Arrangements For Conducting Electric Current To Or From Solid-state Body In Operation, E.g., Leads, Terminal Arrangements (epo) Patents (Class 257/E23.01)
  • Patent number: 8487430
    Abstract: Examples of high-speed ball grid array packages and a process of forming a package are provided. A package may include contact pads disposed on a bottom surface, conductive balls, and a signal via structure. The package may also include a first ground via structure arranged along one or more first semi-circular contours around the signal via structure and extending vertically and a second ground via structure arranged along one or more second semi-circular contours around the signal via structure and extending vertically. The package may include a ground interface plane disposed in separation from the signal contact pad by a distance. The distance may be determined based on at least a size of the signal contact pad, a dielectric constant of a transition layer between the ground interface plane and the signal contact pad, and a distance between the signal via structure and the second ground via structure.
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: July 16, 2013
    Assignee: Semtech Corporation
    Inventor: Darren Jay Walworth
  • Patent number: 8487448
    Abstract: A method for producing chip packages is disclosed. In one embodiment, a plurality of chips is provided. The chips each have first pads. Second connection pads are applied on the wafer, wherein each second pad is electrically connected to a first pad.
    Type: Grant
    Filed: August 1, 2011
    Date of Patent: July 16, 2013
    Assignee: Infineon Technologies AG
    Inventors: Thorsten Meyer, Harry Hedler, Markus Brunnbauer
  • Patent number: 8487322
    Abstract: A luminous body comprises a transparent plastic moulding with indentations, and LED DIEs disposed within the indentations. One side of each LED DIE lies approximately flush with an upper side of the moulding, and each LED DIE is connected to an electricity supply via electrical conductors disposed on the moulding. A method for producing such a luminous body is also disclosed.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: July 16, 2013
    Assignee: Bayer Intellectual Property GmbH
    Inventors: Andrea Maier-Richter, Eckard Foltin, Michael Roppel, Peter Schibli
  • Publication number: 20130175699
    Abstract: A microelectronic assembly includes a first microelectronic package having a substrate with first and second opposed surfaces and substrate contacts thereon. The first package further includes first and second microelectronic elements, each having element contacts electrically connected with the substrate contacts and being spaced apart from one another on the first surface so as to provide an interconnect area of the first surface between the first and second microelectronic elements. A plurality of package terminals at the second surface are electrically interconnected with the substrate contacts for connecting the package with a component external thereto. A plurality of stack terminals are exposed at the first surface in the interconnect area for connecting the package with a component overlying the first surface of the substrate.
    Type: Application
    Filed: January 9, 2012
    Publication date: July 11, 2013
    Applicant: INVENSAS CORPORATION
    Inventors: Belgacem Haba, Kyong-Mo Bang
  • Publication number: 20130175527
    Abstract: A sensor arrangement is provided, the sensor arrangement including a chip including a sensor circuit configured to detect a bending of the chip; and a package structure configured to protect the chip; wherein the package structure includes a first region and a second region, and wherein the package structure is configured such that it is easier to be deformed in the first region than in the second region.
    Type: Application
    Filed: January 9, 2012
    Publication date: July 11, 2013
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Horst Theuss, Klaus Elian
  • Patent number: 8482128
    Abstract: A flash memory storage apparatus is provided. The flash memory storage apparatus includes a substrate, a control and storage circuit unit, a ground lead, at least a signal lead, and a power lead. The control and storage circuit unit, the power lead, the signal lead, and the ground lead are disposed on the substrate, in which the power lead, the signal lead, and the ground lead respectively electrically connect to the control and storage circuit unit. Moreover, the flash memory storage apparatus further includes an extra ground lead electrically connected to the ground lead or a protrusion on the substrate, such that the ground lead first electrically connects to a host when the flash memory storage apparatus is plugged into the host.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: July 9, 2013
    Assignee: Phison Electronics Corp.
    Inventors: Yu-Fong Lin, Hung-Yi Chung, Yu-Tong Lin, Yun-Chieh Chen
  • Patent number: 8482131
    Abstract: A via structure includes at least a first via set and a second via set electrically connected to the first via set. There is at least one via in the first via set and at least one via in the second via set. The via in the first via set has a cross-sectional area which is larger than that of the via in the second via set.
    Type: Grant
    Filed: July 31, 2011
    Date of Patent: July 9, 2013
    Assignee: Nanya Technology Corp.
    Inventor: Philip J. Ireland
  • Publication number: 20130168855
    Abstract: Methods and apparatus for package on package structures. A structure includes a first integrated circuit package including at least one integrated circuit device mounted on a first substrate, a plurality of package on package connectors extending from a bottom surface and arranged in a pattern of one or more rows proximal to an outer periphery of the first substrate; and a second integrated circuit package including at least another integrated circuit device mounted on a second substrate and a plurality of lands on an upper surface coupled to the plurality of package on package connectors, and a plurality of external connectors extending from a bottom surface of the second substrate; wherein the pattern of the external connectors is staggered from the pattern of the package on package connectors so that the package on package connectors are not in vertical alignment with the external connectors. Methods for forming structures are disclosed.
    Type: Application
    Filed: January 3, 2012
    Publication date: July 4, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Feng Chen, Han-Ping Pu
  • Publication number: 20130168842
    Abstract: A semiconductor package includes a semiconductor chip stack disposed between first and second leads near first and second sides of the package and including a plurality of semiconductor chips, and a redistribution structure disposed on the semiconductor chip stack. At least one semiconductor chip of the semiconductor chip stack includes a plurality of first chip pads disposed near or closer to a third side of the package. The redistribution structure includes a first redistribution pad disposed near or closer to the first side and electrically connected to the first lead, a second redistribution pad disposed near or closer to the second side and electrically connected to the second lead, and a third redistribution pad disposed near or closer to the third side and electrically connected to a first one of the first chip pads and the first redistribution pad.
    Type: Application
    Filed: September 11, 2012
    Publication date: July 4, 2013
    Inventors: Chul PARK, Sun-Won Kang, Kil-Soo Kim, Joong-Hyun Baek
  • Publication number: 20130168866
    Abstract: In one embodiment, a chip-on-lead package structures includes an electronic chip having opposing major surfaces. One major surface of the electronic chip is attached to first and second leads. The one major surface is electrically connected to the first lead, and electrically isolated from the second lead. The other major surface where active device are formed may be electrically connected to the second lead.
    Type: Application
    Filed: January 20, 2012
    Publication date: July 4, 2013
    Inventors: Atapol Prajuckamol, Bih Wen Fon, Jun Keat Lee
  • Publication number: 20130168854
    Abstract: There are disclosed herein various implementations of semiconductor packages including a bridge interposer. One exemplary implementation includes a first active die having a first portion situated over the bridge interposer, and a second portion not situated over the bridge interposer. The semiconductor package also includes a second active die having a first portion situated over the bridge interposer, and a second portion not situated over the bridge interposer. The second portion of the first active die and the second portion of the second active die include solder balls mounted on a package substrate, and are configured to communicate electrical signals to the package substrate utilizing the solder balls and without utilizing through-semiconductor vias (TSVs).
    Type: Application
    Filed: December 28, 2011
    Publication date: July 4, 2013
    Applicant: BROADCOM CORPORATION
    Inventors: Sampath K.V. KARIKALAN, Sam Ziqun ZHAO, Kevin Kunzhong HU, Rezaur Rahman KHAN, Pieter VORENKAMP, Xiangdong CHEN
  • Publication number: 20130168848
    Abstract: The mechanisms of forming a molding compound on a semiconductor device substrate to enable fan-out structures in wafer-level packaging (WLP) are provided. The mechanisms involve covering portions of surfaces of an insulating layer surrounding a contact pad. The mechanisms improve reliability of the package and process control of the packaging process. The mechanisms also reduce the risk of interfacial delamination, and excessive outgassing of the insulating layer during subsequent processing. The mechanisms further improve planarization end-point. By utilizing a protective layer between the contact pad and the insulating layer, copper out-diffusion can be reduced and the adhesion between the contact pad and the insulating layer may also be improved.
    Type: Application
    Filed: December 28, 2011
    Publication date: July 4, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jing-Cheng LIN, Jui-Pin HUNG, Nai-Wei LIU, Yi-Chao MAO, Wan-Ting SHIH, Tsan-Hua TUNG
  • Publication number: 20130168874
    Abstract: A method of manufacturing a semiconductor chip comprising placing a plurality of die units each having an active front surface and a back surface facing front surface up on an encapsulant layer, encapsulating the plurality of die units on the active surface of the encapsulant layer with an encapsulant covering a front surface and four side surfaces of each of the plurality of die units, and exposing, through the encapsulation on the front surface, conductive interconnects electrically connecting a die bond pad to a redistribution layer.
    Type: Application
    Filed: September 30, 2012
    Publication date: July 4, 2013
    Applicant: DECA TECHNOLOGIES INC.
    Inventor: Deca Technologies Inc.
  • Publication number: 20130161837
    Abstract: A packaging substrate and a semiconductor package using the packaging substrate are provided. The packaging substrate includes: a substrate body having a die attach area, a circuit layer formed around the die attach area and having a plurality of conductive traces each having a wire bonding pad, and a surface treatment layer formed on the wire bonding pads. Therein, only one of the conductive traces is connected to an electroplating line so as to prevent cross-talk that otherwise occurs between conductive traces due to too many electroplating lines in the prior art.
    Type: Application
    Filed: June 7, 2012
    Publication date: June 27, 2013
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Chia-Yin Chen, Yu-Ching Liu, Yueh-Chiung Chang, Yu-Po Wang
  • Publication number: 20130161636
    Abstract: Methods for fabricating a semiconductor substrate include forming a first substrate layer over a surface of a first semiconductor layer, and thermally spraying a second substrate layer on a side of the first substrate layer opposite the first semiconductor layer. At least one additional semiconductor layer is epitaxially grown over the first semiconductor layer on a side thereof opposite the first substrate layer. At least one of the first substrate layer and the second substrate layer may be formulated to exhibit a Coefficient of Thermal Expansion (CTE) closely matching a CTE of at least one of the first semiconductor layer and the at least one additional semiconductor layer. Semiconductor structures are fabricated using such methods.
    Type: Application
    Filed: December 23, 2011
    Publication date: June 27, 2013
    Applicant: SOITEC
    Inventors: Christiaan J. Werkhoven, Chantal Arena
  • Publication number: 20130161812
    Abstract: A die package may include a package substrate; an interposer; and/or at least one first die connected between the package substrate and the interposer. The die package may further include at least one second die mounted on the interposer and/or a processor. A system may include a system board and/or a die package mounted on the system board. The die package may include a package substrate; an interposer; and/or at least one first die connected between the package substrate and the interposer. The system may further include at least one second die mounted on the interposer and/or a processor. The processor may control data processing operations of the at least one first die and/or the at least one second die.
    Type: Application
    Filed: July 11, 2012
    Publication date: June 27, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Hyun-Joong Kim, Jang Seok Choi, Chul-Hwan Choo
  • Publication number: 20130161836
    Abstract: Provided is a semiconductor package comprising a substrate, a semiconductor chip formed on the substrate, and an interposer including a plurality of segments which are separated from each other and arranged on the substrate to surround the semiconductor chip. And a stacked package for multiple chips including the semiconductor package with a plurality of segments of an interposer is provided.
    Type: Application
    Filed: August 13, 2012
    Publication date: June 27, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Kun-Dae YEOM, Young-Min KIM, Jong-Bo SHIM, Woo-Dong LEE
  • Patent number: 8471387
    Abstract: Disclosed herein is an extendable network structure, which includes a first device portion, a second device portion and at least three connectors. The three connectors are connected to the first device portion. The second device portion is electrically connected to the first device portion through one of the three connectors. The first and second device portions respectively have a first and a second center. Each of the connectors may be extendable from an initial state to an extended state, such that a first distance between the first and second centers in the extended state is at least 1.1 fold of a second distance between the first and second centers in the initial state.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: June 25, 2013
    Assignee: Monolithe Semiconductor Inc.
    Inventor: Kevin T. Y. Huang
  • Patent number: 8471271
    Abstract: Provided is a light emitting diode package and a method of manufacturing the same. The light emitting diode package includes a package main body with a cavity, a plurality of light emitting diode chips, a wire, and a plurality of lead frames. The plurality of light emitting diode chips are mounted in the cavity. The wire is connected to an electrode of at least one light emitting diode chip. The plurality of lead frames are formed in the cavity, and at least one lead frame is electrically connected to the light emitting diode chip or a plurality of wires.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: June 25, 2013
    Assignee: LG Innotek Co., Ltd.
    Inventor: Won-Jin Son
  • Publication number: 20130154123
    Abstract: In various embodiments, a semiconductor device may include: a carrier; a semiconductor chip disposed over a first side of the carrier; a layer stack disposed between the carrier and the semiconductor chip or over a second side of the carrier opposite the semiconductor chip, or both, the layer stack including at least a first electrically insulating layer, the first electrically insulating layer having a laminate having a first electrically insulating matrix material and a first mechanically stabilizing material embedded in the first electrically insulating matrix material.
    Type: Application
    Filed: December 20, 2011
    Publication date: June 20, 2013
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Yong Chern Poh, Sze Lin Celine Tan, Teck Sim Lee, Kean Cheong Lee, Ralf Otremba, Xaver Schloegel, Juergen Schredl, Josef Hoeglauer
  • Publication number: 20130154119
    Abstract: A method of manufacture of an integrated circuit packaging system includes: forming a lead having a lead top side; forming a lower interior conductive layer directly on the lead top side; forming an interior insulation layer directly on the lower interior conductive layer; forming an upper interior conductive layer directly on the interior insulation layer; and mounting an integrated circuit over the upper interior conductive layer.
    Type: Application
    Filed: December 15, 2011
    Publication date: June 20, 2013
    Inventors: Byung Tai Do, Arnel Senosa Trasporto, Linda Pei Ee Chua
  • Publication number: 20130154100
    Abstract: A pattern on a semiconductor substrate is formed using two separate etching processes. The first etching process removes a portion of an intermediate layer above an active region of the substrate. The second etching process exposes a portion of the active region of the substrate. A semiconductor device formed using the patterning method has a decreased mask error enhancement factor and increased critical dimension uniformity than the prior art.
    Type: Application
    Filed: December 16, 2011
    Publication date: June 20, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jhun Hua CHEN, Yu-Lung TUNG, Chi-Tien CHEN, Hua-Tai LIN, Hsiang-Lin CHEN, Hung-Chang HSIEH, Yi-Fan CHEN
  • Publication number: 20130154124
    Abstract: A package and method for packaging a semiconductor device formed in a surface portion of a semiconductor wafer. The package includes: a dielectric layer disposed on the surface portion of the semiconductor wafer having a device exposing opening to expose one of the devices and an electrical contacts pad opening to expose an electrical contact pad; and a porous material in the device exposing opening over said one of the devices.
    Type: Application
    Filed: December 20, 2011
    Publication date: June 20, 2013
    Applicant: Raytheon Company
    Inventors: Robert B. Hallock, William J. Davis, Yiwen Zhang, Ward G. Fillmore, Susan C. Trulli, Jason G. Milne
  • Publication number: 20130154086
    Abstract: A method includes performing an etching step on a package. The package includes a package component, a connector on a top surface of the package component, a die bonded to the top surface of the package component, and a molding material molded over the top surface of the package component. The molding material covers the connector, wherein a portion of the molding material covering the connector is removed by the etching step, and the connector is exposed.
    Type: Application
    Filed: December 20, 2011
    Publication date: June 20, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Chung-Shi Liu, Chun-Cheng Lin, Meng-Tse Chen, Ming-Da Cheng
  • Publication number: 20130154120
    Abstract: A method of manufacture of an integrated circuit packaging system includes: forming a peripheral lead; forming an interior conductive layer directly on the peripheral lead; forming a vertical connector directly on the interior conductive layer, the vertical connector having a connector top side; connecting an integrated circuit to the interior conductive layer; and forming an encapsulation over the integrated circuit, the encapsulation having an encapsulation top side coplanar with the connector top side.
    Type: Application
    Filed: December 15, 2011
    Publication date: June 20, 2013
    Inventors: Byung Tai Do, Arnel Senosa Trasporto, Linda Pei Ee Chua
  • Publication number: 20130154115
    Abstract: A method of manufacture of an integrated circuit packaging system includes: forming a lead having a lead bottom body, a lead top body, and a lead top conductive layer directly on the lead top body, the lead top conductive layer having a top protrusion and a top non-vertical portion, the lead bottom body having a horizontally contiguous structure; connecting an integrated circuit to the top protrusion; and forming an encapsulation covering the integrated circuit and exposing a top non-vertical upper side of the top non-vertical portion.
    Type: Application
    Filed: December 15, 2011
    Publication date: June 20, 2013
    Inventors: Zigmund Ramirez Camacho, Henry Descalzo Bathan, Emmanuel Espiritu
  • Publication number: 20130154109
    Abstract: The disclosure provides an interposer with conductive paths, a three-dimensional integrated circuit (3D IC), a method of reducing capacitance associated with conductive paths in an interposer and a method of manufacturing an interposer. In one embodiment the interposer includes: (1) a semiconductor substrate that is doped with a dopant, (2) conductive paths located within said semiconductor substrate and configured to provide electrical routes therethrough and (3) an ohmic contact region located within said semiconductor substrate and configured to receive a back bias voltage.
    Type: Application
    Filed: December 16, 2011
    Publication date: June 20, 2013
    Applicant: LSI Corporation
    Inventors: Ramnath Venkatraman, John W. Osenbach, Anwar Ali, Donald E. Hawk, Robert J. Madge
  • Publication number: 20130154101
    Abstract: A semiconductor device and a method for manufacturing the same are disclosed. In the semiconductor device, an upper part of a storage node contact plug is increased in size, and an area of overlap between a storage node formed in a subsequent process and a storage node contact plug is increased, such that resistance of the storage node contact plug is increased and device characteristics are improved. The semiconductor device includes at least one bit line formed over a semiconductor substrate, a first storage node contact plug formed between the bit lines and coupled to an upper part of the semiconductor substrate, and a second storage node contact plug formed over the first storage node contact plug, wherein a width of a lower part of the second storage node contact plug is larger than a width of an upper part thereof.
    Type: Application
    Filed: June 4, 2012
    Publication date: June 20, 2013
    Applicant: SK Hynix Inc.
    Inventor: Dae Sik PARK
  • Patent number: 8466566
    Abstract: It is an objective to provide a semiconductor device with low leak current. The semiconductor device includes a plurality of ground side electrodes and a plurality of signal side electrodes arranged on a semiconductor substrate in an alternating manner; a plurality of control electrodes arranged respectively between each pair of a ground side electrode and a signal side electrode; a ground side electrode connecting section that connects the ground side electrodes to each other; a signal side electrode connecting section that connects the signal side electrodes to each other; and ground side lead wiring and signal side lead wiring that extend respectively from a region near one end and a region near another end of an arranged electrode section, in which the ground side electrodes and the signal side electrodes are arranged in an arrangement direction, away from the arranged electrode group in the arrangement direction.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: June 18, 2013
    Assignee: Advantest Corporation
    Inventors: Makoto Nakanishi, Tomoo Yamanouchi, Junichi Okayasu, Taku Sato, Daiju Terasawa, Masahiko Takikawa
  • Patent number: 8466551
    Abstract: A semiconductor device includes a main current external electrode for connecting a high-voltage main current electrode of a power semiconductor element to the outside, and a resin case into which the main current external electrode is press fitted. The main current external electrode has a press-fitted fixing portion and a claw fixing portion for fixation to the resin case. The claw fixing portion includes a projection passing through a through hole defined in the resin case, and having a bendable claw portion at its tip end.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: June 18, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventor: Masuo Koga
  • Patent number: 8466522
    Abstract: An element array comprises a plurality of elements having a first electrode and a second electrode with a gap therebetween; the first electrode is separated for each of the elements by grooves, an insulating connection substrate is bonded to the first electrode, and wirings are provided from the respective first electrodes through the connection substrate to the side opposite to the first electrodes.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: June 18, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventors: Takahiro Ezaki, Chienliu Chang, Yasuhiro Soeda, Kenji Tamamori
  • Publication number: 20130147047
    Abstract: An integrated circuit includes a base element and a copper element over the base element, the copper element having a thickness of at least 5 ?m and a ratio of average grain size to thickness of less than 0.7.
    Type: Application
    Filed: December 9, 2011
    Publication date: June 13, 2013
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Thomas Detzel, Johann Gross, Robert Illing, Maximilian Krug, Sven Gustav Lanzerstorfer, Michael Nelhiebel, Werner Robl, Michael Rogalli, Stefan Woehlert
  • Publication number: 20130147058
    Abstract: A chip package includes a substrate, a pad positioned on the substrate, a base board, at least one adhesive layer and at least one chip. The base board is positioned on the pad. At least one mounting hole is defined through the base board. The at least one adhesive layer is received in the at least one mounting hole. The at least one chip is received in the at least one mounting hole and adhere to the pad via the at least one adhesive layer.
    Type: Application
    Filed: April 30, 2012
    Publication date: June 13, 2013
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: CHEN-YU YU
  • Publication number: 20130147046
    Abstract: A semiconductor device includes a semiconductor body and a low K dielectric layer overlying the semiconductor body. A first portion of the low K dielectric layer comprises a dielectric material, and a second portion of the low K dielectric layer comprise an air gap, wherein the first portion and the second portion are laterally disposed with respect to one another. A method for forming a low K dielectric layer is also disclosed and includes forming a dielectric layer over a semiconductor body, forming a plurality of air gaps laterally disposed from one another in the dielectric layer, and forming a capping layer over the dielectric layer and air gaps.
    Type: Application
    Filed: December 7, 2011
    Publication date: June 13, 2013
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hung Jui Chang, Chih-Tsung Lee, You-Hua Chou, Shiu-Ko Jang Jian, Ming-Shiou Kuo
  • Publication number: 20130146872
    Abstract: A semiconductor device has a semiconductor die and conductive pillar with a recess or protrusion formed over a surface of the semiconductor die. The conductive pillar is made by forming a patterning layer over the semiconductor die, forming an opening with a recess or protrusion in the patterning layer, depositing conductive material in the opening and recess or protrusion, and removing the patterning layer. A substrate has bump material deposited over a conductive layer formed over a surface of the substrate. The bump material is melted. The semiconductor die is pressed toward the substrate to enable the melted bump material to flow into the recess or over the protrusion if the conductive pillar makes connection to the conductive layer. A presence or absence of the bump material in the recess or protrusion of the conductive pillar is detected by X-ray or visual inspection.
    Type: Application
    Filed: December 13, 2011
    Publication date: June 13, 2013
    Applicant: STATS ChipPAC, LTD.
    Inventors: Jen Yu Chen, Ting Yu Fu, Men Hsien Li, Chien Chen Lee
  • Publication number: 20130147062
    Abstract: A multi-chip package may include a package substrate, a first semiconductor chip, a second semiconductor chip and a supporting member. The first semiconductor chip may be arranged on an upper surface of the package substrate. The first semiconductor chip may be electrically connected with the package substrate. The second semiconductor chip may be arranged on an upper surface of the first semiconductor chip. The second semiconductor chip may be electrically connected with the first semiconductor chip. The second semiconductor chip may have a protrusion overhanging an area beyond a side surface of the first semiconductor chip. The supporting member may be interposed between the protrusion of the second semiconductor chip and the package substrate to prevent a deflection of the protrusion. Thus, the protrusion may not be deflected.
    Type: Application
    Filed: August 4, 2012
    Publication date: June 13, 2013
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Hee-Jin LEE, Woo-Dong LEE
  • Publication number: 20130147013
    Abstract: A semiconductor device comprises a conductor film and a capacitor comprising a lower electrode provided on the conductor film. The conductor film includes a first conductive film containing a first metal, a second conductive film containing a second metal on the first conductive film, and an oxide film of the second metal on the second conductive film. The oxide film of the second metal has a lower electric resistivity than an oxide film of the first metal.
    Type: Application
    Filed: November 8, 2012
    Publication date: June 13, 2013
    Applicant: Elpida Memory, Inc.
    Inventor: Elpida Memory, Inc.
  • Publication number: 20130147037
    Abstract: A semiconductor structure is provided. The semiconductor structure includes a substrate, at least two pads, a passivation layer, at least two under bump metallization (UBM) layers and at least two bumps. The pads are disposed adjacent to each other on the substrate along the first direction. The passivation layer covers the substrate and the peripheral upper surface of each pad to define an opening. Each of the openings defines an opening projection along the second direction. The opening projections are disposed adjacent to each other but not overlapping with each other. Furthermore, the first direction is perpendicular to the second direction. The UBM layers are disposed on the corresponding openings, and the bumps are respectively disposed on the corresponding UBM layers. With the above arrangements, the width of each bump of the semiconductor structure of the present invention could be widened without being limited by the bump pitch.
    Type: Application
    Filed: November 7, 2012
    Publication date: June 13, 2013
    Applicant: CHIPMOS TECHNOLOGIES INC.
    Inventor: Chipmos Technologies Inc.
  • Patent number: 8459112
    Abstract: Systems and methods for fabricating a multi-axis sensor are provided. In one implementation, a method comprises: fabricating a first die having a first active surface with first application electronics; fabricating a second die having a second active surface with second application electronics and a plurality of electrical connections that extend from the second application electronics to a side surface interface of the second die that is adjacent to the second active surface; aligning the side surface interface to be coplanar with the first active surface; and forming at least one electrical connection between the plurality of electrical connections and the first active surface.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: June 11, 2013
    Assignee: Honeywell International Inc.
    Inventors: Ryan W. Rieger, Lakshman Withanawasam, Ronald J. Jensen
  • Patent number: 8461681
    Abstract: The present invention is directed to an interconnect for an implantable medical device. The interconnect includes a first conductive layer, a second conductive layer introduced over the first conductive layer, and a third conductive layer introduced over the second conductive layer. One of the first conductive layer, the second conductive layer, and the third conductive layer comprises titanium-niobium (Ti—Nb).
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: June 11, 2013
    Assignee: Medtronic, Inc.
    Inventor: David A. Ruben
  • Patent number: 8461036
    Abstract: Multiple surface finishes are applied to a substrate for a microelectronics package by applying a first surface finish to connection pads of a first area of the substrate, masking the first area of the substrate without masking a second area of the substrate, applying a second different surface finish to connection pads of the second area of the substrate, and removing the mask.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: June 11, 2013
    Assignee: Intel Corporation
    Inventors: Tao Wu, Charavanakumara Gurumurthy, Reynaldo Alberto Olmedo
  • Publication number: 20130140704
    Abstract: A capacitive micromachined ultrasonic transducer (CMUT), which has a conductive structure that can vibrate over a cavity, utilizes a thick oxide layer to substantially increase the volume of the cavity which, in turn, allows the CMUT to receive and transmit low frequency ultrasonic waves. In addition, the CMUT can include a back side bond pad structure that eliminates the need for and cost of one patterned photoresist layer.
    Type: Application
    Filed: December 2, 2011
    Publication date: June 6, 2013
    Inventors: STEVEN ADLER, PETER JOHNSON, IRA OAKTREE WYGANT
  • Publication number: 20130140713
    Abstract: The present disclosure relates to a method for fast and precise alignment and mounting of a top die onto an interposer wafer. The method is performed by applying a hydrophobic self assembled monolayer to a carrier wafer in a pattern defining a top die placement region correlating to an arrangement of a top die on an interposer wafer. A liquid is provided into the top die placement region and a top die is placed into contact with the liquid. The surface tension of the liquid automatically aligns the top die by generating a force causing the top die to overlap with the top die placement region. The liquid is then eliminated and the top die is affixed to the carrier wafer. The carrier wafer is bonded to the interposer wafer, bringing the top die into contact with an interposer.
    Type: Application
    Filed: December 1, 2011
    Publication date: June 6, 2013
    Applicant: Taiwan Semiconductro Manufacturing Co., Ltd.
    Inventors: Chen-Hua Yu, Chien-Chia Chiu, Cheng-Chieh Hsieh
  • Publication number: 20130134606
    Abstract: A semiconductor package may include a substrate including a substrate pad on a top surface thereof; at least one semiconductor chip including a connection terminal electrically connected to the substrate on an active surface thereof, and mounted on the substrate; a heat release pattern formed between the substrate and the at least one semiconductor chip and configured to generate heat; and underfill resin underfilled between the substrate and the at least one semiconductor chip and comprising fillers. A semiconductor package may include a substrate including a substrate pad on a top surface thereof and a first heat release pattern configured to generate heat, and a semiconductor chip including a bonding pad formed on an active surface facing the substrate and a second heat release pattern configured to generate heat.
    Type: Application
    Filed: August 16, 2012
    Publication date: May 30, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Yun-hyeok IM, Won-keun KIM, Tae-Je CHO, Kyol PARK
  • Publication number: 20130134589
    Abstract: A chip-package includes a chip-carrier configured to carry a chip, the chip arranged over a chip-carrier side, wherein the chip-carrier side is configured in electrical connection with a chip back side; an insulation material including: a first insulation portion formed over a first chip lateral side; a second insulation portion formed over a second chip lateral side, wherein the first chip lateral side and the second chip lateral side each abuts opposite edges of the chip back side; and a third insulation portion formed over at least part of a chip front side, the chip front side including one or more electrical contacts formed within the chip front side; wherein at least part of the first insulation portion is arranged over the chip-carrier side and wherein the first insulation portion is configured to extend in a direction perpendicular to the first chip lateral side further than the chip-carrier.
    Type: Application
    Filed: November 28, 2011
    Publication date: May 30, 2013
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Manfred Mengel, Thomas Wowra, Joachim Mahler, Khalil Hosseini
  • Publication number: 20130134603
    Abstract: Provided are semiconductor devices and methods of manufacturing the same. the device may include a semiconductor substrate, a first conductive pattern provided in the semiconductor substrate to have a first width at a surface level of the semiconductor substrate, a barrier pattern covering the first conductive pattern and having a second width substantially greater than the first width, a second conductive pattern partially covering the barrier pattern and having a third width substantially smaller than the second width, and an insulating pattern disposed on a sidewall of the second conductive pattern. The second width may be substantially equal to or less than to a sum of the third width and a width of the insulating pattern.
    Type: Application
    Filed: September 11, 2012
    Publication date: May 30, 2013
    Inventors: Ho-Jin Lee, Pil-Kyu Kang, Seokho Kim, Byung Lyul Park, Kyu-Ha Lee, Hyunsoo Chung, Gilheyun Choi
  • Publication number: 20130134597
    Abstract: A chip on film includes a plastic film approximately rectangular in flat view, a designated wiring pattern having approximately rectangular electrodes arrayed longitudinally formed on a mounting surface of the plastic film, and an LSI chip mounted on the mounting surface of the plastic film and connected to the designated wiring pattern. At least one cutout part is formed on each short side of the approximate rectangle of the plastic film.
    Type: Application
    Filed: October 4, 2012
    Publication date: May 30, 2013
    Applicant: FUNAI ELECTRIC CO., LTD.
    Inventor: Funai Electric Co., Ltd.
  • Patent number: 8450204
    Abstract: A high aspect ratio metallization structure is provided in which a noble metal-containing material is present at least within a lower portion of a contact opening located in a dielectric material and is in direct contact with a metal semiconductor alloy located on an upper surface of a material stack of at least one semiconductor device. In one embodiment, the noble metal-containing material is plug located within the lower region of the contact opening and an upper region of the contact opening includes a conductive metal-containing material. The conductive metal-containing material is separated from plug of noble metal-containing material by a bottom walled portion of a U-shaped diffusion barrier. In another embodiment, the noble metal-containing material is present throughout the entire contact opening.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: May 28, 2013
    Assignee: International Business Machines Corporation
    Inventors: Chih-Chao Yang, Fenton R. McFeely
  • Publication number: 20130127055
    Abstract: The mechanisms of forming an interconnect structures described above involves using a reflowed conductive layer. The reflowed conductive layer is thicker in smaller openings than in wider openings. The mechanisms may further involve forming a metal cap layer over the reflow conductive layer, in some embodiments. The interconnect structures formed by the mechanisms described have better electrical and reliability performance.
    Type: Application
    Filed: March 29, 2012
    Publication date: May 23, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chien-An CHEN, Wen-Jiun LIU, Chun-Chieh LIN, Hung-Wen SU, Ming-Hsing TSAI, Syun-Ming JANG
  • Publication number: 20130127059
    Abstract: A device includes a plurality of connectors on a top surface of a package component. The plurality of connectors includes a first connector having a first lateral dimension, and a second connector having a second lateral dimension. The second lateral dimension is greater than the first lateral dimension. The first and the second lateral dimensions are measured in directions parallel to a major surface of the package component.
    Type: Application
    Filed: November 17, 2011
    Publication date: May 23, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Wei Lai, Ming-Che Ho, Tzong-Hann Yang, Chien Rhone Wang, Chia-Tung Chang, Hung-Jui Kuo, Chung-Shi Liu