitoshi Kondoh
  • Publication number: 20110033992
    Abstract: A thin film transistor (TFT) having improved characteristics, a method for fabricating the same, and an organic light emitting display device (OLED) including the same. The TFT is constructed with a substrate, a semiconductor layer disposed on the substrate and including a channel region, source and drain regions, a gate insulating layer disposed on the semiconductor layer, a gate electrode disposed on the gate insulating layer and corresponding to the channel region, an interlayer insulating layer disposed on the gate electrode, and source and drain electrodes electrically connected to the source and drain regions of the semiconductor layer. The channel region is made from polycrystalline silicon (poly-Si), and the source and drain regions are made from amorphous silicon (a-Si). The polycrystalline silicon of the channel region is formed by crystallizing amorphous silicon using Joule's heat generated by the gate electrode.
    Type: Application
    Filed: October 18, 2010
    Publication date: February 10, 2011
    Applicant: SAMSUNG MOBILE DISPLAY CO., LTD.
    Inventor: In-Young Jung
  • Patent number: 7884361
    Abstract: A self-aligned, thin-film, top-gate transistor and method of manufacturing same are disclosed. A first print-patterned mask is formed over a metal layer by digital lithography, for example by printing with a phase change material using a droplet ejector. The metal layer is then etched using the first print-patterned mask to form source and drain electrodes. A semiconductive layer and an insulative layer are formed thereover. A layer of photosensitive material is then deposited and exposed through the substrate, with the source and drain electrodes acting as masks for the exposure. Following development of the photosensitive material, a gate metal layer is deposited. A second print-patterned mask is then formed over the device, again by digital lithography. Etching and removal of the photosensitive material leaves the self-aligned top-gate electrode.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: February 8, 2011
    Assignee: Palo Alto Research Center Incorporated
    Inventors: William Wong, Rene Lujan, Eugene Chow
  • Publication number: 20110017997
    Abstract: Semiconductor devices on a diffusion barrier coated metal substrates, and methods of making the same are disclosed. The semiconductor devices include a metal substrate, a diffusion barrier layer on the metal substrate, an insulator layer on the diffusion barrier layer, and a semiconductor layer on the insulator layer. The method includes forming a diffusion barrier layer on the metal substrate, forming an insulator layer on the diffusion barrier layer; and forming a semiconductor layer on the insulator layer. Such diffusion barrier coated substrates prevent diffusion of metal atoms from the metal substrate into a semiconductor device formed thereon.
    Type: Application
    Filed: May 28, 2010
    Publication date: January 27, 2011
    Inventors: Arvind Kamath, Michael Kocsis, Kevin McCarthy, Gloria Man Ting Wong
  • Publication number: 20110020990
    Abstract: A thin film transistor that has improved characteristics and uniformity is developed by uniformly controlling low concentration of crystallization catalyst and controlling crystallization position so that no seed exists and no grain boundary exists, or one grain boundary exists in a channel layer of the thin film transistor. The thin film transistor includes a substrate; a semiconductor layer pattern which is formed on the substrate, the semiconductor layer pattern having a channel layer of which no seed exists and no gram boundary exists; a gate insulating film formed on the semiconductor layer pattern; and a gate electrode formed on the gate insulating film.
    Type: Application
    Filed: August 9, 2010
    Publication date: January 27, 2011
    Inventors: Tae-Hoon Yang, Ki-Yong Lee, Jin-Wook Seo, Byoung-Keon Park
  • Patent number: 7875508
    Abstract: A silicon film is crystallized in a predetermined direction by selectively adding a metal element having a catalytic action for crystallizing an amorphous silicon and annealing. In manufacturing TFT using the crystallized silicon film, TFT provided such that the crystallization direction is roughly parallel to a current-flow between a source and a drain, and TFT provided such that the crystallization direction is roughly vertical to a current-flow between a source and a drain are manufactured. Therefore, TFT capable of conducting a high speed operation and TFT having a low leak current are formed on the same substrate.
    Type: Grant
    Filed: August 6, 2008
    Date of Patent: January 25, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Yasuhiko Takemura
  • Publication number: 20110014756
    Abstract: A thin film transistor includes: a substrate; a semiconductor layer disposed on the substrate, and including a channel region, source and drain regions, and edge regions having a first impurity formed at edges of the source and drain regions, and optionally, in the channel region; a gate insulating layer insulating the semiconductor layer; a gate electrode insulated from the semiconductor layer by the gate insulating layer; and source and drain electrodes electrically connected to the semiconductor layer.
    Type: Application
    Filed: September 24, 2010
    Publication date: January 20, 2011
    Applicant: Samsung Mobile Display Co., Ltd
    Inventors: Byoung-Keon PARK, Tae-hoon Yang, Jin-Wook Seo, Sei-Hwan Jung, Ki-Yong Lee
  • Publication number: 20110013130
    Abstract: A manufacturing method for an FFS type TFT-LCD array substrate comprises: depositing a first metal film on a transparent substrate, and form a gate line, a gate electrode and a common electrode line by a first patterning process; depositing a gate insulating layer, an active layer film and a second metal film sequentially and patterning the second metal film and the active layer film by a second patterning process; Step 3 depositing a first transparent conductive film and patterning the first transparent conductive film, the second metal film and the active layer film by a third patterning process; depositing a passivation layer, forming a connection hole by patterning the passivation layer through the fourth patterning process, performing an ashing process on photoresist used in the fourth patterning process, depositing a second transparent conductive layer on the remaining photoresist, and forming a common electrode by a lifting-off process.
    Type: Application
    Filed: July 14, 2010
    Publication date: January 20, 2011
    Applicant: BEIJING BOE OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventors: Seungjin CHOI, Youngsuk SONG, Seongyeol YOO
  • Publication number: 20110001141
    Abstract: A manufacturing method for a semiconductor device, the method including forming a thin film transistor by forming a polysilicon thin film on an insulating substrate, forming a gate electrode via a gate insulating film, and forming source/drain regions and a channel region by ion implantation in the polysilicon thin film by using the gate electrode as a mask, forming an interconnection layer on an interlayer dielectric film covering this thin film transistor and forming a first contact to be connected to the thin film transistor through the interlayer dielectric film, forming a silicon hydronitride film on the interlayer dielectric film so as to cover the interconnection layer, forming a lower electrode on this silicon hydronitride film and forming a second contact to be connected to the interconnection layer through the silicon hydronitride film, and forming a ferroelectric layer on the lower electrode.
    Type: Application
    Filed: September 13, 2010
    Publication date: January 6, 2011
    Applicant: NEC Corporation
    Inventor: Hiroshi Tanabe
  • Patent number: 7859016
    Abstract: A process for producing an image display device using a thin film semiconductor device is provided which includes forming a polycrystalline semiconductor thin film on a substrate. A substantially belt-shaped crystal is formed which is crystallized so as to grow crystal grains in a direction substantially parallel to a scanning direction of a CW laser beam by scanning the CW laser beam along the substrate, thereby irradiating the CW laser beam on portions of the polycrystalline semiconductor thin film formed onto the substrate.
    Type: Grant
    Filed: July 7, 2009
    Date of Patent: December 28, 2010
    Assignee: Hitachi, Ltd.
    Inventors: Mutsuko Hatano, Shinya Yamaguchi, Yoshinobu Kimura, Seong-Kee Park
  • Publication number: 20100317135
    Abstract: A method of manufacturing a display substrate includes forming a first metallic pattern including gate and storage conductors and a gate electrode of a switching device on a base substrate, forming a gate insulation layer, forming a second metallic pattern and a channel portion including a source line, source and drain electrodes of the switching device, forming a passivation layer and a photoresist film on the second metallic pattern, patterning the photoresist film to form a first pattern portion corresponding to the gate and source conductors and the switching device, and a second pattern portion formed on the storage line, etching the passivation layer and the gate insulation layer, and forming a pixel electrode using the first pattern portion.
    Type: Application
    Filed: August 24, 2010
    Publication date: December 16, 2010
    Inventors: Hong-Kee Chin, Sang-Gab Kim, Min-Seok Oh
  • Patent number: 7838352
    Abstract: A thin film transistor that has improved characteristics and uniformity is developed by uniformly controlling low concentration of crystallization catalyst and controlling crystallization position so that no seed exists and no grain boundary exists, or one grain boundary exists in a channel layer of the thin film transistor. The thin film transistor includes a substrate; a semiconductor layer pattern which is formed on the substrate, the semiconductor layer pattern having a channel layer of which no seed exists and no grain boundary exists; a gate insulating film formed on the semiconductor layer pattern; and a gate electrode formed on the gate insulating film.
    Type: Grant
    Filed: July 25, 2006
    Date of Patent: November 23, 2010
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventors: Tae-Hoon Yang, Ki-Yong Lee, Jin-Wook Seo, Byoung-Keon Park
  • Publication number: 20100289023
    Abstract: A method of fabricating an array substrate for a display device includes: forming a buffer layer on a substrate having a pixel region; sequentially forming a gate electrode of impurity-doped polycrystalline silicon, a gate insulating layer and an active layer of intrinsic polycrystalline silicon on the buffer layer in the pixel region; forming an interlayer insulating layer of an inorganic insulating material on the active layer; sequentially forming a source barrier pattern, a source ohmic contact layer and a source electrode on the interlayer insulating layer, sequentially forming a drain barrier pattern, a drain ohmic contact layer and a drain electrode on the interlayer insulating layer, and sequentially forming a first dummy pattern, a second dummy pattern and a data line on the interlayer insulating layer; forming a first passivation layer on a surface of the interlayer insulating layer including the source electrode, the drain electrode and the data line formed thereon; forming a gate line on the first
    Type: Application
    Filed: December 23, 2009
    Publication date: November 18, 2010
    Inventors: Hee-Dong Choi, Ki-Sul Cho, Hye-Young Choi, Doo-Seok Yang, Byeong-Gyu Roh
  • Publication number: 20100291740
    Abstract: A semiconductor device includes at least one thin film transistor including a semiconductor layer that has a crystalline region including a channel region, a source region and a drain region, a gate insulating film disposed at least on the channel region, the source region and the drain region of the semiconductor layer, and a gate electrode arranged so as to oppose the channel region via the gate insulating film. At least a portion of the semiconductor layer includes a catalyst element capable of promoting crystallization, and the semiconductor layer further includes a gettering region that includes the catalyst element at a higher concentration than in the channel region or the source region and the drain region. The thickness of the gate insulating film on the gettering region is smaller than that on the source region and the drain region, or the gate insulating film is not disposed on the gettering region.
    Type: Application
    Filed: July 27, 2010
    Publication date: November 18, 2010
    Applicant: SHARP KABUSHIKI KAISHA
    Inventor: Naoki MAKITA
  • Patent number: 7833851
    Abstract: It is an object of the invention that, in semiconductor device, in order to promote the tendency of miniaturization of each display pixel pitch, which will be resulted in with the tendency toward the higher precision (increase of pixel number) and further miniaturizations, a plurality of elements is formed within a limited area and the area occupied by the elements is compacted so as to be integrated. A plurality of semiconductor layers 13, 15 is formed on different layers with insulating film 14 sandwiched therebetween. After carrying out crystallization by means of laser beam, on each semiconductor layer (semiconductor layers 16, 17 having crystal structure respectively), an N-channel type TFT of inversed stagger structure and a P-channel type TFT 30 of top gate structure are formed respectively and integrated so that the size of CMOS circuit is miniaturized.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: November 16, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hideaki Kuwabara, Koichiro Tanaka
  • Publication number: 20100283059
    Abstract: A semiconductor device includes: an insulating substrate; a stepwise layer arranged on the insulating substrate and having an end portion whose inclination angle is equal to or greater than 60°; an insulating layer formed on the insulating substrate and the stepwise layer so as to be elevated on the stepwise layer; a first semiconductor layer arranged at a portion adjacent to the elevated insulating layer; and a second semiconductor layer structured with a material identical to that of the first semiconductor layer, and formed in an island shape on the elevated insulating layer.
    Type: Application
    Filed: December 25, 2008
    Publication date: November 11, 2010
    Inventors: Makoto Nakazawa, Tomohiro Kimura
  • Publication number: 20100283054
    Abstract: There is provided a method for manufacturing a flexible semiconductor device characterized by comprising (i) a step of forming an insulating film on the upper surface of metal foil, (ii) a step of forming an extraction electrode pattern on the upper surface of the metal foil, (iii) a step of forming a semiconductor layer on the insulating film in such a manner that the semiconductor layer is in contact with the extraction electrode pattern, (iv) a step of forming a sealing resin layer on the upper surface of the metal foil in such a manner that the sealing resin layer covers the semiconductor layer and the extraction electrode pattern, and (v) a step of forming electrodes by etching the metal foil, wherein the metal foil is used as a support for the insulating film, the extraction electrode pattern, the semiconductor layer, and the sealing resin layer formed in (i) to (iv) and used as a constituent material for the electrodes in (v).
    Type: Application
    Filed: July 30, 2009
    Publication date: November 11, 2010
    Inventors: Koichi Hirano, Seiichi Nakatani, Tatsuo Ogawa, Takashi Ichiryu, Takeshi Suzuki
  • Publication number: 20100279477
    Abstract: A highly responsive semiconductor device in which the subthreshold swing (S value) is small and reduction in on-current is suppressed is manufactured. A semiconductor layer in which a thickness of a source region or a drain region is larger than that of a channel formation region is formed. A semiconductor layer having a concave-convex shape which is included in the semiconductor device is formed by the steps of forming a first semiconductor layer over a substrate; forming a first insulating layer and a conductive layer over the first semiconductor layer; forming a second insulating layer over a side surface of the conductive layer; forming a second semiconductor layer over the first insulating layer, the conductive layer and the second insulating layer; etching the second semiconductor layer using a resist formed partially as a mask; and performing heat treatment to the first semiconductor layer and the second semiconductor layer.
    Type: Application
    Filed: July 16, 2010
    Publication date: November 4, 2010
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventor: Hideto OHNUMA
  • Publication number: 20100264418
    Abstract: A control substrate comprising: a substrate main body; a base layer provided on one surface perpendicular to a thickness direction of the substrate main body; and a switching element provided on the base layer's surface located on the opposite side to the substrate main body, so as to perform switching between an electric connection and an electric disconnection, wherein the switching element comprises an electrode formed on the surface of the base layer by an application method, the surface being opposite to the substrate main body, and the base layer is formed of a member whose adhesiveness to the electrode is higher than the adhesiveness of the substrate main body to an electrode when forming the electrode on a base layer side surface of the substrate main body by an application method.
    Type: Application
    Filed: December 5, 2008
    Publication date: October 21, 2010
    Applicant: Sumitomo Chemical Company, Limited
    Inventors: Yukiya Nishioka, Tomonori Matsumuro, Kenji Kasahara
  • Publication number: 20100264416
    Abstract: Provided is a crystalline silicon thin film semiconductor device which is capable of reducing off-state leakage current and has excellent current rising characteristics. The thin film transistor includes a semiconductor layer formed of an amorphous silicon layer and a crystalline silicon layer. A drain electrode is provided in direct contact with the crystalline silicon layer of the semiconductor layer, to thereby improve the current rising characteristics.
    Type: Application
    Filed: March 18, 2010
    Publication date: October 21, 2010
    Applicant: CANON KABUSHIKI KAISHA
    Inventor: Masahiro Tamura
  • Publication number: 20100258808
    Abstract: A thin film transistor and a manufacturing method thereof are provided. A bottom gate, a gate insulating layer and an amorphous semiconductor layer are formed on a substrate. The amorphous semiconductor layer has an uneven upper surface. A laser annealing process is performed on the amorphous semiconductor layer through the uneven upper layer to transform the amorphous semiconductor layer into a polycrystalline semiconductor layer having a smaller-crystallizing-section and a greater-crystallizing-section. Another gate insulating layer, an upper gate and patterned photoresist layer are formed on the polycrystalline semiconductor layer. Patterns of the upper gate and the bottom gate are defined by the same photo-mask. A source/drain is formed in the polycrystalline semiconductor layer. An etching process with etching selectivity is performed on the upper gate and the patterned photoresist layer to make a length of the upper gate shorter than that of the bottom gate.
    Type: Application
    Filed: August 31, 2009
    Publication date: October 14, 2010
    Applicant: CHUNGHWA PICTURE TUBES, LTD.
    Inventors: Huang-Chung Cheng, I-Che Lee, Chih-Chung Chen, Syu-Heng Lee, Ming-Jhe Hu, Chien-Yun Teng
  • Publication number: 20100245741
    Abstract: The invention provides a liquid crystal display panel, a liquid crystal display apparatus and a method for manufacturing the liquid crystal display panel. The liquid crystal display panel includes a first substrate and a second substrate which are opposite to each other and a liquid crystal layer between the two substrates. On one side of the first substrate which is opposite to the second substrate, there is a solar battery unit and a Thin Film Transistor; and the solar battery unit includes a first electrode layer, a photoelectric conversion layer and a second electrode layer which are sequentially disposed in stack. In the invention, the solar battery is configured between the two substrates, and therefore the size of the panel is not increased and the structure is simple.
    Type: Application
    Filed: May 22, 2009
    Publication date: September 30, 2010
    Applicant: INFOVISION OPTOELECTRONICS (KUNSHAN) CO., LTD.
    Inventors: Te-Chen Chung, Chia-Ta Liao
  • Publication number: 20100230763
    Abstract: A method for fabricating an active device array substrate is provided. A first patterned semiconductor layer, a gate insulator, a first patterned conductive layer and a first dielectric layer is sequentially formed on a substrate. First contact holes exposing the first patterned semiconductor layer are formed in the first dielectric layer and the gate insulator. A second patterned conductive layer and a second patterned semiconductor layer disposed thereon are simultaneously formed on the first dielectric layer. The second conductive layer includes contact conductors and a bottom electrode. The second patterned semiconductor layer includes an active layer. A second dielectric layer having second contact holes is formed on the first dielectric layer, wherein a portion of the second contact holes exposes the active layer. A third patterned conductive layer electrically connected to the active layer through a portion of the second contact holes is formed on the second dielectric layer.
    Type: Application
    Filed: August 12, 2009
    Publication date: September 16, 2010
    Applicant: Au Optronics Corporation
    Inventors: Ming-Wei Sun, Chen-Yueh Li, Yu-Cheng Chen, Chia-Tien Peng
  • Publication number: 20100233834
    Abstract: A liquid crystal display device includes opposing substrates. One of the substrates has a thin film transistor and a color filter formed thereon. A spacer formed between the substrates maintains a cell gap. A light shielding layer is formed at a lower portion of the spacer and overlaps the thin film transistor. The light shielding layer has a pattern substantially identical to the spacer. The light shielding layer and the spacer are simultaneously formed using the same photolithographic process steps.
    Type: Application
    Filed: May 28, 2010
    Publication date: September 16, 2010
    Applicant: LG Display Co., LTd.
    Inventor: Seung Ryull Park
  • Publication number: 20100224878
    Abstract: A semiconductor device includes a semiconductor layer over a substrate; a gate insulating film covering the semiconductor layer; a gate wiring including a gate electrode, which is provided over the gate insulating film and is formed by stacking a first conductive layer and a second conductive layer; an insulating film covering the semiconductor layer and the gate wiring including the gate electrode; and a source wiring including a source electrode, which is provided over the insulating film, is electrically connected to the semiconductor layer, and is formed by stacking a third conductive layer and a fourth conductive layer. The gate electrode is formed using the first conductive layer. The gate wiring is formed using the first conductive layer and the second conductive layer. The source electrode is formed using the third conductive layer. The source wiring is formed using the third conductive layer and the fourth conductive layer.
    Type: Application
    Filed: February 24, 2010
    Publication date: September 9, 2010
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventor: Hajime KIMURA
  • Publication number: 20100224881
    Abstract: An organic light emitting diode (OLED) display device and a method of fabricating the same are provided. The OLED display device includes a substrate having a thin film transistor region and a capacitor region, a buffer layer disposed on the substrate, a gate insulating layer disposed on the substrate, a lower capacitor electrode disposed on the gate insulating layer in the capacitor region, an interlayer insulating layer disposed on the substrate, and an upper capacitor electrode disposed on the interlayer insulating layer and facing the lower capacitor electrode, wherein regions of each of the buffer layer, the gate insulating layer, the interlayer insulating layer, the lower capacitor electrode, and the upper capacitor electrode have surfaces in which protrusions having the same shape as grain boundaries of the semiconductor layer are formed. The resultant capacitor has an increased surface area, and therefore, an increased capacitance.
    Type: Application
    Filed: February 26, 2010
    Publication date: September 9, 2010
    Applicant: Samsung Mobile Display Co., Ltd.
    Inventors: Byoung-Keon Park, Tae-Hoon Yang, Jin-Wook Seo, Soo-Beom Jo, Dong-Hyun Lee, Kil-Won Lee, Maxim Lisachenko, Yun-Mo Chung, Bo-Kyung Choi, Jong-Ryuk Park, Ki-Yong Lee
  • Publication number: 20100224883
    Abstract: A thin film transistor (TFT) and an organic light emitting diode (OLED) display device. The TFT and the OLED display device include a substrate, a buffer layer disposed on the substrate, a semiconductor layer disposed on the buffer layer, a gate electrode insulated from the semiconductor layer, a gate insulating layer insulating the semiconductor layer from the gate electrode, and source and drain electrodes insulated from the gate electrode and partially connected to the semiconductor layer, wherein the semiconductor layer is formed from a polycrystalline silicon layer crystallized by a metal catalyst and the metal catalyst is removed by gettering using an etchant. In addition, the OLED display device includes an insulating layer disposed on the entire surface of the substrate, a first electrode disposed on the insulating layer and electrically connected to one of the source and drain electrodes, an organic layer, and a second electrode.
    Type: Application
    Filed: February 26, 2010
    Publication date: September 9, 2010
    Applicant: Samsung Mobile Display Co., Ltd.
    Inventors: Byoung-Keon PARK, Tae-Hoo Yang, Jin-Wook Seo, Ki-Yong Lee, Maxim Lisachenko, Bo-Kyung Choi, Dae-Woo Lee, Kil-Won Lee, Dong-Hyun Lee, Jong-Ryuk Park, Ji-Su Ahn, Yong-Dae Kim, Heung-Yeol Na, Min-Jae Jeong, Yun-Mo Chung, Jong-Won Hong, Eu-Gene Kang, Seok-Rak Chang, Jae-Wan Jung, Sang-Yon Yoon
  • Patent number: 7790534
    Abstract: A method is described for forming a thin film transistor having its current-switching region in polycrystalline semiconductor material which has been crystallized in contact with titanium silicide, titanium silicide-germanide, or titanium germanide. The titanium silicide, titanium silicide-germanide, or titanium germanide is formed having feature size no more than 0.25 micron in the smallest dimension. The small feature size tends to inhibit the phase transformation from C49 to C54 phase titanium silicide. The C49 phase of titanium silicide has a very close lattice match to silicon, and thus provides a crystallization template for the silicon as it forms, allowing formation of large-grain, low-defect silicon. Titanium does not tend to migrate through the silicon during crystallization, limiting the danger of metal contamination. In preferred embodiments, the transistors thus formed may be, for example, field-effect transistors or bipolar junction transistors.
    Type: Grant
    Filed: June 15, 2007
    Date of Patent: September 7, 2010
    Assignee: SanDisk 3D LLC
    Inventors: S. Brad Herner, Christopher J. Petti
  • Patent number: 7790580
    Abstract: The invention provides a method for forming thin film transistors including a polycrystalline semiconducting film. The method comprises depositing a first layer of amorphous semiconducting thin film on to a substrate; depositing a second layer of thin film on to the first layer of amorphous semiconducting thin film; patterning the second layer of thin film so that the first layer of amorphous semiconducting thin film is exposed at selected locations; exposing the first and second layers of thin film to a nickel containing compound in either a solution or a vapor phase; removing the second layer of thin film; and annealing the first layer of amorphous semiconducting thin film at an elevated temperature so the first layer of amorphous semiconducting thin film converts into a polycrystalline semiconducting thin film.
    Type: Grant
    Filed: March 9, 2007
    Date of Patent: September 7, 2010
    Assignee: Hong Kong University of Science and Technology
    Inventors: Hoi Sing Kwok, Man Wong, Zhiguo Meng, Shuyun Zhao, Chunya Wu
  • Publication number: 20100221859
    Abstract: A semiconductor structure and a method for manufacturing the same are provided. Compared to conventional structures of thin film transistors, the structure of the present invention uses a patterned first metal layer as a data line, and a patterned second metal layer as a gate line. In a thin film transistor, a gate is also located in the patterned first metal layer, and is electrically connected to the gate line located in the patterned second metal layer through a contact hole. A source and a drain of the thin film transistor are electrically connected to the data line through a contact hole. The structure of the present invention increases a storage capacitance and an aperture ratio.
    Type: Application
    Filed: May 17, 2010
    Publication date: September 2, 2010
    Applicant: AU OPTRONICS CORP.
    Inventor: Yu-Cheng Chen
  • Patent number: 7786021
    Abstract: A thin-film transistor (TFT) with a multilayer gate insulator is provided, along with a method for forming the same. The method comprises: forming a channel, first source/drain (S/D) region, and a second S/D region in a Silicon (Si) active layer; using a high-density plasma (HDP) source, growing a first layer of Silicon oxide (SiOx) from the Si active layer, to a first thickness, where x is less than, or equal to 2; depositing a second layer of SiOx having a second thickness, greater than the first thickness, overlying the first layer of SiOx; using the HDP source, additionally oxidizing the second layer of SiOx, wherein the first and second SiOx layers form a gate insulator; and, forming a gate electrode adjacent the gate insulator. In one aspect, the second Si oxide layer is deposited using a plasma-enhanced chemical vapor deposition (PECVD) process with tetraethylorthosilicate (TEOS) precursors.
    Type: Grant
    Filed: November 2, 2005
    Date of Patent: August 31, 2010
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Pooran Chandra Joshi, Apostolos T. Voutsas