Simultaneous Fabrication Of Periphery And Memory Cells (epo) Patents (Class 257/E21.691)
  • Patent number: 11974432
    Abstract: According to one embodiment, a semiconductor storage device includes a plurality of electrode films on a substrate, spaced from one another in a first direction. A charge storage film is provided on a side face the electrode films via a first insulating film. A semiconductor film is provided on a side face of the charge storage film via a second insulating film. The charge storage film includes a plurality of insulator regions contacting the first insulating film, a plurality of semiconductor or conductor regions provided between the insulator regions and another insulator region.
    Type: Grant
    Filed: August 26, 2021
    Date of Patent: April 30, 2024
    Assignee: Kioxia Corporation
    Inventors: Hiroyuki Yamashita, Yuta Saito, Keiichi Sawa, Kazuhiro Matsuo, Yuta Kamiya, Shinji Mori, Kota Takahashi, Junichi Kaneyama, Tomoki Ishimaru, Kenichiro Toratani, Ha Hoang, Shouji Honda, Takafumi Ochiai
  • Patent number: 11637017
    Abstract: Provided is a memory device including a substrate, a plurality of word-line structures, a plurality of cap structures, and a plurality of air gaps. The word-line structures are disposed on the substrate. The cap structures are respectively disposed on the word-line structures. A material of the cap structures includes a nitride. The nitride has a nitrogen concentration decreasing along a direction near to a corresponding word-line structure toward far away from the corresponding word-line structure. The air gaps are respectively disposed between the word-line structures. The air gaps are in direct contact with the word-line structures. A method of forming a memory device is also provided.
    Type: Grant
    Filed: July 1, 2022
    Date of Patent: April 25, 2023
    Assignee: Powerchip Semiconductor Manufacturing Corporation
    Inventors: Wen Chung Yang, Shih Hsi Chen, Wei-Chang Lin
  • Patent number: 11468942
    Abstract: One embodiment provides a memory module. The memory module includes a plurality of rows of memory cells, with a respective row comprising one or more canary memory cells that are more susceptible to disturbance than non-canary memory cells, and a disturbance-detection circuit coupled to at least one canary memory cell of a corresponding row and configured to output a control signal in response to the disturbance to the canary memory cell exceeding a predetermined threshold.
    Type: Grant
    Filed: March 2, 2021
    Date of Patent: October 11, 2022
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Melvin K. Benedict, Eric L. Pope
  • Patent number: 11380704
    Abstract: A semiconductor memory device includes a P-type transistor and a first N-type transistor. The P-type transistor includes a first semiconductor layer containing carbon, a P-type second semiconductor layer provided on the first semiconductor layer, a third semiconductor layer provided on the second semiconductor layer and containing carbon. The first N-type transistor includes a fourth semiconductor layer containing carbon, an N-type fifth semiconductor layer provided on the fourth semiconductor layer, a sixth semiconductor layer provided on the fifth semiconductor layer and containing carbon.
    Type: Grant
    Filed: August 26, 2020
    Date of Patent: July 5, 2022
    Assignee: Kioxia Corporation
    Inventor: Tomoya Inden
  • Patent number: 10283512
    Abstract: A semiconductor device includes a non-volatile memory. The non-volatile memory includes a first dielectric layer disposed on a substrate, a floating gate disposed on the dielectric layer, a control gate. A second dielectric layer is disposed between the floating gate and the control gate, having one of a silicon nitride layer, a silicon oxide layer and multilayers thereof. A third dielectric layer is disposed between the second dielectric layer and the control gate, and includes a dielectric material having a dielectric constant higher than silicon nitride.
    Type: Grant
    Filed: May 2, 2017
    Date of Patent: May 7, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wei Cheng Wu, Li-Feng Teng
  • Patent number: 10217872
    Abstract: A memory cell includes a control gate electrode and a memory gate electrode. The control gate electrode is formed over the upper surface and the sidewall of a fin FA including apart of a semiconductor substrate. The memory gate electrode is formed over one side surface of the control gate electrode and the upper surface and the sidewall of the fin through an ONO film, in a position adjacent to the one side surface of the control gate electrode. Further, the control gate electrode and the memory gate electrode are formed of n-type polycrystalline silicon. A first metal film is provided between the gate electrode and the control gate electrode. A second metal film is provided between the ONO film and the memory gate electrode. A work function of the first metal film is greater than a work function of the second metal film.
    Type: Grant
    Filed: June 17, 2017
    Date of Patent: February 26, 2019
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Yoshiyuki Kawashima, Masao Inoue, Atsushi Yoshitomi
  • Patent number: 9508413
    Abstract: A semiconductor storage device includes a first bit line and a second bit line. A nonvolatile memory element and a first cell transistor are connected in series between the first bit line and the second bit line. A sense transistor has a gate connected to a sense node which is provided between the first bit line and the memory element. A read bit line is connected to a source or a drain of the sense transistor. The read bit line is configured to transmit data of the memory element. A sense amplifier is configured to detect the logic of data transmitted from the read bit line.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: November 29, 2016
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Akira Katayama, Masahiro Takahashi
  • Patent number: 8963210
    Abstract: An integrated circuit (IC) cell may include first and second semiconductor regions, and parallel electrically conductive lines extending above the first and second semiconductor regions. The IC cell may further include electrically conductive line contacts electrically connected to the parallel electrically conductive lines, and may include at least one first line contact between the first semiconductor region and a corresponding end of the IC cell, and at least one second line contact between the first semiconductor region and the second semiconductor region. Adjacent ones of the electrically conductive lines may be respectively coupled to one of the at least one first line contact and to one of the at least one second line contact.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: February 24, 2015
    Assignees: STMicroelectronics SA, STMicroelectronics, Inc.
    Inventors: Rwik Sengupta, Rohit Kumar Gupta, Mitesh Goyal, Olivier Menut
  • Patent number: 8906764
    Abstract: A method of forming an NVM cell and a logic transistor uses a semiconductor substrate. A metal select gate of the NVM cell is formed over an NVM work function setting metal, the NVM work function setting metal is on a high-k dielectric, and a metal logic gate of a logic transistor is similarly formed over work function setting and high-k dielectric materials. The logic transistor is formed while portions of the metal select gate of the NVM cell are formed. The logic transistor is protected while the NVM cell is then formed including forming a charge storage region using nanocrystals and a metal control gate over a portion of the metal select gate and a portion of the charge storage region over the substrate. The charge storage region is etched to be aligned to the metal control gate.
    Type: Grant
    Filed: April 6, 2012
    Date of Patent: December 9, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Mehul D. Shroff, Mark D. Hall
  • Patent number: 8907315
    Abstract: A method of forming a memory cell includes forming programmable material within an opening in dielectric material over an elevationally inner conductive electrode of the memory cell. Conductive electrode material is formed over the dielectric material and within the opening. The programmable material within the opening has an elevationally outer edge surface angling elevationally and laterally inward relative to a sidewall of the opening. The conductive electrode material is formed to cover over the angling surface of the programmable material within the opening. The conductive electrode material is removed back at least to an elevationally outermost surface of the dielectric material and to leave the conductive electrode material covering over the angling surface of the programmable material within the opening. The conductive electrode material constitutes at least part of an elevationally outer conductive electrode of the memory cell. Memory cells independent of method of manufacture are also disclosed.
    Type: Grant
    Filed: February 18, 2014
    Date of Patent: December 9, 2014
    Assignee: Micron Technology, Inc.
    Inventors: John Smythe, Gurtej S. Sandhu
  • Patent number: 8846471
    Abstract: The improvement of the reliability of a semiconductor device having a split gate type MONOS memory is implemented. An ONO film and a second polysilicon film are sequentially formed so as to fill between a first polysilicon film and a dummy gate electrode. Then, the dummy gate electrode is removed. Then, the top surfaces of the first and second polysilicon films are polished, thereby to form a memory gate electrode formed of the second polysilicon film at the sidewall of a control gate electrode formed of the first polysilicon film via the ONO film. As a result, the memory gate electrode high in perpendicularity of the sidewall, and uniform in film thickness is formed.
    Type: Grant
    Filed: August 12, 2013
    Date of Patent: September 30, 2014
    Assignee: Renesas Electronics Corporation
    Inventor: Tatsuyoshi Mihara
  • Patent number: 8716089
    Abstract: A thermal oxide is formed in an NVM region and a logic region. A polysilicon layer is formed over the thermal oxide and patterned to form a dummy gate and a select gate in the logic and NVM regions, respectively. A first dielectric layer is formed in the NVM and logic regions which surrounds the select gate and dummy gate. The first dielectric layer is removed from the NVM region and protected in the logic region. A charge storage layer is formed over the select gate. The dummy gate is removed, forming an opening. A second dielectric layer is formed over the select gate and within the opening, and a gate layer is formed over the second dielectric layer and within the opening, wherein the gate layer within the opening forms a logic gate and the gate layer is patterned to form a control gate in the NVM region.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: May 6, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Mark D. Hall, Frank K. Baker, Jr., Mehul D. Shroff
  • Patent number: 8691622
    Abstract: A method of forming a memory cell includes forming programmable material within an opening in dielectric material over an elevationally inner conductive electrode of the memory cell. Conductive electrode material is formed over the dielectric material and within the opening. The programmable material within the opening has an elevationally outer edge surface angling elevationally and laterally inward relative to a sidewall of the opening. The conductive electrode material is formed to cover over the angling surface of the programmable material within the opening. The conductive electrode material is removed back at least to an elevationally outermost surface of the dielectric material and to leave the conductive electrode material covering over the angling surface of the programmable material within the opening. The conductive electrode material constitutes at least part of an elevationally outer conductive electrode of the memory cell. Memory cells independent of method of manufacture are also disclosed.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: April 8, 2014
    Assignee: Micron Technology, Inc.
    Inventors: John Smythe, Gurtej S. Sandhu
  • Patent number: 8674431
    Abstract: A method of manufacturing a non-volatile semiconductor memory device including previously forming a recess in a first peripheral region on a semiconductor substrate, forming a first gate insulator having a first thickness in the recess, forming a second gate insulator having a second thickness less than the first thickness in an array region and a second peripheral region on the semiconductor substrate, successively depositing first and second gate electrode films and first and second mask insulators on each of the first and second gate insulators, forming an isolation trench on a surface of the semiconductor substrate to correspond to each position between the array region and the first and second regions of the peripheral region, depositing a buried insulator on the entire surface, and polishing an upper surface of the buried insulator so that the upper surface can be planarized.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: March 18, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Eiji Kamiya
  • Patent number: 8574987
    Abstract: A first dielectric layer is formed over a semiconductor layer in an NVM region and a logic region. A charge storage layer is formed over the first dielectric layer in the NVM and logic regions. The charge storage layer is patterned to form a dummy gate in the logic region and a charge storage structure in the NVM region. A second dielectric layer is formed over the semiconductor layer in the NVM and logic regions which surrounds the charge storage structure and the dummy gate. The dummy gate is replaced with a logic gate. The second dielectric layer is removed from the NVM region while protecting the second dielectric layer in the logic region. A third dielectric layer is formed over the charge storage structure, and a control gate layer is formed over the third dielectric layer.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: November 5, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Mehul D. Shroff, Mark D. Hall
  • Patent number: 8501562
    Abstract: An example of a method of fabricating a gate oxide of a floating gate transistor includes forming a plurality of shallow trench isolation (STI) regions in a silicon wafer. The method also includes selectively filling the STI regions with oxide. Further, the method includes forming sacrificial oxide regions on the silicon wafer. Furthermore, the method includes forming implant regions in the silicon wafer. In addition, the method includes selectively removing the sacrificial oxide regions. The method further includes forming the gate oxide.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: August 6, 2013
    Assignee: Synopsys, Inc.
    Inventor: Andrew E. Horch
  • Patent number: 8383479
    Abstract: Nanostructure-based charge storage regions are included in non-volatile memory devices and integrated with the fabrication of select gates and peripheral circuitry. One or more nanostructure coatings are applied over a substrate at a memory array area and a peripheral circuitry area. Various processes for removing the nanostructure coating from undesired areas of the substrate, such as target areas for select gates and peripheral transistors, are provided. One or more nanostructure coatings are formed using self-assembly based processes to selectively form nanostructures over active areas of the substrate in one example. Self-assembly permits the formation of discrete lines of nanostructures that are electrically isolated from one another without requiring patterning or etching of the nanostructure coating.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: February 26, 2013
    Assignee: SanDisk Technologies Inc.
    Inventors: Vinod Robert Purayath, James K. Kai, Masaaki Higashitani, Takashi Orimoto, George Matamis, Henry Chien
  • Patent number: 8377772
    Abstract: Various embodiments provide methods for fabricating dual supply voltage CMOS devices with a desired I/O transistor threshold voltage. The dual supply voltage CMOS devices can be fabricated in a semiconductor substrate that includes isolated regions for a logic NMOS transistor, a logic PMOS transistor, an I/O NMOS transistor, and an I/O PMOS transistor. Specifically, the fabrication can first set and/or adjust the threshold voltage (VT) of each of the I/O NMOS transistor and the I/O PMOS transistor to a desired level. Logic NMOS and logic PMOS transistors can then be formed with I/O NMOS and I/O PMOS transistors masked without affecting the set/adjusted VT of the I/O transistors.
    Type: Grant
    Filed: August 17, 2010
    Date of Patent: February 19, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Weize Xiong, Greg Charles Baldwin
  • Patent number: 8232167
    Abstract: A method of fabricating transistors on a semiconductor substrate includes forming transistor gates of first and second transistors located in first and second areas of the semiconductor substrate, respectively. The transistor gates have generally vertical sidewalls. Source and drain regions are simultaneously formed for the first and second transistors. Temporary spacers are formed on the vertical sidewalls of the first and second transistor gates. The temporary spacers of the first transistor abut a semiconductor structure such that the source and drain regions of the first transistor are vertically covered. The temporary spacers of the second transistor cover a portion of the source and drain regions of the second transistor such that a portion of the source and drain regions remain exposed. The semiconductor substrate is exposed to an implant dopant to change the dopant level of the exposed portions of the source and drain regions of the second transistors.
    Type: Grant
    Filed: February 2, 2011
    Date of Patent: July 31, 2012
    Assignee: Round Rock Research, LLC
    Inventors: Chin-Chen Cho, Er-Xuan Ping
  • Patent number: 8222092
    Abstract: A semiconductor device which includes a thin film transistor having an oxide semiconductor layer and excellent electrical characteristics is provided. Further, a method for manufacturing a semiconductor device in which plural kinds of thin film transistors of different structures are formed over one substrate to form plural kinds of circuits and in which the number of steps is not greatly increased is provided. After a metal thin film is formed over an insulating surface, an oxide semiconductor layer is formed thereover. Then, oxidation treatment such as heat treatment is performed to oxidize the metal thin film partly or entirely. Further, structures of thin film transistors are different between a circuit in which emphasis is placed on the speed of operation, such as a logic circuit, and a matrix circuit.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: July 17, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Junichiro Sakata, Jun Koyama
  • Patent number: 8222684
    Abstract: Methods of manufacturing a semiconductor integrated circuit using selective disposable spacer technology and semiconductor integrated circuits manufactured thereby. The method includes providing a semiconductor substrate; forming gate patterns on the semiconductor substrate, wherein a first space and a second space wider than the first space are disposed between the gate patterns; forming a first impurity region in the semiconductor substrate under the first space and forming a second impurity region in the semiconductor substrate under the second space; forming insulation spacers on sidewalls of the gate patterns, wherein a portion of the second impurity region is exposed and the first impurity region is covered with the insulation spacers; etching the insulation spacers, wherein an opening width of the second impurity region is enlarged and wherein the etching is carried out with a wet etching process; and forming an interlayer insulating layer on the overall structure including the gate patterns.
    Type: Grant
    Filed: August 10, 2009
    Date of Patent: July 17, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-Eun Lee, Yun-Heub Song
  • Patent number: 8198157
    Abstract: A non-volatile memory device may include a semiconductor substrate including an active region at a surface thereof, a first memory cell string on the active region, and a second memory cell string on the active region. The first memory cell string may include a first plurality of word lines crossing the active region between a first ground select line and a first string select line, and about a same first spacing may be provided between adjacent ones of the first plurality of word lines. The second memory cell string may include a second plurality of word lines crossing the active region between a second ground select line and a second string select line, and about the same first spacing may be provided between adjacent ones of the second plurality of word lines. Related methods are also discussed.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: June 12, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-Sun Sel, Jung-Dal Choi, Young-Woo Park, Jin-Taek Park
  • Patent number: 8188530
    Abstract: A semiconductor memory device provided with a cell array section and a peripheral circuit section, the device includes: a back gate electrode; a stacked body provided on the back gate electrode; a plurality of semiconductor pillars extending in a stacking direction; connection members, each of the connection members connecting one of the semiconductor pillars to another one of the semiconductor pillars; a back-gate electrode contact applying a potential to the back gate electrode; a gate electrode provided in the peripheral circuit section; and a gate electrode contact applying a potential to the gate electrode, the back gate electrode and the gate electrode respectively including: a lower semiconductor layer; a conductive layer provided on the lower semiconductor layer; and an upper semiconductor layer provided on the conductive layer, the connection members being provided in or on the upper semiconductor layer, the back-gate electrode contact and the gate electrode contact being in contact with the conducti
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: May 29, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroyasu Tanaka, Ryota Katsumata, Hideaki Aochi, Masaru Kito, Yoshiaki Fukuzumi, Masaru Kidoh, Yosuke Komori, Megumi Ishiduki, Junya Matsunami, Tomoko Fujiwara, Ryouhei Kirisawa, Yoshimasa Mikajiri, Shigeto Oota
  • Patent number: 8183598
    Abstract: A semiconductor device includes a process monitoring pattern overlapping with an input/output (I/O) pad. The semiconductor device may include a semiconductor substrate having a cell array region and a peripheral circuit array region, and a plurality of process monitoring patterns disposed in the peripheral circuit array region. The semiconductor device may further include a plurality of input/output (I/O) pads, where each I/O pad is disposed on a corresponding process monitoring pattern.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: May 22, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Dong-Hyun Han
  • Patent number: 8138043
    Abstract: A method of manufacturing a non-volatile semiconductor memory device including previously forming a recess in a first peripheral region on a semiconductor substrate, forming a first gate insulator having a first thickness in the recess, forming a second gate insulator having a second thickness less than the first thickness in an array region and a second peripheral region on the semiconductor substrate, successively depositing first and second gate electrode films and first and second mask insulators on each of the first and second gate insulators, forming an isolation trench on a surface of the semiconductor substrate to correspond to each position between the array region and the first and second regions of the peripheral region, depositing a buried insulator on the entire surface, and polishing an upper surface of the buried insulator so that the upper surface can be planarized.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: March 20, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Eiji Kamiya
  • Patent number: 8080842
    Abstract: Disclosed is a nonvolatile memory device with cell and peripheral circuit regions confined on a substrate. Cell gate electrodes are arranged in the cell region while peripheral gate electrodes are arranged in the peripheral-circuit region. Each cell gate electrode includes stacked conductive and semiconductor layers, but the peripheral gate electrode includes stacked semiconductor layers. The conductive layer of the cell gate electrode is different from the lowest semiconductor layer of the peripheral gate electrode in material, which can improve characteristics of memory cells and peripheral transistors without causing mutual interference with each other.
    Type: Grant
    Filed: May 16, 2006
    Date of Patent: December 20, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Chang-Hyun Lee
  • Patent number: 8076708
    Abstract: A memory device and peripheral circuitry on a substrate are described, made by a process that includes forming a charge trapping structure having a first thickness over a first area. A first gate dielectric layer having a second thickness is formed for low-voltage transistors. A second gate dielectric layer having a third thickness, greater than the second thickness, is formed for high-voltage transistors. Polysilicon is deposited and patterned to define word lines and transistor gates. The thickness of the second gate dielectric layer in regions adjacent the gates, and over a source and drain regions, is reduced to a thickness that is close to that of the second thickness.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: December 13, 2011
    Assignee: Macronix International Co., Ltd.
    Inventors: Yi-Hung Li, Jen-Chuan Pan, Jongoh Kim
  • Patent number: 8062944
    Abstract: A method for fabricating non-volatile storage having individually controllable shield plates between storage elements. The shield plates are formed by depositing a conductive material such as doped polysilicon between storage elements and their associated word lines, and providing contacts for the shield plates. The shield plates reduce electromagnetic coupling between floating gates of the storage elements, and can be used to optimize programming, read and erase operations. In one approach, the shield plates provide a field induced conductivity between storage elements in a NAND string during a sense operation so that source/drain implants are not needed in the substrate. In some control schemes, alternating high and low voltages are applied to the shield plates. In other control schemes, a common voltage is applied to the shield plates.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: November 22, 2011
    Assignee: SanDisk Techologies Inc.
    Inventor: Masaaki Higashitani
  • Patent number: 7972929
    Abstract: A method for manufacturing a semiconductor device includes forming an ONO layer in a memory region and forming several gate oxide layer patterns in a logic region, a nitride layer in the logic region can be used as a hard mask, enabling a reduction in the number of masks used. This results in improved manufacturing efficiency and reduced manufacturing costs of a SONOS semiconductor device.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: July 5, 2011
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: In-Kun Lee
  • Patent number: 7939406
    Abstract: Disclosure is semiconductor device of a selective gate region, comprising a semiconductor layer, a first insulating film formed on the semiconductor layer, a first electrode layer formed on the first insulating layer, an element isolating region comprising an element isolating insulating film formed to extend through the first electrode layer and the first insulating film to reach an inner region of the semiconductor layer, the element isolating region isolating a element region and being self-aligned with the first electrode layer, a second insulating film formed on the first electrode layer and the element isolating region, an open portion exposing a surface of the first electrode layer being formed in the second insulating film, and a second electrode layer formed on the second insulating film and the exposed surface of the first electrode layer, the second electrode layer being electronically connected to the first electrode layer via the open portion.
    Type: Grant
    Filed: May 5, 2009
    Date of Patent: May 10, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Michiharu Matsui, Seiichi Mori, Riichiro Shirota, Yuji Takeuchi, Takeshi Kamigaichi
  • Patent number: 7919369
    Abstract: In a method of fabricating a flash memory device, a lower capping conductive layer of a peri region is patterned. A step formed between a cell gate and a gate for a peri region transistor is decreased by controlling a target etch thickness of a hard mask. Thus, an impurity does not infiltrate into the bottom of the gate for the peri region transistor through a lost portion of a SAC nitride layer. Accordingly, a hump phenomenon of the transistor formed in the peri region can be improved. Furthermore, a leakage current characteristic of the transistor formed in the peri region can be improved.
    Type: Grant
    Filed: September 17, 2007
    Date of Patent: April 5, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Soo Jin Kim
  • Patent number: 7911005
    Abstract: A semiconductor device having a DRAM region and a logic region embedded together therein, including a first transistor formed in a DRAM region, and having a first source/drain region containing arsenic and phosphorus as impurities; and a second transistor formed in a logic region, and having a second source/drain region containing at least arsenic as an impurity, wherein each of the first source/drain region and the second source/drain region has a silicide layer respectively formed in the surficial portion thereof, and the first source/drain region has a junction depth which is determined by phosphorus and is deeper than the junction depth of the second source/drain region.
    Type: Grant
    Filed: July 17, 2009
    Date of Patent: March 22, 2011
    Assignee: RENESAS Electronics Corporation
    Inventor: Hiroki Shirai
  • Patent number: 7884427
    Abstract: A process for forming active transistors for a semiconductor memory device by the steps of: forming transistor gates having generally vertical sidewalls in a memory array section and in periphery section; implanting a first type of conductive dopants into exposed silicon defined as active area regions of the transistor gates; forming temporary oxide spacers on the generally vertical sidewalls of the transistor gates; after the step of forming temporary spacers, implanting a second type of conductive dopants into the exposed silicon regions to form source/drain regions of the active transistors; after the step of implanting a second type of conductive dopants, growing an epitaxial silicon over exposed silicon regions; removing the temporary oxide spacers; and forming permanent nitride spacers on the generally vertical sidewalls of the transistor gates.
    Type: Grant
    Filed: January 16, 2008
    Date of Patent: February 8, 2011
    Assignee: Round Rock Research, LLC
    Inventors: Chin-Chen Cho, Er-Xuan Ping
  • Patent number: 7875922
    Abstract: A nonvolatile semiconductor memory of an aspect of the present invention comprises a semiconductor substrate, a pillar-shaped semiconductor layer extending in the vertical direction with respect to the surface of the semiconductor substrate, a plurality of memory cells arranged in the vertical direction on the side surface of the semiconductor layer and having a charge storage layer and a control gate electrode, a first select gate transistor arranged on the semiconductor layer at an end of the memory cells on the side of the semiconductor substrate, and a second select gate transistor arranged on the semiconductor layer on the other end of the memory cells opposite to the side of the semiconductor substrate, wherein the first select gate transistor includes a diffusion layer in the semiconductor substrate and is electrically connected to the pillar-shaped semiconductor layer by way of the diffusion layer that serves as the drain region.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: January 25, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Fumitaka Arai, Riichiro Shirota
  • Patent number: 7781286
    Abstract: A method for fabricating non-volatile storage having individually controllable shield plates between storage elements. The shield plates are formed by depositing a conductive material such as doped polysilicon between storage elements and their associated word lines, and providing contacts for the shield plates. The shield plates reduce electromagnetic coupling between floating gates of the storage elements, and can be used to optimize programming, read and erase operations. In one approach, the shield plates provide a field induced conductivity between storage elements in a NAND string during a sense operation so that source/drain implants are not needed in the substrate. In some control schemes, alternating high and low voltages are applied to the shield plates. In other control schemes, a common voltage is applied to the shield plates.
    Type: Grant
    Filed: June 25, 2007
    Date of Patent: August 24, 2010
    Assignee: Sandisk Corporation
    Inventor: Masaaki Higashitani
  • Patent number: 7759194
    Abstract: An electrically programmable device with embedded EEPROM and method for making thereof. The method includes providing a substrate including a first device region and a second device region, growing a first gate oxide layer in the first device region and the second device region, and forming a first diffusion region in the first device region and a second diffusion region and a third diffusion region in the second device region. Additionally, the method includes implanting a first plurality of ions to form a fourth diffusion region in the first device region and a fifth diffusion region in the second device region. The fourth diffusion region overlaps with the first diffusion region.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: July 20, 2010
    Assignee: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: Yi-Peng Chan, Sheng-He Huang, Zhen Yang
  • Patent number: 7696048
    Abstract: A semiconductor device is formed with a normal, non-recessed, spacer structure in a cell region and a recessed spacer structure in a peripheral region. The recessed spacer structure is formed as by etch masking those in the cell region and exposing those in the peripheral region, then performing an etch process. The increased height of the cell region spacers is adapted to further prevent over-etching during gate interconnect formation which would otherwise result in etching through the spacer to the substrate and subsequent short circuit. Therefore, it is also possible to prevent bridge defects due to over-etching, which occurs because the barrier metal layer for a subsequent interconnection contact is accidentally connected to the underlying substrate. Also, since the recessed spacer structure is provided in the peripheral region, it is possible to remarkably enhance a resistance distribution of a cobalt silicide layer occurring in a gate line width of 100 nm or less.
    Type: Grant
    Filed: June 19, 2006
    Date of Patent: April 13, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyung-Shin Kwon, Seug-Gyu Kim
  • Patent number: 7687847
    Abstract: A method of fabricating a semiconductor device is described. A substrate having a memory cell region and a high voltage circuit region are provided. First and second source/drain regions are formed in the substrate within these two regions. A silicon oxide layer, a first conductive layer and a top layer are sequentially formed over the substrate. A floating gate is defined in the memory cell region and the top layer and the first conductive layer of the high voltage circuit region are removed. The exposed silicon oxide layer is thickened. Thereafter, the top layer is removed and then a barrier layer is formed on the exposed surface of the floating gate. A second conductor layer is formed over the substrate, and then a gate is defined in the high voltage circuit region and a control gate is defined in the memory cell region.
    Type: Grant
    Filed: April 19, 2007
    Date of Patent: March 30, 2010
    Assignee: United Microelectronics Corp.
    Inventors: Wen-Fang Lee, Dave Hsu, Asam Lin
  • Publication number: 20100019308
    Abstract: An electrically programmable device with embedded EEPROM and method for making thereof. The method includes providing a substrate including a first device region and a second device region, growing a first gate oxide layer in the first device region and the second device region, and forming a first diffusion region in the first device region and a second diffusion region and a third diffusion region in the second device region. Additionally, the method includes implanting a first plurality of ions to form a fourth diffusion region in the first device region and a fifth diffusion region in the second device region. The fourth diffusion region overlaps with the first diffusion region.
    Type: Application
    Filed: July 25, 2008
    Publication date: January 28, 2010
    Applicant: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: YI-PENG CHAN, Sheng-He Huang, Zhen Yang
  • Patent number: 7645674
    Abstract: A first isolation is formed on a semiconductor substrate, and a first element region is isolated via the first isolation. A first gate insulating film is formed on the first element region, and a first gate electrode is formed on the first gate insulating film. A second isolation is formed on the semiconductor substrate, and a second element region is isolated via the second isolation. A second gate insulating film is formed on the second element region, and a second gate electrode is formed on the second gate insulating film. A first oxide film is formed between the first isolation and the first element region. A second oxide film is formed between the second isolation and the second element region. The first isolation has a width narrower than the second isolation, and the first oxide film has a thickness thinner than the second oxide film.
    Type: Grant
    Filed: August 7, 2007
    Date of Patent: January 12, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Toshitake Yaegashi, Junichi Shiozawa
  • Patent number: 7638430
    Abstract: The present invention relates to a method of forming contact plugs of a semiconductor device. According to the method, a first insulating layer is formed over a semiconductor substrate in which a cell region and a peri region are defined and a first contact plug is formed in the peri region. The first insulating layer is etched using an etch process, thus forming contact holes through which junctions are exposed in the cell region and the first contact plug is exposed in the peri region. Second contact plugs are formed in the contact holes. The second contact plug formed within the contact hole of the peri region are removed using an etch process. A spacer is formed on sidewalls of the contact holes. Third contact plugs are formed within the contact holes.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: December 29, 2009
    Assignee: Hynix Semiconductor Inc.
    Inventor: Jae Heon Kim
  • Patent number: 7622374
    Abstract: Methods of fabricating an integrated circuit, in particular a dynamic random access memory are described. After forming memory cells on a semiconductor substrate a mirror layer is provided, said mirror layer covering the memory cells. Then logic devices are formed adjoining to said memory cells covered by said mirror layer, said forming of said logic devices including activating the dopants in dopant regions by means of a radiation annealing, said radiation being reflected by said mirror layer. After at least partly removing the mirror layer; a wiring of the memory cells and of the logic devices is formed.
    Type: Grant
    Filed: December 29, 2005
    Date of Patent: November 24, 2009
    Assignee: Infineon Technologies AG
    Inventors: Matthias Goldbach, Jürgen Holz
  • Patent number: 7622343
    Abstract: A laser doping process comprising: irradiating a laser beam operated in a pulsed mode to a single crystal semiconductor substrate of a first conductive type in an atmosphere of an impurity gas which imparts the semiconductor substrate a conductive type opposite to said first conductive type and incorporating the impurity contained in said impurity gas into the surface of said semiconductor substrate, thereby modifying the type and/or the intensity of the conductive type thereof. Provides devices having a channel length of 0.5 ?m or less and impurity regions 0.1 ?m or less in depth.
    Type: Grant
    Filed: March 21, 2005
    Date of Patent: November 24, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Yasuhiko Takemura
  • Publication number: 20090267130
    Abstract: A method is provided for simultaneously fabricating a flash storage element, an NFET and a PFET having metal gates with different workfunctions. A first gate metal layer of the NFET having a first workfunction is deposited simultaneously with a first metal layer for forming the floating gate of the flash storage element. A second gate metal layer of the PFET having a second workfunction different from the first workfunction is deposited simultaneously with a second metal layer for forming the control gate of the flash storage element. A semiconductor layer is deposited over the first and second metal layers and gate metal layers and patterned to form first, second and third gates. Source and drain regions of the flash storage element, the NFET and the PFET are formed adjacent to the first, second and third gates, respectively.
    Type: Application
    Filed: April 28, 2008
    Publication date: October 29, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: HUILONG ZHU
  • Publication number: 20090267127
    Abstract: A single-poly non-volatile memory includes a PMOS select transistor (210) formed with a select gate (212), and P+ source and drain regions (211, 213) formed in a shared n-well region (240), a serially connected PMOS floating gate transistor (220) formed with part of a p-type floating gate layer (222) and P+ source and drain regions (221, 223) formed in the shared n-well region (240), and a coupling capacitor (230) formed over a p-well region (250) and connected to the PMOS floating gate transistor (220), where the coupling capacitor (230) includes a first capacitor plate formed with a second part of the p-type floating gate layer (222) and an underlying portion of the p-well region (250).
    Type: Application
    Filed: April 25, 2008
    Publication date: October 29, 2009
    Inventors: Weize Chen, Richard J. De Souza, Xin Lin, Patrice M. Parris
  • Publication number: 20090253257
    Abstract: A nonvolatile memory device includes a semiconductor substrate having a first well region of a first conductivity type, and at least one semiconductor layer formed on the semiconductor substrate. A first cell array is formed on the semiconductor substrate, and a second cell array formed on the semiconductor layer. The semiconductor layer includes a second well region of the first conductivity type having a doping concentration greater than a doping concentration of the first well region of the first conductivity type. As the doping concentration of the second well region is increased, a resistance difference may be reduced between the first and second well regions.
    Type: Application
    Filed: June 4, 2009
    Publication date: October 8, 2009
    Inventors: Young-Chul Jang, Ki-Nam Kim, Soon-Moon Jung, Jae-Hoon Jang
  • Patent number: 7588979
    Abstract: Methods of manufacturing a semiconductor integrated circuit using selective disposable spacer technology and semiconductor integrated circuits manufactured thereby. The method includes providing a semiconductor substrate; forming gate patterns on the semiconductor substrate, wherein a first space and a second space wider than the first space are disposed between the gate patterns; forming a first impurity region in the semiconductor substrate under the first space and forming a second impurity region in the semiconductor substrate under the second space; forming insulation spacers on sidewalls of the gate patterns, wherein a portion of the second impurity region is exposed and the first impurity region is covered with the insulation spacers; etching the insulation spacers, wherein an opening width of the second impurity region is enlarged and wherein the etching is carried out with a wet etching process; and forming an interlayer insulating layer on the overall structure including the gate patterns.
    Type: Grant
    Filed: February 5, 2007
    Date of Patent: September 15, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-Eun Lee, Yun-Heub Song
  • Patent number: 7582550
    Abstract: A semiconductor memory device includes: a semiconductor substrate; a first impurity region; a second impurity region; a channel region; a first gate formed on a main surface on a side of the first impurity region; a second gate formed on the main surface on a side of the second impurity region, with a second insulating film being interposed; and a third insulating film formed on a side surface of the first gate. An interface between the third insulating film and the semiconductor substrate directly under the third insulating film is located above an interface between the second insulating film and the main surface of the semiconductor substrate directly under the second insulating film. The total number of steps can thus be reduced, and lower cost is achieved.
    Type: Grant
    Filed: March 21, 2006
    Date of Patent: September 1, 2009
    Assignee: Renesas Technology Corp.
    Inventor: Motoi Ashida
  • Patent number: 7573095
    Abstract: A semiconductor structure includes a memory cell in a first region and a logic MOS device in a second region of a semiconductor substrate. The memory cell includes a first gate electrode over the semiconductor substrate; a first gate spacer on a sidewall of the first gate electrode, wherein the first gate spacer comprises a storage on a tunneling layer; and a first lightly-doped source or drain (LDD) region and a first pocket region adjacent to the first gate electrode. The logic MOS device includes a second gate electrode on the semiconductor substrate; a second gate spacer on a sidewall of the second gate electrode; a second LDD region and a second pocket region adjacent the second gate electrode, wherein at least one of the first LDD region and the first pocket region has a higher impurity concentration than a impurity concentration of the respective second LDD region and the second pocket region.
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: August 11, 2009
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tzyh-Cheang Lee, Fu-Liang Yang
  • Publication number: 20090194804
    Abstract: Disclosed herein are non-volatile cells and methods of manufacturing the same. The nonvolatile memory cells include a high voltage device, a low voltage device, and a memory cell formed on a semiconductor substrate. The high voltage device, low voltage device, and memory cell are all self-aligned by using the gates associated with each of the devices as a mask during formation of the respective sources and drains.
    Type: Application
    Filed: February 4, 2008
    Publication date: August 6, 2009
    Applicant: ATMEL CORPORATION
    Inventor: Bohumil Lojek