With Channel Containing Layer, E.g., P-base, Fo Rmed In Or On Drain Region, E.g., Dmos Transistor (epo) Patents (Class 257/E21.417)
  • Publication number: 20110309442
    Abstract: An LDMOS transistor includes a substrate of semiconductor material, an insulator layer overlying the substrate, a semiconductor layer overlying the insulator layer, a RESURF region, and a gate. The semiconductor layer includes a first conductivity type well region, a second conductivity type source region in contact with the first conductivity type well region, a second conductivity type drain region. The RESURF region includes at least one first conductivity type material portion, and at least one portion of the at least one first conductivity type material portion electrically coupled to the first conductivity type well region. A semiconductor material having a second conductivity type is located below the RESURF region. The second conductivity type semiconductor material is also located over a part of the RESURF region. The gate is located over the first conductivity type well region and over the RESURF region.
    Type: Application
    Filed: June 17, 2010
    Publication date: December 22, 2011
    Inventors: Bernhard H. Grote, Tahir A. Khan, Vishnu K. Khemka, Ronghua Zhu
  • Publication number: 20110303977
    Abstract: An LDPMOS structure having enhanced breakdown voltage and specific on-resistance is described, as is a method for fabricating the structure. A P-field implanted layer formed in a drift region of the structure and surrounding a lightly doped drain region effectively increases breakdown voltage while maintaining a relatively low specific on-resistance.
    Type: Application
    Filed: June 10, 2010
    Publication date: December 15, 2011
    Inventors: Yin-Fu Huang, Miao-Chun Chung, Shih-Chin Lien
  • Patent number: 8076725
    Abstract: An impurity buried layer constructed by two buried regions formed by impurities of identical type exist, a buried region formed by an impurity having a slow diffusion speed is provided on the entire surface of a transistor formation region, and a buried region formed by an impurity having a fast diffusion speed is provided inwardly from beneath the inside end of an isolation insulating film serving as a region on which an electric field concentrates partially.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: December 13, 2011
    Assignee: Renesas Electronics Corporation
    Inventor: Hiroki Fujii
  • Patent number: 8067801
    Abstract: A semiconductor device is provided, which comprises a first transistor and a second transistor formed in a semiconductor layer. The first transistor includes a first source region and a first drain region sandwiching a first gate electrode with the first source region. The second transistor includes an LDD region and a drift region sandwiching the second gate electrode with the LDD region, and a second drain region adjacent to the drift region to sandwich the second gate electrode with the second source region. The first gate electrode has a first sidewall formed on sides thereof and the second gate electrode has a second sidewall formed on sides thereof. The width of the former along the first insulator differs from the width of the latter along the second insulator.
    Type: Grant
    Filed: July 29, 2008
    Date of Patent: November 29, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tomoko Matsudai, Norio Yasuhara, Manji Obatake
  • Publication number: 20110284956
    Abstract: The semiconductor device comprises a first impurity region having a second conductivity type and formed in a semiconductor layer having a first conductivity type; a body region adjacent to and in contact with the first impurity region and having the first conductivity type; a second impurity region formed in the first impurity region, having the second conductivity type, and having a depth smaller than the first impurity region; a source region formed in the body region and having the second conductivity type; a drain region formed in the second impurity region and having the second conductivity type; and a gate electrode formed via a gate insulating film. In a preferable mode of the semiconductor device, the second impurity region has a higher impurity concentration than the first impurity region and the first impurity region has a depth of 1 ?m or smaller.
    Type: Application
    Filed: May 5, 2011
    Publication date: November 24, 2011
    Inventors: Yoshinobu SATOU, Satoshi Suzuki
  • Publication number: 20110278675
    Abstract: An IGFET device includes: —a semiconductor body having a major surface, —a source region of first conductivity type abutting the surface, —a drain region of the first conductivity-type abutting the surface and spaced from the source region with a channel therefrom, —an active gate overlying the channel and insulated from the channel by a first dielectric material forming the gate oxide of the IGFET device, —a dummy gate positioned between the active gate and the drain and insulated from the active gate by a second dielectric material so that a capacitance is formed between the active gate and the dummy gate, and insulated from the drain region by the gate oxide, wherein the active gate and the dummy gate are forming the electrodes of the capacitance substantially perpendicular to the surface.
    Type: Application
    Filed: July 22, 2011
    Publication date: November 17, 2011
    Inventor: Denis Masliah
  • Patent number: 8053835
    Abstract: A semiconductor element includes an insulating outer layer that includes electric contact connections of a first conductive type. These connections are connected to contact areas located beneath the insulating surface layer, of which connections at least one is of a first conductive type. At least one of the contact areas and a further area that includes two layers of mutually different conductive types disposed between the contact areas, are covered by a layer of a second conductive type of material. This second layer is, in turn, covered with an insulating layer on at least that side which lies distal from the surface layer.
    Type: Grant
    Filed: May 3, 2000
    Date of Patent: November 8, 2011
    Inventor: Klas-Hakan Eklund
  • Publication number: 20110269283
    Abstract: A semiconductor device and its method of manufacture are provided. Embodiments forming an active region in a semiconductor substrate, wherein the active region is bounded by an isolation region; forming a first doped region within the active region; forming a gate electrode over the active region, wherein the gate electrode overlies a portion of the first doped region; forming at least one dielectric layer over sidewalls of the gate electrode; forming a pair of spacers on the dielectric layer; and forming a second doped region substantially within the portion of the first doped region adjacent the one of the spacers and spaced apart from the one of the spacers. The first and second doped regions may form a double diffused drain structure as in an HVMOS transistor.
    Type: Application
    Filed: July 11, 2011
    Publication date: November 3, 2011
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: William Wei-Yuan Tien, Fu-Hsin Chen, Jui-Wen Lin, You-Kuo Wu
  • Patent number: 8049273
    Abstract: A power semiconductor device includes a backside metal layer, a substrate formed on the backside metal layer, a semiconductor layer formed on the substrate, and a frontside metal layer. The semiconductor layer includes a first trench structure including a gate oxide layer formed around a first trench with poly-Si implant, a second trench structure including a gate oxide layer formed around a second trench with poly-Si implant, a p-base region formed between the first trench structure and the second trench structure, a plurality of n+ source region formed on the p-base region and between the first trench structure and the second trench structure, a dielectric layer formed on the first trench structure, the second trench structure, and the plurality of n+ source region. The frontside metal layer is formed on the semiconductor layer and filling gaps formed between the plurality of n+ source region on the p-base region.
    Type: Grant
    Filed: February 15, 2009
    Date of Patent: November 1, 2011
    Assignee: Anpec Electronics Corporation
    Inventors: Wei-Chieh Lin, Ho-Tai Chen, Li-Cheng Lin, Jen-Hao Yeh, Hsin-Yen Chiu, Hsin-Yu Hsu, Shih-Chieh Hung
  • Publication number: 20110260247
    Abstract: A transistor including a source region, drain region, channel region, drift region, isolation region, a first gate structure over the channel region, and a second gate structure over the isolation region is provided. The drift region includes a first portion located under the isolation region and a second portion located laterally adjacent to the isolation region. The first gate structure is separated by a first separation space from the second gate structure. The first separation space is located over a portion of the second portion of the drift region and a portion of the isolation region.
    Type: Application
    Filed: April 26, 2010
    Publication date: October 27, 2011
    Inventors: Hongning Yang, Jiang-Kai Zuo
  • Publication number: 20110241114
    Abstract: A high voltage metal-oxide-semiconductor laterally diffused device (HV LDMOS) and a method of making it are provided in this disclosure. The device includes a semiconductor substrate, a gate structure formed on the substrate, a source and a drain formed in the substrate on either side of the gate structure, a first doped well formed in the substrate, and a second doped well formed in the first well. One portion of the second well surrounds the source and the other portion of the second well extends laterally from the first portion in the first well.
    Type: Application
    Filed: April 2, 2010
    Publication date: October 6, 2011
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: RU-YI SU, Fu-Chih Yang, Chun Lin Tsai, Ker-Hsiao Huo, Chia-Chin Shen, Eric Huang, Chih-Chang Cheng, Ruey-Hsin Liu, Hsiao-Chin Tuan
  • Publication number: 20110244644
    Abstract: A method of making a transistor includes etching a first side of a gate, the gate including an oxide layer formed over a substrate and a conductive material formed over the oxide layer, the etching removing a first portion of the conductive material, implanting an impurity region into the substrate such that the impurity region is self-aligned, and etching a second side of the gate to remove a second portion of the conductive material.
    Type: Application
    Filed: March 30, 2010
    Publication date: October 6, 2011
    Inventor: Marco A. Zuniga
  • Publication number: 20110241171
    Abstract: Provided are a method of fabricating a semiconductor integrated circuit device and a semiconductor integrated circuit device fabricated using the method. The method includes: forming a mask film, which exposes a portion of a substrate, on the substrate; forming a first buried impurity layer, which contains impurities of a first conductivity type and of a first concentration, in a surface of the exposed portion of the substrate by using the mask film; removing the mask film; forming a second buried impurity layer, which contains impurities of a second conductivity type and of a second concentration, using blank implantation; and forming an epitaxial layer on the substrate having the first and second buried impurity layers, wherein the first concentration is higher than the second concentration.
    Type: Application
    Filed: March 30, 2010
    Publication date: October 6, 2011
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Yong-Don Kim, Eung-Kyu Lee, Sung-Ryoul Bae, Soo-Bang Kim, Dong-Eun Jang
  • Publication number: 20110241112
    Abstract: A transistor includes an n-well implanted in a substrate, a source region including a p-body region, a n+ region and a p+ region in the p-body region, a drain region comprising a n+ region, and a gate between the source region and the drain region. The p-body region includes a first implant region having a first depth, a first lateral spread and a first concentration of a p-type impurity, and a second implant region having a second depth, a second lateral spread and a second concentration of the p-type impurity. The second depth is less than the first depth, the second lateral spread is greater than the first lateral spread and the second concentration is greater than the first concentration. The p+ region and n+ region abut the second implant region.
    Type: Application
    Filed: March 31, 2010
    Publication date: October 6, 2011
    Inventor: Marco A. Zuniga
  • Publication number: 20110233672
    Abstract: A semiconductor structure is provided. A second conductivity type well region is formed on a first conductivity type substrate. A second conductivity type diffused source and second conductivity type diffused drain are formed on the first conductivity type substrate. A gate structure is formed on the second conductivity type well region between the second conductivity type diffused source and the second conductivity type diffused drain. First conductivity type buried rings are arranged in a horizontal direction, and formed in the second conductivity type well region, and divide the second conductivity type well region into an upper drift region and a lower drift region.
    Type: Application
    Filed: March 29, 2010
    Publication date: September 29, 2011
    Inventors: Yih-Jau CHANG, Shang-Hui Tu, Gene Sheu, Yi-Fong Chang, Nithin Devarajulu Palavalli
  • Publication number: 20110233673
    Abstract: A method for fabricating a lateral-diffusion metal-oxide semiconductor (LDMOS) device is disclosed. The method includes the steps of: providing a semiconductor substrate; forming a first region and a second region both having a first conductive type in the semiconductor substrate, wherein the first region not contacting the second region; and performing a thermal process to diffuse the dopants within the first region and the second region into the semiconductor substrate to form a deep well, wherein the doping concentration of the deep well is less than the doping concentration of the first region and the second region.
    Type: Application
    Filed: March 24, 2010
    Publication date: September 29, 2011
    Inventors: Tseng-Hsun Liu, Chiu-Ling Lee, Zheng-Hong Chen, Yi-Ming Wang, Ching-Ming Lee
  • Publication number: 20110227154
    Abstract: A semiconductor device comprising: a first semiconductor layer of a first conductivity type; a second semiconductor layer of the first conductivity type formed on the first semiconductor layer; a first buried layer of the first conductivity type selectively formed in the second semiconductor layer and having a first peak impurity concentration at a first depth; a second buried layer of a second conductivity type selectively formed in the second semiconductor layer and having a second peak impurity concentration at a second depth; a base layer of the second conductivity type selectively formed in the second semiconductor layer and overlapping with an upper portion of the second buried layer; a source layer of the first conductivity type selectively formed in the base layer; and a gate electrode formed on the base layer and on the second semiconductor layer above the first buried layer with a gate insulating film being interposed therebetween.
    Type: Application
    Filed: March 18, 2011
    Publication date: September 22, 2011
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Syotaro ONO, Wataru Saito, Munehisa Yabuzaki, Shunji Taniuchi, Miho Watanabe
  • Publication number: 20110220995
    Abstract: A semiconductor device is provided that, in an embodiment, is in the form of a high voltage MOS (HVMOS) device. The device includes a semiconductor substrate and a gate structure formed on the semiconductor substrate. The gate structure includes a gate dielectric which has a first portion with a first thickness and a second portion with a second thickness. The second thickness is greater than the first thickness. A gate electrode is disposed on the first and second portion. In an embodiment, a drift region underlies the second portion of the gate dielectric. A method of fabricating the same is also provided.
    Type: Application
    Filed: March 10, 2010
    Publication date: September 15, 2011
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hsueh-Liang Chou, Ruey-Hsin Liu, Chih-Wen Yao, Hsiao-Chin Tuan
  • Publication number: 20110215403
    Abstract: The present invention discloses a high voltage metal oxide semiconductor (HVMOS) device and a method for making same. The high voltage metal oxide semiconductor device comprises: a substrate; a gate structure on the substrate; a well in the substrate, the well defining a device region from top view; a first drift region in the well; a source in the well; a drain in the first drift region, the drain being separated from the gate structure by a part of the first drift region; and a P-type dopant region not covering all the device region, wherein the P-type dopant region is formed by implanting a P-type dopant for enhancing the breakdown voltage of the HVMOS device (for N-type HVMOS device) or reducing the ON resistance of the HVMOS device (for P-type HVMOS device).
    Type: Application
    Filed: March 2, 2010
    Publication date: September 8, 2011
    Inventors: Tsung-Yi Huang, Huan-Ping Chu, Ching-Yao Yang, Hug-Der Su
  • Publication number: 20110198691
    Abstract: A semiconductor device eg. a MOSFET (1) comprising a substrate (40) including a first region (18) and a second region (16) of a first conductivity type and a third region (42) between the first and second regions of a type opposite to the first conductivity type, and being covered by a dielectric layer (20), a plurality of trenches (12) laterally extending between the third and second region, said trenches being filled with an insulating material, and being separated by active stripes (14) comprising a doping profile having a depth not exceeding the depth of the trenches wherein each trench terminates before reaching the dielectric layer (20),namely is separated from the third region by a substrate portion (26) such that the respective boundaries between the substrate portions and the trenches are not covered by the dielectric layer. A method for manufacturing such a semiconductor device is also disclosed.
    Type: Application
    Filed: October 6, 2009
    Publication date: August 18, 2011
    Applicant: NXP B.V.
    Inventors: Jan Sonsky, Anco Heringa
  • Publication number: 20110198692
    Abstract: A semiconductor structure is provided. A second conductivity type well region is disposed on a first conductivity type substrate. A gate structure comprising a first sidewall and second sidewall is provided. The first sidewall is disposed on the second conductivity type well region. A second conductivity type diffused source is disposed on the first conductivity type substrate outside of the second sidewall. A second conductivity type diffused drain is disposed on the second conductivity type well region outside of the first sidewall. First conductivity type buried rings are arranged in a horizontal direction, separated from each other, and formed in the second conductivity type well region. Doped profiles of the first conductivity type buried rings gradually become smaller in a direction from the second conductivity type diffused source to the second conductivity type diffused drain.
    Type: Application
    Filed: February 17, 2010
    Publication date: August 18, 2011
    Inventors: Yih-Jau CHANG, Shang-Hui TU, Gene SHEU
  • Patent number: 7998819
    Abstract: A lateral MOSFET having a substrate, first and second epitaxial layers grown on the substrate and a gate electrode formed on a gate dielectric which in turn is formed on a top surface of the second epitaxial layer. The second epitaxial layer comprises a drain region which extends to a top surface of the epitaxial layer and is proximate to a first edge of the gate electrode, a source region which extends to a top surface of the second epitaxial layer and is proximate to a second edge of the gate electrode, a heavily doped body under at least a portion of the source region, and a lightly doped well under the gate dielectric located near the transition region of the first and second epitaxial layers. A PN junction between the heavily doped body and the first epitaxial region under the heavily doped body has an avalanche breakdown voltage that is substantially dependent on the doping concentration in the upper portion of the first epitaxial layer that is beneath the heavily doped body.
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: August 16, 2011
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Bruce D. Marchant, Dean Probst
  • Patent number: 7998849
    Abstract: A low resistance layer is formed on a semiconductor substrate, and a high resistance layer formed on the low resistance layer. A source region of a first conductivity type is formed on a surface region of the high resistance layer. A drain region of the first conductivity type is formed at a distance from the source region. A first resurf region of the first conductivity type is formed in a surface region of the high resistance layer between the source region and the drain region. A channel region of a second conductivity type is formed between the source region and the first resurf region. A gate insulating film is formed on the channel region, and a gate electrode formed on the gate insulating film. An impurity concentration in the channel region under the gate electrode gradually lowers from the source region toward the first resurf region.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: August 16, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tomoko Matsudai, Norio Yasuhara, Yusuke Kawaguchi, Kenichi Matsushita
  • Publication number: 20110193162
    Abstract: A method of fabricating a laterally diffused metal oxide semiconductor (LDMOS) transistor includes forming a dummy gate over a substrate. A source and a drain are formed over the substrate on opposite sides of the dummy gate. A first silicide is formed on the source. A second silicide is formed on the drain so that an unsilicided region of at least one of the drain or the source is adjacent to the dummy gate. The unsilicided region of the drain provides a resistive region capable of sustaining a voltage load suitable for a high voltage LDMOS application. A replacement gate process is performed on the dummy gate to form a gate.
    Type: Application
    Filed: February 8, 2010
    Publication date: August 11, 2011
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Harry-Hak-Lay CHUANG, Lee-Wee Teo, Ming Zhu
  • Publication number: 20110193161
    Abstract: The present disclosure provides a semiconductor device having a transistor. The transistor includes a substrate and first and second wells that are disposed within the substrate. The first and second wells are doped with different types of dopants. The transistor includes a first gate that is disposed at least partially over the first well. The transistor further includes a second gate that is disposed over the second well. The transistor also includes source and drain regions. The source and drain regions are disposed in the first and second wells, respectively. The source and drain regions are doped with dopants of a same type.
    Type: Application
    Filed: February 8, 2010
    Publication date: August 11, 2011
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ming Zhu, Lee-Wee Teo, Han-Guan Chew, Harry Hak-Lay Chuang
  • Publication number: 20110186926
    Abstract: According to one embodiment, a semiconductor device comprises a high-k gate dielectric overlying a well region having a first conductivity type formed in a semiconductor body, and a semiconductor gate formed on the high-k gate dielectric. The semiconductor gate is lightly doped so as to have a second conductivity type opposite the first conductivity type. The disclosed semiconductor device, which may be an NMOS or PMOS device, can further comprise an isolation region formed in the semiconductor body between the semiconductor gate and a drain of the second conductivity type, and a drain extension well of the second conductivity type surrounding the isolation region in the semiconductor body. In one embodiment, the disclosed semiconductor device is fabricated as part of an integrated circuit including one or more CMOS logic devices.
    Type: Application
    Filed: January 29, 2010
    Publication date: August 4, 2011
    Applicant: BROADCOM CORPORATION
    Inventors: Akira Ito, Xiangdong Chen
  • Patent number: 7986004
    Abstract: In a high withstand voltage transistor of a LOCOS offset drain type having a buried layer, a plurality of stripe-shaped diffusion layers are formed below a diffusion layer ranging from an offset layer to a drain layer and a portion between the drain region and the buried layer is depleted completely; thus, a withstand voltage between the drain region and the buried layer is improved. By the formation of the stripe-shaped diffusion layers, the drain region becomes widened; thus, on-resistance is reduced. Further, the buried layer is made high in concentration so as to sufficiently suppress an operation of a parasitic bipolar transistor.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: July 26, 2011
    Assignee: Panasonic Corporation
    Inventors: Akira Ohdaira, Hisaji Nishimura, Hiroyoshi Ogura
  • Patent number: 7977715
    Abstract: An LDMOS device includes a substrate of a first conductivity type, an epitaxial layer on the substrate, a buried well of a second conductivity type opposite to the first conductivity type in a lower portion of the epitaxial layer, the epitaxial layer being of the first conductivity type below the buried layer. The device further includes a field oxide located between a drain and both a gate on a gate oxide and a source with a saddle shaped vertical doping gradient of the second conductivity type in the epitaxial layer above the buried well such that the dopant concentration in the epitaxial layer above the buried well and below a central portion of the field oxide is lower than the dopant concentration at the edges of the field oxide nearest the drain and nearest the gate.
    Type: Grant
    Filed: March 17, 2008
    Date of Patent: July 12, 2011
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Jun Cai
  • Publication number: 20110156141
    Abstract: An electronic device can include a first well region of a first conductivity-type and a second well region of a second conductivity-type and abutting the first well region. The first conductivity-type and the second conductivity type can be opposite conductivity types. In an embodiment, an insulator region can extend into the first well region, wherein the insulator region and the first well region abut and define an interface, and, from a top view, the insulator region can include a first feature extending toward the first interface, and the insulator region can define a first space bounded by the first feature, wherein a dimension from a portion of the first feature closest to the first interface is at least zero. A gate structure can overlie an interface between the first and second well regions.
    Type: Application
    Filed: December 31, 2009
    Publication date: June 30, 2011
    Applicant: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Jaume Roig-Guitart, Peter Moens
  • Publication number: 20110156142
    Abstract: A semiconductor device is provided which includes a semiconductor substrate, a gate structure formed on the substrate, sidewall spacers formed on each side of the gate structure, a source and a drain formed in the substrate on either side of the gate structure, the source and drain having a first type of conductivity, a lightly doped region formed in the substrate and aligned with a side of the gate structure, the lightly doped region having the first type of conductivity, and a barrier region formed in the substrate and adjacent the drain. The barrier region is formed by doping a dopant of a second type of conductivity different from the first type of conductivity.
    Type: Application
    Filed: December 24, 2009
    Publication date: June 30, 2011
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Lee-Wee Teo, Ming Zhu, Harry Hak-Lay Chuang
  • Patent number: 7968412
    Abstract: According to an embodiment of a method for manufacturing a MISFET device, in a semiconductor wafer, a semiconductor layer is formed, having a first type of conductivity and a first level of doping. A first body region and a second body region, having a second type of conductivity, opposite to the first type of conductivity, and an enriched region, extending between the first and second body regions are formed in the semiconductor layer. The enriched region has the first type of conductivity and a second level of doping, higher than the first level of doping. Moreover, a gate electrode is formed over the enriched region and over part of the first and second body regions, and a dielectric gate structure is formed between the gate electrode and the semiconductor layer, the dielectric gate structure having a larger thickness on the enriched region and a smaller thickness on the first and second body regions.
    Type: Grant
    Filed: March 11, 2010
    Date of Patent: June 28, 2011
    Assignee: STMicroelectronics, S.r.l.
    Inventors: Orazio Battiato, Domenico Repici, Fabrizio Marco Di Paola, Giuseppe Arena, Angelo Magri′
  • Publication number: 20110140201
    Abstract: A lateral power MOSFET with a low specific on-resistance is described. Stacked P-top and N-grade regions in patterns of articulated circular arcs separate the source and drain of the transistor.
    Type: Application
    Filed: May 6, 2010
    Publication date: June 16, 2011
    Inventors: Cheng-Chi Lin, Chen-Yuan Lin, Shih-Chin Lien, Shyi-Yuan Wu
  • Publication number: 20110127602
    Abstract: A dual channel trench LDMOS transistor includes a substrate of a first conductivity type; a semiconductor layer of a second conductivity type formed on the substrate; a first trench formed in the semiconductor layer where a trench gate is formed in an upper portion of the first trench; a body region of the first conductivity type formed in the semiconductor layer adjacent the first trench; a source region of the second conductivity type formed in the body region and adjacent the first trench; a planar gate overlying the body region; a drain region of the second conductivity type spaced apart from the body region by a drain drift region. The planar gate forms a lateral channel in the body region, and the trench gate in the first trench forms a vertical channel in the body region of the LDMOS transistor.
    Type: Application
    Filed: December 2, 2009
    Publication date: June 2, 2011
    Applicant: ALPHA AND OMEGA SEMICONDUCTOR INCORPORATED
    Inventor: Shekar Mallikarjunaswamy
  • Publication number: 20110127606
    Abstract: This invention discloses configurations and methods to manufacture lateral power device including a super junction structure with an avalanche clamp diode formed between the drain and the gate. The lateral super-junction structure reduces on-resistance, while the structural enhancements, including an avalanche clamping diode and an N buffer region, increase the breakdown voltage between substrate and drain and improve unclamped inductive switching (UIS) performance.
    Type: Application
    Filed: November 30, 2009
    Publication date: June 2, 2011
    Inventors: Madhur Bobde, Anup Bhalla, Hamza Yilmaz, Wilson Ma, Lingpeng Guan, Yeeheng Lee, John Chen
  • Publication number: 20110121387
    Abstract: A plurality of transistor cells, each of which can include a transistor P-body region and a Schottky diode, wherein the transistor P-body region can be formed below the Schottky diode to provide a semiconductor device having desirable electrical characteristics.
    Type: Application
    Filed: April 29, 2010
    Publication date: May 26, 2011
    Inventors: Francois Hebert, Dev Alok Girdhar
  • Publication number: 20110115019
    Abstract: A split gate power transistor includes a laterally configured power MOSFET including a doped silicon substrate, a gate oxide layer formed on a surface of the substrate, and a split polysilicon layer formed over the gate oxide layer. The polysilicon layer is cut into two electrically isolated portions, a first portion forming a switching gate positioned over a first portion of a channel region of the substrate, and a second portion forming a static gate formed over a second portion of the channel region and a transition region of the substrate. The static plate also extends over a drift region of the substrate, where the drift region is under a field oxide filled trench formed in the substrate. A switching voltage is applied to the switching gate and a constant voltage is applied to the static gate.
    Type: Application
    Filed: November 13, 2009
    Publication date: May 19, 2011
    Applicant: MAXIM INTEGRATED PRODUCTS, INC.
    Inventors: Frederick Perry Giles, Joel M. McGregor, Stephen McCormack
  • Publication number: 20110115018
    Abstract: A split gate power transistor includes a laterally configured power MOSFET including a doped silicon substrate, a gate oxide layer formed on a surface of the substrate, and a split polysilicon layer formed over the gate oxide layer. The polysilicon layer is cut into two electrically isolated portions, a first portion forming a polysilicon gate positioned over a channel region of the substrate, and a second portion forming a polysilicon field plate formed over a portion of a transition region of the substrate. The field plate also extends over a drift region of the substrate, where the drift region is under a field oxide filled trench formed in the substrate. The field plate is electrically coupled to a source of the split gate power transistor.
    Type: Application
    Filed: November 13, 2009
    Publication date: May 19, 2011
    Applicant: MAXIM INTEGRATED PRODUCTS, INC.
    Inventor: Joel Montgomery McGregor
  • Publication number: 20110115017
    Abstract: The present invention provides a laterally diffused metal oxide semiconductor (LDMOS) transistor and a method for fabricating it. The LDMOS transistor includes an n-type epitaxial layer formed on a p-type substrate, and an asymmetric conductive spacer which acts as its gate. The LDMOS transistor also includes a source and a drain region on either side of the asymmetric conductive spacer, and a channel region formed by ion-implantation on the asymmetric conductive spacer. The height of the asymmetric conductive spacer increases from the source region to the drain region. The channel region is essentially completely under the asymmetric conductive spacer and has smaller length than that of the channel region of the prior art LDMOS transistors. The LDMOS transistor of the present invention also includes a field oxide layer surrounding the active region of the transistor, and a thin dielectric layer isolating the asymmetric conductive spacer from the n-type epitaxial layer.
    Type: Application
    Filed: November 18, 2009
    Publication date: May 19, 2011
    Inventors: Martin Alter, Paul Moore
  • Patent number: 7943988
    Abstract: A semiconductor device includes a semiconductor layer of a first conductivity type and a first doping concentration. A first semiconductor region, used as drain, of the first conductivity type has a lower doping concentration than the semiconductor layer and is over the semiconductor layer. A gate dielectric is over the first semiconductor region. A gate electrode over the gate dielectric has a metal-containing center portion and first and second silicon portions on opposite sides of the center portion. A second semiconductor region, used as a channel, of the second conductivity type has a first portion under the first silicon portion and the gate dielectric. A third semiconductor region, used as a source, of the first conductivity type is laterally adjacent to the first portion of the second semiconductor region. The metal-containing center portion, replacing silicon, increases the source to drain breakdown voltage.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: May 17, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Daniel Pham, Bich-Yen Nguyen
  • Publication number: 20110108917
    Abstract: A semiconductor device includes: a p-type active region; a gate electrode traversing the active region; an n-type LDD region having a first impurity concentration and formed from a drain side region to a region under the gate electrode; a p-type channel region having a second impurity concentration and formed from a source side region to a region under the gate electrode to form an overlap region with the LDD region under the gate electrode, the channel region being shallower than the LDD region; an n-type source region formed outside the gate electrode; and an n+-type drain region having a third impurity concentration higher than the first impurity concentration formed outside and spaced from the gate electrode, wherein an n-type effective impurity concentration of an intermediate region between the gate electrode and the n+-type drain region is higher than an n-type effective impurity concentration of the overlap region.
    Type: Application
    Filed: September 29, 2010
    Publication date: May 12, 2011
    Applicant: FUJITSU SEMICONDUCTOR LIMITED
    Inventor: Masashi Shima
  • Publication number: 20110101454
    Abstract: A P type semiconductor substrate includes a P type body region, an N type drift region formed away from the P type body region in a direction parallel to a substrate surface, an N type drain region formed in a region separated by a field oxide film in the N type drift region so as to have a concentration higher than the N type drift region, an N type source region formed in the P type body region so as to have a concentration higher than the N type drift region. A P type buried diffusion region having a concentration higher than the N type drift region is formed of a plurality of parts each of which is connected to a part of the bottom surface of the P type body region and extends parallel to the substrate surface and its tip end reaches the inside of the drift region.
    Type: Application
    Filed: November 4, 2010
    Publication date: May 5, 2011
    Inventors: Hisao Ichijo, Alberto Adan
  • Publication number: 20110095364
    Abstract: A semiconductor device and method is disclosed. One embodiment provides an active region in a semiconductor substrate, including a first terminal region and a second terminal region.
    Type: Application
    Filed: January 5, 2011
    Publication date: April 28, 2011
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Matthias Stecher, Tobias Smorodin
  • Publication number: 20110089490
    Abstract: According to an exemplary embodiment, a method for fabricating a MOS transistor, such as an LDMOS transistor, includes forming a self-aligned lightly doped region in a first well underlying a first sidewall of a gate. The method further includes forming a self-aligned extension region under a second sidewall of the gate, where the self-aligned extension region extends into the first well from a second well. The method further includes forming a drain region spaced apart from the second sidewall of the gate. The method further includes forming a source region in the self-aligned lightly doped region and the first well. The self-aligned lightly doped region and the self-aligned extension region define a channel length of the MOS transistor, such as an LDMOS transistor.
    Type: Application
    Filed: October 21, 2009
    Publication date: April 21, 2011
    Applicant: BROADCOM CORPORATION
    Inventors: Xiangdong Chen, Wei Xia, Henry Kuo-Shun Chen
  • Publication number: 20110089492
    Abstract: A high-voltage field-effect device contains an extended drain or “drift” region including an embedded stack of JFET regions separated by intervening layers of the drift region. Each of the JFET regions is filled with material of an opposite conductivity type to that of the drift region, and the floor and ceiling of each JFET region is lined with an oxide layer. When the device is blocking a voltage in the off condition, the semiconductor material inside the JFET regions and in the drift region that separates the JFET regions is depleted. This improves the voltage-blocking ability of the device while conserving chip area. The oxide layer prevents dopant from the JFET regions from diffusing into the drift region.
    Type: Application
    Filed: December 16, 2010
    Publication date: April 21, 2011
    Applicant: Alpha and Omega Semiconductor Inc.
    Inventor: Hamza Yilmaz
  • Patent number: 7927940
    Abstract: A method of manufacturing a laterally diffused metal oxide semiconductor (LDMOS) device, and an integrated circuit associated therewith. The method includes forming a lightly-doped source/drain region with a first dopant, the lightly-doped source/drain region located between first and second isolation structures. The method further includes creating a gate over the lightly-doped source/drain region. In one advantageous embodiment of the present invention, the method further includes diffusing a second dopant at least partially across the lightly-doped source/drain region and under the gate to form a first portion of a channel.
    Type: Grant
    Filed: September 8, 2009
    Date of Patent: April 19, 2011
    Assignee: Agere Systems Inc.
    Inventor: Charles W. Pearce
  • Patent number: 7927939
    Abstract: A method of manufacturing a laterally diffused metal oxide semiconductor (LDMOS) device, and an integrated circuit associated therewith. The method includes forming a lightly-doped source/drain region with a first dopant, the lightly-doped source/drain region located between first and second isolation structures. The method further includes creating a gate over the lightly-doped source/drain region. In one advantageous embodiment of the present invention, the method further includes diffusing a second dopant at least partially across the lightly-doped source/drain region and under the gate to form a first portion of a channel.
    Type: Grant
    Filed: January 4, 2001
    Date of Patent: April 19, 2011
    Assignee: Agere Systems Inc.
    Inventor: Charles W. Pearce
  • Publication number: 20110081760
    Abstract: A method of manufacturing a lateral diffusion metal oxide semiconductor device includes following steps. First, a substrate having a first conductive type is provided. The substrate has a well, and the well has a second conductive type. Then, a body region is formed in the well, and a channel defining region is formed in the body region. The body region has the second conductive type, and the channel defining region has the first conductive type, so that the body region disposed between the channel defining region and the well and uncovered with the channel defining region forms a channel of the lateral diffusion metal oxide semiconductor device. Then, a gate structure is formed on the channel.
    Type: Application
    Filed: October 1, 2009
    Publication date: April 7, 2011
    Inventor: Bo-Jui Huang
  • Publication number: 20110070709
    Abstract: The invention provides a method for forming a semiconductor structure. A substrate is provided. A conductive layer is formed on the substrate. A first patterned mask layer is formed on the conductive layer. The conductive layer exposed by the first patterned mask layer is removed to expose a first sidewall of the conductive layer. A doped region is formed in the substrate by a doping step using the first patterned mask layer as a mask. The first patterned mask layer is removed. A second patterned mask layer is formed on the conductive layer. The conductive layer exposed by the second patterned mask layer is removed to expose a second sidewall opposite to the first sidewall of the conductive layer. The second patterned mask layer is removed.
    Type: Application
    Filed: September 18, 2009
    Publication date: March 24, 2011
    Applicant: VANGUARD INTERNATIONAL SEMICONDUCTOR CORPORATION
    Inventors: Wen-Hsun Lo, Hsing-Chao Liu, Jin-Dong Chern, Po-Shun Huang
  • Publication number: 20110068396
    Abstract: A high-performance semiconductor structure and a method of fabricating such a structure are provided. The semiconductor structure includes at least one gate stack, e.g., FET, located on an upper surface of a semiconductor substrate. The structure further includes a first epitaxy semiconductor material that induces a strain upon a channel of the at least one gate stack. The first epitaxy semiconductor material is located at a footprint of the at least one gate stack substantially within a pair of recessed regions in the substrate which are present on opposite sides of the at least one gate stack. A diffused extension region is located within an upper surface of said first epitaxy semiconductor material in each of the recessed regions. The structure further includes a second epitaxy semiconductor material located on an upper surface of the diffused extension region. The second epitaxy semiconductor material has a higher dopant concentration than the first epitaxy semiconductor material.
    Type: Application
    Filed: September 24, 2009
    Publication date: March 24, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Bruce B. Doris, Ali Khakifirooz, Ghavam G. Shahidi
  • Publication number: 20110062517
    Abstract: According to one embodiment, a semiconductor device includes: a semiconductor substrate of a first conductivity type; a source region; a drain region of a second conductivity type; a gate electrode formed via a gate insulating film on the semiconductor substrate between the source region and the drain region; and a drift region of the second conductivity type formed adjacent to the drain region from the drain region to a lower part of the gate electrode. The upper surface of the gate electrode is formed such that the height of a side on the source region side of a stack of the gate electrode and the gate insulating film is larger than the height of a side on the drain region side of the stack.
    Type: Application
    Filed: September 1, 2010
    Publication date: March 17, 2011
    Applicant: Kabushiki Kaisha Toshiba
    Inventor: Hiromichi YOSHINAGA