With Channel Containing Layer, E.g., P-base, Fo Rmed In Or On Drain Region, E.g., Dmos Transistor (epo) Patents (Class 257/E21.417)
  • Patent number: 8653594
    Abstract: The present invention discloses a double diffused metal oxide semiconductor (DMOS) device and a manufacturing method thereof. The DMOS device includes: an isolation structure for defining device regions; a gate with a ring-shaped structure; a drain located outside the ring; and a lightly doped drain, a source, and a body electrode located inside the ring. To increase the sub-threshold voltage at the corners of the gate, the corners are located completely on the isolation structure, or the lightly doped drain is apart from the corners by a predetermined distance.
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: February 18, 2014
    Assignee: Richtek Technology Corporation, R.O.C.
    Inventors: Ching-Yao Yang, Tsung-Yi Huang, Huan-Ping Chu, Hung-Der Su
  • Publication number: 20140042537
    Abstract: A semiconductor device includes a drift region in a first region of a semiconductor body. The drift region includes dopants of a first conductivity type. A dopant retarding region is formed at least adjacent an edge of the drift region. Dopants of a second conductivity type are implanted into the semiconductor body. The semiconductor body is annealed to form a body region so that dopants of the second conductivity type are driven into the semiconductor body at a first diffusion rate. The dopant retarding region prevents the dopants from diffusing into the drift region at the first diffusion rate.
    Type: Application
    Filed: August 13, 2012
    Publication date: February 13, 2014
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Albert Birner, Helmut Brech
  • Patent number: 8643137
    Abstract: A short channel Lateral MOSFET (LMOS) and method are disclosed with interpenetrating drain-body protrusions (IDBP) for reducing channel-on resistance while maintaining high punch-through voltage. The LMOS includes lower device bulk layer; upper source and upper drain region both located atop lower device bulk layer; both upper source and upper drain region are in contact with an intervening upper body region atop lower device bulk layer; both upper drain and upper body region are shaped to form a drain-body interface; the drain-body interface has an IDBP structure with a surface drain protrusion lying atop a buried body protrusion while revealing a top body surface area of the upper body region; gate oxide-gate electrode bi-layer disposed atop the upper body region forming an LMOS with a short channel length defined by the horizontal length of the top body surface area delineated between the upper source region and the upper drain region.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: February 4, 2014
    Assignee: Alpha & Omega Semiconductor, Inc.
    Inventors: Shekar Mallikarjunaswamy, Amit Paul
  • Patent number: 8637370
    Abstract: A high voltage trench MOS and its integration with low voltage integrated circuits is provided. Embodiments include forming, in a substrate, a first trench with a first oxide layer on side surfaces, a narrower second trench, below the first trench with a second oxide layer on side and bottom surfaces, and spacers on sides of the first and second trenches; removing a portion of the second oxide layer from the bottom surface of the second trench between the spacers; filling the first and second trenches with a first poly-silicon to form a drain region; removing the spacers, exposing side surfaces of the first poly-silicon; forming a third oxide layer on side and top surfaces of the first poly-silicon; and filling a remainder of the first and second trenches with a second poly-silicon to form a gate region on each side of the drain region.
    Type: Grant
    Filed: January 19, 2012
    Date of Patent: January 28, 2014
    Assignee: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Purakh Raj Verma, Yi Liang, Dong Yemin
  • Publication number: 20140024186
    Abstract: Method of forming dual gate insulation layers and semiconductor device having dual gate insulation layers is disclosed. The method of forming dual gate insulation layers comprises forming a first thin layer of a thick gate insulation layer on a semiconductor substrate by oxidizing the semiconductor substrate, depositing a second thicker layer of the thick gate insulation layer on the first thin layer, removing a portion of the thick gate insulation layer to expose a surface area of the semiconductor substrate and forming a thin gate insulation layer on the exposed surface area of the semiconductor substrate. The method of forming dual gate insulation layers, when applied in fabricating semiconductor devices having dual gate insulation layers and trench isolation structures, may help to reduce a silicon stress near edges of the trench isolation structures and reduce/alleviate/prevent the formation of a leaky junction around the edges of the trench isolation structures.
    Type: Application
    Filed: July 20, 2012
    Publication date: January 23, 2014
    Applicant: Monolithic Power Systems, Inc.
    Inventors: Ji-Hyoung Yoo, Ze-Qiang Yao, Jeesung Jung, Haifeng Yang
  • Publication number: 20140021544
    Abstract: The present invention discloses a double diffused drain metal oxide semiconductor (DDDMOS) device and a manufacturing method thereof. The DDDMOS device is formed in a substrate, and includes a first well, a gate, a diffusion region, a source, and a drain. A low voltage device is also formed in the substrate, which includes a second well and a lightly doped drain (LDD) region, wherein the first well and the diffusion region are formed by process steps which also form the second well and the LDD region in the low voltage device, respectively.
    Type: Application
    Filed: July 22, 2012
    Publication date: January 23, 2014
    Inventors: Tsung-Yi Huang, Chien-Hao Huang
  • Publication number: 20140021539
    Abstract: Presented herein is a field effect transistor device, optionally a lateral power transistor, and a method for forming the same, comprising providing a substrate, creating a doped buried layer, and creating a primary well in the substrate on the buried layer. A drift drain may be created in the primary well and a counter implant region implanted in the primary well and between the drift drain and the buried layer. The primary well may comprise a first and second implant region with the second implant region at a depth less than the first. The counter implant may be at a depth between the first and second implant regions. The primary well and counter implant region may comprise dopants of the same conductivity type, or both p+-type dopants. A gate may be formed over a portion of a drift drain.
    Type: Application
    Filed: July 20, 2012
    Publication date: January 23, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shih-Kuang Hsiao, Chen-Liang Chu, Yi-Sheng Chen, Fei-Yun Chen, Kong-Beng Thei
  • Patent number: 8633075
    Abstract: A method for manufacturing a semiconductor includes: forming an isolation region defining first, second and third active regions; implanting first impurity ions of a first conductivity type to form first, second and third wells; implanting second impurity ions of the first conductivity type to form first and second channel regions; implanting second impurity ions of a second conductivity to form a first drain region, such that a portion of the first channel region is overlapped with the first drain region; forming first, second and third gate electrodes, the first gate electrode superposing a portion of the first drain region and covering one lateral end of the first channel region; forming first insulating side wall spacers and a second insulating side wall spacer on a side wall of the first gate electrode; and implanting fourth impurity ions of the second conductivity type to form second drain/source regions.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: January 21, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Masashi Shima
  • Publication number: 20140015048
    Abstract: An integrated circuit device includes a pad layer having a body portion with a first doping type laterally adjacent to a drift region portion with a second doping type, a trench formed in the pad layer, the trench extending through an interface of the body portion and the drift region portion, a gate formed in the trench and over a top surface of the pad layer along the interface of the body portion and the drift region portion, an oxide formed in the trench on opposing sides of the gate, and a field plate embedded in the oxide on each of the opposing sides of the gate.
    Type: Application
    Filed: July 11, 2012
    Publication date: January 16, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun-Wai Ng, Hsueh-Liang Chou, Po-Chih Su, Ruey-Hsin Liu
  • Patent number: 8629498
    Abstract: In a power semiconductor device that switches at a high speed, a displacement current flows at a time of switching, so that a high voltage occurs which may cause breakdown of a thin insulating film such as a gate insulating film.
    Type: Grant
    Filed: July 15, 2009
    Date of Patent: January 14, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Shoyu Watanabe, Shuhei Nakata, Naruhisa Miura
  • Publication number: 20140001545
    Abstract: A multi-region (81, 83) lateral-diffused-metal-oxide-semiconductor (LDMOS) device (40) has a semiconductor-on-insulator (SOI) support structure (21) on or over which are formed a substantially symmetrical, laterally internal, first LDMOS region (81) and a substantially asymmetric, laterally edge-proximate, second LDMOS region (83). A deep-trench isolation (DTI) wall (60) substantially laterally terminates the laterally edge-proximate second LDMOS region (83). Electric field enhancement and lower source-drain breakdown voltages (BVDSS) exhibited by the laterally edge-proximate second LDMOS region (83) associated with the DTI wall (60) are avoided by providing a doped SC buried layer region (86) in the SOI support structure (21) proximate the DTI wall (60), underlying a portion of the laterally edge-proximate second LDMOS region (83) and of opposite conductivity type than a drain region (31) of the laterally edge-proximate second LDMOS region (83).
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Hongning Yang, Daniel J. Blomberg, Jiang-Kai Zuo
  • Publication number: 20140001551
    Abstract: The present invention discloses a lateral double diffused metal oxide semiconductor (LDMOS) device and a manufacturing method thereof. The LDMOS device is formed in a first conductive type substrate, and includes a high voltage well, a first field oxide region, at least one second field oxide region, a source, a drain, a body region, and a gate. The second field oxide region is located between the first field oxide region and the drain from top view. The distribution of the concentration of the second conductive type impurities in the high voltage well is related to the location of the second field oxide region.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Inventor: Tsung-Yi Huang
  • Publication number: 20130344669
    Abstract: Methods for fabricating integrated circuits are provided. In an embodiment, a method for fabricating an integrated circuit includes providing a semiconductor substrate including a first region of a first doping type, a second region of the first doping type spaced from the first region, a drift region of the first doping type positioned between the first region and the second region, and regions of the opposite doping type. A mask covering both the drift region and the regions of the opposite doping type is formed. Then, a source/drain ion implantation is performed into the first region and the second region. The mask prevents the drift region and the regions of the opposite doping type from receiving the source/drain ion implantation.
    Type: Application
    Filed: June 21, 2012
    Publication date: December 26, 2013
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Jia Feng, Kuldeep Amarnath, Kevin J. Yang
  • Publication number: 20130341717
    Abstract: A device includes a semiconductor substrate, a body region in the semiconductor substrate, having a first conductivity type, and including a channel region through which charge carriers flow, a drain region in the semiconductor substrate, having a second conductivity type, and spaced from the body region along a first lateral dimension, a drift region in the semiconductor substrate, having the second conductivity type, and electrically coupling the drain region to the channel region, and a plurality of floating reduced surface field (RESURF) regions in the semiconductor substrate adjacent the drift region, having the first conductivity type, and around which the charge carriers drift through the drift region under an electric field arising from a voltage applied to the drain region. Adjacent floating RESURF regions of the plurality of floating RESURF regions are spaced from one another along a second lateral dimension of the device by a respective gap.
    Type: Application
    Filed: June 21, 2012
    Publication date: December 26, 2013
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Weize Chen, Richard J. De Souza, Patrice M. Parris
  • Publication number: 20130341715
    Abstract: The present disclosure discloses a lateral transistor and associated method for making the same. The lateral transistor comprises a gate formed over a first portion of a thin gate dielectric layer, and a field plate formed over a thick field dielectric layer and extending atop a second portion of the thin gate dielectric layer. The field plate is electrically isolated from the gate by a gap overlying a third portion of the thin gate dielectric layer and is electrically coupled to a source region. The lateral transistor according to an embodiment of the present invention may have reduced gate-to-drain capacitance, low specific on-resistance, and improved hot carrier lifetime.
    Type: Application
    Filed: June 22, 2012
    Publication date: December 26, 2013
    Applicant: Monolithic Power Systems, Inc.
    Inventor: Joel M. McGregor
  • Patent number: 8614484
    Abstract: A semiconductor device is provided which includes a semiconductor substrate, a gate structure formed on the substrate, sidewall spacers formed on each side of the gate structure, a source and a drain formed in the substrate on either side of the gate structure, the source and drain having a first type of conductivity, a lightly doped region formed in the substrate and aligned with a side of the gate structure, the lightly doped region having the first type of conductivity, and a barrier region formed in the substrate and adjacent the drain. The barrier region is formed by doping a dopant of a second type of conductivity different from the first type of conductivity.
    Type: Grant
    Filed: December 24, 2009
    Date of Patent: December 24, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Lee-Wee Teo, Ming Zhu, Harry Hak-Lay Chuang
  • Publication number: 20130334600
    Abstract: A transistor device and a manufacturing method thereof are provided. The transistor device includes a substrate, a first well, a second well, a shallow trench isolation (STI), a source, a drain and a gate. The first well is disposed in the substrate. The second well is disposed in the substrate. The STI is disposed in the second well. The STI has at least one floating diffusion island. The source is disposed in the first well. The drain is disposed in the second well. The electric type of the floating diffusion island is different from or the same with that of the drain. The gate is disposed above the first well and the second well, and partially overlaps the first well and the second well.
    Type: Application
    Filed: June 18, 2012
    Publication date: December 19, 2013
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Ming-Shun Hsu, Wen-Peng Hsu, Ke-Feng Lin, Min-Hsuan Tsai, Chih-Chung Wang
  • Publication number: 20130316509
    Abstract: The present invention provides a manufacturing method for a semiconductor device having epitaxial source/drain regions, in which a diffusion barrier layer of the source/drain regions made of epitaxial silicon-carbon or germanium silicon-carbon are added on the basis of epitaxially growing germanium-silicon of the source/drain regions in the prior art process, and the introduction of the diffusion barrier layer of the source/drain regions prevents diffusion of the dopant in the source/drain regions, thus mitigating the SCE and DIBL effect.
    Type: Application
    Filed: June 12, 2012
    Publication date: November 28, 2013
    Inventors: Changliang Qin, Huaxiang Yin
  • Publication number: 20130313640
    Abstract: A semiconductor device has a substrate and first and second gate structures formed over a first surface of the substrate. A drain region is formed in the substrate as a second surface of the substrate. An epitaxial region is formed in the substrate over the drain region. A sidewall spacer is formed over the first and second gate structures. A lateral LDD region is formed between the first and second gate structures. A trench is formed through the lateral LDD region and partially through the substrate self-aligned to the sidewall spacer. A vertical drift region is formed along a sidewall of the trench. An insulating material is deposited in the trench. A first source region is formed adjacent to the first gate structure opposite the lateral LDD region. A second source region is formed adjacent to the second gate structure opposite the lateral LDD region.
    Type: Application
    Filed: May 23, 2012
    Publication date: November 28, 2013
    Applicant: GREAT WALL SEMICONDUCTOR CORPORATION
    Inventors: Zheng John Shen, Patrick M. Shea, David N. Okada
  • Publication number: 20130307070
    Abstract: The present invention discloses a double diffused drain metal oxide semiconductor (DDMOS) device and a manufacturing method thereof. The DDDMOS device is formed in a substrate, and includes: a drift region, a gate, a source, a drain, a dielectric layer, and a conductive layer. The drift region includes a first region and a second region. The gate is formed on the substrate, and overlaps the first region from top view. The source and drain are formed at both sides of the gate respectively, and the drain is located in the second region. The drain and the gate are separated by a portion of the second region from top view. The dielectric layer is formed by dielectric material on the gate and the second region. The conductive layer is formed by conductive material on the dielectric layer, and overlaps at least part of the second region from top view.
    Type: Application
    Filed: May 15, 2012
    Publication date: November 21, 2013
    Inventors: Tsung-Yi Huang, Ching-Yao Yang, Wen-Yi Liao
  • Publication number: 20130307072
    Abstract: The present invention discloses a double diffused metal oxide semiconductor (DMOS) device and a manufacturing method thereof. The DMOS device is formed in a first conductive type substrate, and includes a second conductive type high voltage well, a field oxide region, a gate, a second conductive type source, a second conductive type drain, a first conductive type body region, and a first conductive type deep well. The deep well is formed beneath and adjacent to the high voltage well in a vertical direction. The deep well and the high voltage well are defined by a same lithography process step.
    Type: Application
    Filed: May 21, 2012
    Publication date: November 21, 2013
    Inventors: Tsung-Yi Huang, Ching-Yao Yang
  • Patent number: 8581340
    Abstract: A semiconductor device includes: a semiconductor substrate; a gate electrode formed on the semiconductor substrate through a gate insulating film; a source diffusion layer and a drain diffusion layer formed on both sides of the gate electrode, respectively, in the semiconductor substrate; and a field drain section formed below the gate electrode in the semiconductor substrate so as to be positioned between the gate electrode and the drain diffusion region and include an insulator. The field drain section includes: a first insulating film configured to be contact with the semiconductor substrate, and a second insulating film configured to be formed on the first insulating film and has a dielectric constant higher than a dielectric constant of the first insulating film.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: November 12, 2013
    Assignee: Renesas Electronics Corporation
    Inventor: Kenji Sasaki
  • Patent number: 8581338
    Abstract: A lateral-diffused metal oxide semiconductor device (LDMOS) includes a substrate, a first deep well, at least a field oxide layer, a gate, a second deep well, a first dopant region, a drain and a common source. The substrate has the first deep well which is of a first conductive type. The gate is disposed on the substrate and covers a portion of the field oxide layer. The second deep well having a second conductive type is disposed in the substrate and next to the first deep well. The first dopant region having a second conductive type is disposed in the second deep well. The doping concentration of the first dopant region is higher than the doping concentration of the second deep well.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: November 12, 2013
    Assignee: United Microelectronics Corp.
    Inventors: An-Hung Lin, Hong-Ze Lin, Bo-Jui Huang, Wei-Shan Liao, Ting-Zhou Yan, Kun-Yi Chou, Chun-Wei Chen
  • Publication number: 20130285136
    Abstract: An apparatus of and method for making enhanced Schottky diodes having p-body regions operable to pinch a current flow path in a high-voltage n-well region and field plate structures operable to distribute an electric potential of the Schottky diode allow for a device with enhanced breakdown voltage properties. N-well regions implanted into the substrate over a p-type epitaxial layer may act as an anode of the Schottky diode and n-type well regions implanted in the high-voltage n-well regions may act as cathodes of the Schottky diode. The Schottky diode may also be used as a low-side mosfet structure device.
    Type: Application
    Filed: April 25, 2012
    Publication date: October 31, 2013
    Applicant: MACRONIX INTERNATIONAL CO., LTD.
    Inventors: Chin-Hsien LU, Shuo-Lun TU, Chin-Wei CHANG, Ching-Lin CHAN, Ming-Tung LEE
  • Patent number: 8558276
    Abstract: A low voltage transient voltage suppressing (TVS) device supported on a semiconductor substrate supporting an epitaxial layer thereon. The TVS device further includes a bottom-source metal oxide semiconductor field effect transistor (BS-MOSFET) comprises a trench gate surrounded by a drain region encompassed in a body region disposed near a top surface of the semiconductor substrate wherein the drain region interfaces with the body region constituting a junction diode and the drain region encompassed in the body region on top of the epitaxial layer constituting a bipolar transistor with a top electrode disposed on the top surface of the semiconductor functioning as a drain/collector terminal and a bottom electrode disposed on a bottom surface of the semiconductor substrate functioning as a source/emitter electrode.
    Type: Grant
    Filed: June 17, 2009
    Date of Patent: October 15, 2013
    Assignee: Alpha and Omega Semiconductor, Inc.
    Inventor: Madhur Bobde
  • Publication number: 20130260516
    Abstract: Asymmetric FET devices and methods for fabrication thereof that employ a variable pitch gate are provided. In one aspect, a method for fabricating a FET device includes the following steps. A wafer is provided. A plurality of active areas is formed in the wafer using STI. A plurality of gate stacks is formed on the wafer, wherein the gate stacks have an irregular gate-to-gate spacing such that for at least a given one of the active areas a gate-to-gate spacing on a source side of the given active area is greater than a gate-to-gate spacing on a drain side of the given active area. Spacers are formed on opposite sides of the gate stacks. An angled implant is performed into the source side of the given active area. A FET device is also provided.
    Type: Application
    Filed: March 29, 2012
    Publication date: October 3, 2013
    Applicant: International Business Machines Corporation
    Inventors: Josephine B. Chang, Chung-Hsun Lin, Isaac Lauer, Jeffrey W. Sleight
  • Publication number: 20130256795
    Abstract: A lateral double-diffused metal-oxide-semiconductor (LDMOS) transistor device includes an enhancement implant region formed in a portion of an accumulation region proximate a P-N junction between body and drift drain regions. The enhancement implant region contains additional dopants of the same conductivity type as the drift drain region. There is a gap between the enhancement implant region and the P-N junction. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Application
    Filed: March 27, 2012
    Publication date: October 3, 2013
    Inventor: Hideaki Tsuchiko
  • Publication number: 20130234247
    Abstract: A lateral trench MOSFET comprises a dielectric isolation trench formed over a silicon-on-insulator substrate. The lateral trench MOSFET further comprises a first drift region formed between a drain/source region and an insulator, and a second drift region formed between the dielectric isolation trench and the insulator. The dielectric trench and the insulator help to fully deplete the drift regions. The depleted regions can improve the breakdown voltage as well as the on-resistance of the lateral trench MOSFET.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Po-Yu Chen
  • Patent number: 8530965
    Abstract: A semiconductor device comprising a substrate in which a first region and a second region are defined, a gate line which extends in a first direction and traverses the first region and the second region, a source region including a portion formed in the first region, a first part of a body region which is formed under the portion of the source region in the first region and has a first width, a first well which is formed under the first part of the body region in the first region and has a second width greater than the first width, a second part of the body region which is formed in the second region and has a third width, and a second well which is formed under the second part of the body region in the second region and has a fourth width smaller than the third width.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: September 10, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Min-Hwan Kim
  • Patent number: 8530967
    Abstract: A lateral insulated-gate bipolar transistor includes a buried insulation layer which opens only part of the collector ion implantation region and isolates the other regions, thereby reducing the loss by the turn-off time. The lateral insulated-gate bipolar transistor further includes a deep ion implantation region formed to face towards the open part of the collector ion implantation region, thereby decreasing the hole current injected into a base region under an emitter ion implantation region, and thereby greatly increasing the latch-up current level by relatively increasing the hole current injected into the deep ion implantation region having no latch-up effect.
    Type: Grant
    Filed: May 3, 2012
    Date of Patent: September 10, 2013
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Sang Yong Lee
  • Publication number: 20130228861
    Abstract: A semiconductor structure and a manufacturing process thereof are disclosed. The semiconductor structure includes a substrate having a first conductive type, a first well having a second conductive type formed in the substrate, a doped region having the second conductive type formed in the first well, a field oxide and a second well having the first conductive type. The doped region has a first net dopant concentration. The field oxide is formed on a surface area of the first well. The second well is disposed underneath the field oxide and connected to a side of the doped region. The second well has a second net dopant concentration smaller than the first net dopant concentration.
    Type: Application
    Filed: March 5, 2012
    Publication date: September 5, 2013
    Applicant: MACRONIX INTERNATIONAL CO., LTD.
    Inventors: Chih-Chia Hsu, Yu-Hsien Chin, Yin-Fu Huang
  • Patent number: 8524548
    Abstract: A lateral DMOS transistor formed on a silicon-on-insulator (SOI) structure has a higher breakdown voltage that results from a cavity that is formed in the bulk region of the SOI structure. The cavity exposes a portion of the bottom surface of the insulator layer of the SOI structure that lies directly vertically below the drift region of the DMOS transistor.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: September 3, 2013
    Assignee: National Semiconductor Corporation
    Inventors: William French, Vladislav Vashchenko, Richard Wendell Foote, Jr., Alexei Sadovnikov, Punit Bhola, Peter J. Hopper
  • Publication number: 20130207183
    Abstract: A semiconductor device includes a semiconductor substrate, a buried layer, a deep well having a first conductivity type being disposed on the buried layer, a first doped region having the first conductivity type and a well having the second conductivity type being disposed in the deep well, a first heavily doped region having the first conductivity type being disposed in the first doped region, a second heavily doped region having the first conductivity type being disposed in the well, a gate disposed between the first heavily doped region and the second heavily doped region, and a first trench structure and a second trench structure being disposed at the two sides of the gate in the semiconductor substrate. The first trench structure contacts the buried layer, and a depth of the second trench structure is substantially larger than a depth of the buried layer.
    Type: Application
    Filed: February 9, 2012
    Publication date: August 15, 2013
    Inventor: Ching-Hung Kao
  • Publication number: 20130207187
    Abstract: A high voltage metal-oxide-semiconductor laterally diffused device (HV LDMOS), particularly an insulated gate bipolar junction transistor (IGBT), and a method of making it are provided in this disclosure. The device includes a semiconductor substrate, a gate structure formed on the substrate, a source and a drain formed in the substrate on either side of the gate structure, a first doped well formed in the substrate, and a second doped well formed in the first well. The gate, source, second doped well, a portion of the first well, and a portion of the drain structure are surrounded by a deep trench isolation feature and an implanted oxygen layer in the silicon substrate.
    Type: Application
    Filed: February 13, 2012
    Publication date: August 15, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ker Hsiao HUO, Chih-Chang CHENG, Ru-Yi SU, Jen-Hao YEH, Fu-Chih YANG, Chun Lin TSAI
  • Publication number: 20130207185
    Abstract: An isolated device is formed in a substrate in which is formed a high voltage device. The isolated device includes: an isolated well formed in the substrate by a lithography process and an ion implantation process used in forming the high voltage device; a gate formed on the substrate; a source and a drain, which are located in the isolated well at both sides of the gate respectively; a drift-drain region formed beneath the substrate surface, wherein the gate and the drain are separated by the drift-drain region, and the drain is in the drift-drain region; and a mitigation region, which is formed in the substrate and has a shallowest portion located at least below 90% of a depth of the drift-drain region as measured from the substrate surface, wherein the mitigation region and the drift-drain region are defined by a same lithography process.
    Type: Application
    Filed: February 10, 2012
    Publication date: August 15, 2013
    Inventors: Tsung-Yi Huang, Chien-Wei Chiu
  • Patent number: 8507988
    Abstract: A high voltage (HV) device includes a gate dielectric structure over a substrate. The gate dielectric structure has a first portion and a second portion. The first portion has a first thickness and is over a first well region of a first dopant type in the substrate. The second portion has a second thickness and is over a second well region of a second dopant type. The first thickness is larger than the second thickness. A gate electrode is disposed over the gate dielectric structure. A metallic layer is over and coupled with the gate electrode. The metallic layer extends along a direction of a channel under the gate dielectric structure. At least one source/drain (S/D) region is disposed within the first well region of the first dopant type.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: August 13, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Wen Yao, Robert S. J. Pan, Ruey-Hsin Liu, Hsueh-Liang Chou, Puo-Yu Chiang, Chi-Chih Chen, Hsiao Chin Tuan
  • Publication number: 20130187224
    Abstract: A high voltage trench MOS and its integration with low voltage integrated circuits is provided. Embodiments include forming, in a substrate, a first trench with a first oxide layer on side surfaces; a narrower second trench, below the first trench with a second oxide layer on side and bottom surfaces, and spacers on sides of the first and second trenches; removing a portion of the second oxide layer from the bottom surface of the second trench between the spacers; filling the first and second trenches with a first poly-silicon to form a drain region; removing the spacers, exposing side surfaces of the first poly-silicon; forming a third oxide layer on side and top surfaces of the first poly-silicon; and filling a remainder of the first and second trenches with a second poly-silicon to form a gate region on each side of the drain region.
    Type: Application
    Filed: January 19, 2012
    Publication date: July 25, 2013
    Applicant: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Purakh Raj VERMA, Yi Liang, Dong Yemin
  • Publication number: 20130187226
    Abstract: A lateral double diffused MOS transistor including substrate of a first conductivity type, drift region of a second conductivity type and body region of the first conductivity type disposed in the substrate, source region of the second conductivity type disposed in the body region, drain region of the second conductivity type disposed in the drift region, isolation layer disposed in the drift region to surround sidewalls of the drain region, gate insulation layer and gate electrode sequentially stacked generally on the body region, first field plate extending from the gate electrode to overlap the drift region and to overlap a portion of the isolation layer, second field plate disposed above the isolation layer spaced apart from the first field plate, and coupling gate disposed above the isolation layer generally between the drain region and the second field plate, wherein the coupling gate is electrically connected to the second field plate.
    Type: Application
    Filed: June 29, 2012
    Publication date: July 25, 2013
    Applicant: SK HYNIX INC.
    Inventor: Sung Kun PARK
  • Patent number: 8492233
    Abstract: An integrated circuit containing a configurable dual n/p-channel 3-D resurf high voltage MOS field effect transistor (MOSFET) is disclosed. An n-channel drain is coterminous with a p-channel source in an n-well, and a p-channel drain is coterminous with an n-channel source in a p-well. A lateral drift region including n-type drift lanes and p-type drift lanes extends between the n and p wells. A resurf layer abuts the lateral drift region. The n-channel MOS gate is separate from the p-channel MOS gate. The p-channel MOS gate may be operated as a field plate in the n-channel mode, and vice versa. An n-channel MOS transistor may be integrated into the n-channel MOS source to provide an n-channel cascode transistor configuration, and similarly for a p-channel cascode configuration, to debias parasitic bipolar transistors under the MOS gates. Circuits using the MOSFET with various loads are also disclosed.
    Type: Grant
    Filed: September 16, 2010
    Date of Patent: July 23, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Marie Denison, Hannes Estl
  • Publication number: 20130181286
    Abstract: A method of forming a device is presented. The method includes providing a substrate having a device region which includes a source region, a gate and a drain region defined thereon. The method also includes implanting the gate. The gate comprises one or more doped portions with different dopant concentrations. A source and a drain are formed in the source region and drain region. The drain is separated from the gate on a second side of the gate and the source is adjacent to a first side of the gate.
    Type: Application
    Filed: January 17, 2012
    Publication date: July 18, 2013
    Applicant: GLOBALFOUNDRIES SINGAPORE PTE. LTD.
    Inventor: Guowei ZHANG
  • Publication number: 20130183803
    Abstract: A method for manufacturing a semiconductor structure is provided. The method includes following steps. A patterned gate layer is formed on a semiconductor substrate. A compensation layer is formed on the semiconductor substrate outside the patterned gate layer. A trench is formed in the compensation layer and the semiconductor substrate. An epitaxial layer is formed in the trench. The step for forming the compensation layer is between the step for forming the patterned gate layer and the step for forming the epitaxial layer.
    Type: Application
    Filed: January 13, 2012
    Publication date: July 18, 2013
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventor: Ling-Chun Chou
  • Publication number: 20130181287
    Abstract: A method of forming a device is disclosed. A substrate having a device region is provided. The device region comprises a source region, a gate and a drain region defined thereon. A drift well is formed in the substrate adjacent to a second side of the gate. The drift well underlaps a portion of the gate with a first edge of the drift well beneath the gate. A secondary portion is formed in the drift well. The secondary portion underlaps a portion of the gate with a first edge of the secondary portion beneath the gate. The first edge of the secondary portion is offset from the first edge of the drift well. A gate dielectric of the gate comprises a first portion having a first thickness and a second portion having a second thickness. The second portion is over the secondary portion.
    Type: Application
    Filed: August 29, 2012
    Publication date: July 18, 2013
    Applicant: GLOBALFOUNDRIES SINGAPORE PTE. LTD.
    Inventors: Guowei ZHANG, Purakh Raj VERMA
  • Publication number: 20130168766
    Abstract: A drain extended MOS (DEMOS) transistor including at least one of: (1) A p-type epitaxial layer grown over an n-type semiconductor substrate. (2) An n-type well formed in a portion of the epitaxial layer. (3) A p-type drift region formed in another portion of the epitaxial layer. (4) A p-type source region formed in the well. (5) A p-type drain region formed in the drift region and spaced apart from the source region inside the epitaxial layer. (6) An n-type channel region extending between the drift region and the source region. (7) A gate structure formed over the channel region. (8) An n-type buried layer having a contact surface with the well and the drift region and formed in the epitaxial layer. A region of the buried layer has surface contact with the drift region and has a relatively low dopant concentration compared to other regions.
    Type: Application
    Filed: July 6, 2012
    Publication date: July 4, 2013
    Applicant: Dongbu HiTek Co., Ltd.
    Inventors: Hee Bae LEE, Choul Joo Ko
  • Patent number: 8476127
    Abstract: An integrated circuit containing a dual drift layer extended drain MOS transistor with an upper drift layer contacting a lower drift layer along at least 75 percent of a common length of the two drift layers. An average doping density in the lower drift layer is between 2 and 10 times an average doping density in the upper drift layer. A process of forming an integrated circuit containing a dual drift layer extended drain MOS transistor with a lower drift extension under the body region and an isolation link which electrically isolates the body region, using an epitaxial process. A process of forming an integrated circuit containing a dual drift layer extended drain MOS transistor with a lower drift extension under the body region and an isolation link which electrically isolates the body region, on a monolithic substrate.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: July 2, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Marie Denison, Sameer Pendharkar, Philip L. Hower
  • Publication number: 20130161740
    Abstract: A lateral high-voltage transistor comprising a semiconductor layer of a first conductivity type; a source region of a second conductivity type in the semiconductor layer; a drain region of the second conductivity type in the semiconductor layer; a first isolation layer atop the semiconductor layer between the source and the drain regions; a first well region of the second conductivity type surrounding the drain region; a gate positioned atop the first isolation layer adjacent to the source region; a spiral resistive field plate atop the first isolation layer spiraling between the drain region and the gate, wherein the spiral resistive field plate is coupled in series to the source and drain regions; and a buried layer of the first conductivity type in the first well region, wherein the buried layer is buried beneath a top surface of the first well region below the spiral resistive field plate.
    Type: Application
    Filed: December 21, 2011
    Publication date: June 27, 2013
    Inventors: Donald R. Disney, Ognjen Milic
  • Patent number: 8470675
    Abstract: A process of forming an integrated circuit, including forming a dummy oxide layer for ion implanting low voltage transistors, replacing the dummy oxide in the low voltage transistor area with a thinner gate dielectric layer, and retaining the dummy oxide for a gate dielectric for a DEMOS or LDMOS transistor. A process of forming an integrated circuit, including forming a dummy oxide layer for ion implanting low voltage and intermediate voltage transistors, replacing the dummy oxide in the low voltage transistors with a thinner gate dielectric layer, replacing the dummy oxide in the intermediate voltage transistor with another gate dielectric layer, and retaining the dummy oxide for a gate dielectric for a DEMOS or LDMOS transistor.
    Type: Grant
    Filed: October 17, 2011
    Date of Patent: June 25, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Seetharaman Sridhar, Sameer Pendharkar
  • Patent number: 8461647
    Abstract: A semiconductor device is provided that, in an embodiment, is in the form of a high voltage MOS (HVMOS) device. The device includes a semiconductor substrate and a gate structure formed on the semiconductor substrate. The gate structure includes a gate dielectric which has a first portion with a first thickness and a second portion with a second thickness. The second thickness is greater than the first thickness. A gate electrode is disposed on the first and second portion. In an embodiment, a drift region underlies the second portion of the gate dielectric. A method of fabricating the same is also provided.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: June 11, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsueh-Liang Chou, Ruey-Hsin Liu, Chih-Wen Yao, Hsiao-Chin Tuan
  • Publication number: 20130134512
    Abstract: A power MOSFET includes a semiconductor region extending from a top surface of a semiconductor substrate into the semiconductor substrate, wherein the semiconductor region is of a first conductivity type. A gate dielectric and a gate electrode are disposed over the semiconductor region. A drift region of a second conductivity type opposite the first conductivity type extends from the top surface of the semiconductor substrate into the semiconductor substrate. A dielectric layer has a portion over and in contact with a top surface of the drift region. A conductive field plate is over the dielectric layer. A source region and a drain region are on opposite sides of the gate electrode. The drain region is in contact with the first drift region.
    Type: Application
    Filed: January 11, 2012
    Publication date: May 30, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Chang Cheng, Fu-Yu Chu, Ruey-Hsin Liu, Hsiao-Chin Tuan
  • Patent number: 8450814
    Abstract: A method to form a LDMOS transistor includes forming a gate/source/body opening and a drain opening in a field oxide on a substrate structure, forming a gate oxide in the gate/source/body opening, and forming a polysilicon layer over the substrate structure. The polysilicon layer is anisotropically etched to form polysilicon spacer gates separated by a space in the gate/source/body opening and a polysilicon drain contact in the drain opening. A body region is formed self-aligned about outer edges of the polysilicon spacer gates, a source region is formed self-aligned about inner edges of the polysilicon spacer gates, and a drain region is formed under the polysilicon drain contact and self-aligned with respect to the polysilicon spacer gates. A drift region forms in the substrate structure between the body region and the drain region, and a channel region forms in the body region between the source region and the drift region.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: May 28, 2013
    Assignee: Micrel, Inc.
    Inventor: David R. Zinn
  • Patent number: 8441070
    Abstract: A sinker layer is in contact with a first conductivity-type well, and is separated from a first conductivity-type collector layer and a second conductivity-type drift layer. A second conductivity-type diffusion layer (second second-conductivity-type high-concentration diffusion layer) is formed in the surface layer of the sinker layer. The second conductivity-type diffusion layer has a higher impurity concentration than that of the sinker layer. The second conductivity-type diffusion layer and the first conductivity-type collector layer are isolated from each other with an element isolation insulating film interposed therebetween.
    Type: Grant
    Filed: August 6, 2012
    Date of Patent: May 14, 2013
    Assignee: Renesas Electronics Corporation
    Inventor: Hiroki Fujii