Chemically Specified Inorganic Electrochemically Active Material Containing Patents (Class 429/218.1)
  • Publication number: 20150093640
    Abstract: An electrode material that is used as an electrode in an electric double layer capacitor, a lithium ion capacitor, and a lithium secondary battery and has a reduced internal resistance for improving output is provided. The electrode material is characterized in that a metal is filled into pores in a surface portion at one surface of a powder molded body containing at least an active material powder and a metal film is formed on the one surface. The electrode material can be formed by performing a plating treatment on the powder molded body.
    Type: Application
    Filed: March 19, 2013
    Publication date: April 2, 2015
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Masatoshi Majima, Akihisa Hosoe, Junichi Nishimura, Kazuki Okuno, Kotaro Kimura, Kengo Goto, Hideaki Sakaida
  • Patent number: 8993167
    Abstract: Provided is a cathode active material composed of lithium nickel oxide represented by Formula 1, wherein the lithium nickel oxide contains nickel in an amount of 40% or higher, based on the total weight of transition metals, and the cathode active material comprises a first coating layer provided on the surface thereof and a second coating layer provided on the surface of the first coating layer, wherein the first coating layer is composed of a non-reactive material selected from the group consisting of oxides, nitrides, sulfides and mixtures or complexes thereof and the second coating layer is composed of a carbon-based material.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: March 31, 2015
    Assignee: LG Chem, Ltd.
    Inventors: Sung kyun Chang, Hong-Kyu Park, Sinyoung Park
  • Patent number: 8993168
    Abstract: Disclosed is a powder comprising a lithium-containing compound and a nickel-containing mixed metal compound, and satisfying the following requirements of (1) and (2) when the powder is analyzed by plasma emission spectrometry of particles: (1) an absolute deviation of a synchronous distribution chart against an approximated straight-line is 0.10 or less, wherein the approximated straight-line is evaluated from a synchronous distribution chart obtained by plotting an emission intensity of lithium and an emission intensity of nickel of each particle composing of the powder, and (2) a release rate of lithium evaluated by the following formula is 80 or less: Release rate of lithium=(nb/na)×100 wherein, na is the number of particles containing lithium in the powder, and nb is the number of particles containing lithium and not containing nickel in the powder.
    Type: Grant
    Filed: June 3, 2010
    Date of Patent: March 31, 2015
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Satoshi Shimano, Kensaku Horie, Toshinori Isobe
  • Patent number: 8993166
    Abstract: A battery with the high capacity, the superior cycle characteristics, and the superior initial charge and discharge efficiency, and an anode active material used for it are provided. The anode active material contains at least tin, cobalt, carbon, and phosphorus as an element. A carbon content is from 9.9 wt % to 29.7 wt %, a phosphorus content is from 0.1 wt % to 2.2 wt %, and a cobalt ration to the total of the tin and the cobalt is from 24 wt % to 70 wt %.
    Type: Grant
    Filed: February 6, 2008
    Date of Patent: March 31, 2015
    Assignee: Sony Corporation
    Inventors: Satoshi Mizutani, Hiroshi Inoue, Akinori Kita, Akira Yamaguchi
  • Patent number: 8992801
    Abstract: The present invention relates to a novel electroactive material which comprises a graphitic carbon phase C and a (semi)metal phase and/or a (semimetal) oxide phase (MOx phase) and also to the use of the electroactive material in anodes for lithium ion cells. The invention further relates to a process for producing such materials. The electroactive material comprises: a) a carbon phase C; b) at least one MOx phase, where M is a metal or semimetal, x is from 0 to <k/2, where k is the maximum valence of the metal or semimetal. In the electroactive material of the invention, the carbon phase C and the MOx phase form essentially co-continuous phase domains, with the average distance between two neighboring domains of identical phases being not more than 10 nm, in particular not more than 5 nm and especially not more than 2 nm.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: March 31, 2015
    Assignee: BASF SE
    Inventors: Hannah Maria König, Kirill Bramnik, Arno Lange, Phillip Hanefeld
  • Patent number: 8993164
    Abstract: A support for carrying a catalyst is obtained by carbonizing raw materials containing a nitrogen-containing organic substance and a metal. The support for carrying a catalyst may have a peak at a diffraction angle of around 26° in an X-ray diffraction pattern, the peak including 20 to 45% of a graphite-like structure component and 55 to 80% of an amorphous component. In addition, the support for carrying a catalyst may have an intensity ratio of a band at 1,360 cm?1 to a band at 1,580 cm?1 (I1,360/I1,580) in a Raman spectrum of 0.3 or more and 1.0 or less. In addition, the support for carrying a catalyst may be obtained by carbonizing the raw materials to obtain a carbonized material, subjecting the carbonized material to a metal removal treatment, and subjecting the resultant to a heat treatment.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: March 31, 2015
    Assignees: Nisshinbo Holdings Inc., National University Corporation Gunma University
    Inventors: Erina Matsuzaka, Takeaki Kishimoto, Jun-ichi Ozaki
  • Patent number: 8992739
    Abstract: A method for manufacturing a silicon-based nanocomposite anode active material for the lithium secondary battery and the lithium secondary battery using same, comprising the following steps: a first step of mounting a silicon-based wire between two electrodes, which are placed in a methanol-based solvent atmosphere, and manufacturing a dispersion solution in which silicon-based nanoparticles are dispersed by means of high-voltage pulse discharging; and a second step of manufacturing a silicon-based nanocomposite body by compositing the silicon-based nanoparticles in the solution and a different type of material.
    Type: Grant
    Filed: June 5, 2013
    Date of Patent: March 31, 2015
    Assignee: Korea Electrotechnology Research Institute
    Inventors: Yoon-cheol Ha, Chil-hoon Doh, Chu-hyun Cho
  • Patent number: 8993163
    Abstract: A positive electrode active material provided by the present invention is formed of a lithium-nickel-containing metal phosphate compound represented by a general formula: LiNi(1-x)MxPO4(1) (in Formula (1), M is one or more metal elements selected from divalent and trivalent metal elements, and x is a number satisfying the condition 0<x<0.5). At least part of a surface of the lithium-nickel-containing metal phosphate compound is covered with carbon, and the lithium-nickel-containing metal phosphate compound covered with carbon has an olivine-type crystal structure confirmed by structure analysis by X-ray diffraction.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: March 31, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Jun Yoshida
  • Patent number: 8993165
    Abstract: The present disclosure is directed at clathrate (Type I) allotropes of silicon, germanium and tin. In method form, the present disclosure is directed at methods for forming clathrate allotropes of silicon, germanium or tin which methods lead to the formation of empty cage structures suitable for use as electrodes in rechargeable type batteries.
    Type: Grant
    Filed: March 27, 2014
    Date of Patent: March 31, 2015
    Assignee: Southwest Research Institute
    Inventors: Michael A. Miller, Kwai S. Chan, Wuwei Liang, Candace K. Chan
  • Patent number: 8992795
    Abstract: In a manufacturing process of a positive electrode active material for a power storage device, which includes a lithium silicate compound represented by a general formula Li2MSiO4, heat treatment is performed at a high temperature on a mixture material, grinding treatment is performed, a carbon-based material is added, and then heat treatment is performed again. Therefore, the reactivity between the substances contained in the mixture material is enhanced, favorable crystallinity can be obtained, and further microparticulation of the grain size of crystal which is grown larger by the high temperature treatment and crystallinity recovery are achieved; and at the same time, carbon can be supported on the surfaces of particles of the crystallized mixture material. Accordingly, a positive electrode active material for a power storage device, in which electron conductivity is improved, can be manufactured.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: March 31, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Masaki Yamakaji, Koji Nara, Mako Motoyoshi
  • Publication number: 20150086870
    Abstract: An electrode material for nonaqueous electrolyte secondary battery of an embodiment includes a silicon nanoparticle, and a coating layer coating the silicon nanoparticle. The coating layer includes an amorphous silicon oxide and a silicon carbide phase. At least a part of the silicon carbide phase exists on a surface of the silicon nanoparticle.
    Type: Application
    Filed: September 5, 2014
    Publication date: March 26, 2015
    Inventors: Takayuki FUKASAWA, Kenji ESSAKI, Tomokazu MORITA, Takashi KUBOKI, Mitsuhiro OKI, Yasuhiro GOTO
  • Publication number: 20150086841
    Abstract: According to one embodiment, a nonaqueous electrolyte battery including a positive electrode, a negative electrode, a separator, a copper-containing member, and a nonaqueous electrolyte is provided. The negative electrode includes a negative electrode current collector and a negative electrode active material-containing layer. The negative electrode current collector includes aluminum or aluminum alloy. The negative electrode active material-containing layer is formed on the negative electrode current collector. The copper-containing member includes copper or copper alloy. The copper-containing member is electrically connected to the negative electrode current collector to prevent from over-discharge.
    Type: Application
    Filed: September 18, 2014
    Publication date: March 26, 2015
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Norio TAKAMI, Hiroki INAGAKI, Wen ZHANG
  • Publication number: 20150086879
    Abstract: An anode in which an anode active material layer is arranged on an anode current collector. The anode active material layer includes anode active material particles made of an anode active material including at least one of silicon and tin as an element. An oxide-containing film including an oxide of at least one kind selected from the group consisting of silicon, germanium and tin is formed in a region in contact with an electrolytic solution of the surface of each anode active material particle by a liquid-phase method such as a liquid-phase deposition method. The region in contact with the electrolytic solution of the surface of each anode active material particle is covered with the oxide-containing film, to thereby improve the chemical stability of the anode and the charge-discharge efficiency. The thickness of the oxide-containing film is preferably within a range from 0.1 nm to 500 nm both inclusive.
    Type: Application
    Filed: December 2, 2014
    Publication date: March 26, 2015
    Inventors: Hiroyuki Yamaguchi, Hiroshi Horiuchi, Kenichi Kawase, Tadahiko Kubota, Hideki Nakai, Takakazu Hirose
  • Publication number: 20150079472
    Abstract: A method for manufacturing silicon flakes includes steps as follows. A silicon material is contacted with a machining tool which includes at least one abrasive particle fixedly disposed thereon. The silicon material is scraped along a displacement path with respect to the machining tool to generate the silicon flakes having various particle sizes.
    Type: Application
    Filed: June 13, 2014
    Publication date: March 19, 2015
    Inventors: Kun-Fung LIN, Rong-Ruey JENG, Han-Tu LIN, Chih-Hung CHAN
  • Patent number: 8980473
    Abstract: An anode and a battery capable of improving battery characteristics such as cycle characteristics are provided. A coating containing at least one from the group consisting of oligomers having a polyene structure and derivatives thereof is provided on the surface of an anode active material layer. The anode active material layer contains a substance containing Si or Sn as an element as an anode active material. By the coating, oxidation of the anode active material layer is inhibited, and decomposition reaction of the electrolytic solution is inhibited.
    Type: Grant
    Filed: November 9, 2005
    Date of Patent: March 17, 2015
    Assignee: Sony Corporation
    Inventors: Hideki Nakai, Akinori Kita, Atsumichi Kawashima, Tadahiko Kubota
  • Patent number: 8980125
    Abstract: An active material for a nonaqueous electrolyte secondary battery includes first particles and second particles provided to coat the first particles so as to be scattered on the surfaces of the first particles. The circularity of the first particles coated with the second particles is 0.800 to 0.950, and the ratio r1/r2 of the average particle diameter r1 of the second particles to the average particle diameter r2 of the first particles is 1/20 to 1/2.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: March 17, 2015
    Assignee: Sony Corporation
    Inventor: Kazuaki Endoh
  • Patent number: 8980474
    Abstract: A lithium secondary battery includes a positive electrode, a negative electrode, and an electrolyte. The negative electrode includes a current collector, an active material layer on the current collector and including an amorphous silicon oxide represented by SiOx (0.95<x<1.7), and an SEI layer on the active material layer and including about 70 area % or more of protrusion parts having a size of about 5 nm to 300 nm during charging of the battery.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: March 17, 2015
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Tae-Gon Kim, Hee-Joon Chun, Joon-Sup Kim, Wan-Uk Choi, Hisaki Tarui, Jea-Woan Lee, Jae-Yul Ryu, Young-Chang Lim, Seung-Hee Park
  • Patent number: 8980480
    Abstract: The present disclosure is directed to a primary electrochemical cell having an improved discharge performance, and/or improved reliability under physical abuse and/or partial discharge. More particularly, the present disclosure is directed to such a primary cell that comprises an improved cathode material comprising iron disulfide and a select pH-modifier and an improved non-aqueous electrolyte that comprises a solvent, a salt, pH-modifiers, and selected organic or inorganic additives, which improve cell stability and discharge performance.
    Type: Grant
    Filed: July 11, 2012
    Date of Patent: March 17, 2015
    Assignee: Spectrum Brands, Inc.
    Inventors: M. Edgar Armacanqui, Wen Li, John Hadley, Janna Rose
  • Publication number: 20150072224
    Abstract: A valve regulated lead-acid battery includes a negative electrode plate, a positive electrode plate, and a solution-retainer interposed between the negative electrode plate and the positive electrode plate and retaining an electrolyte solution. The negative electrode plate includes a surface layer in which Si is contained in an electrode material. An alkali metal element is contained in the electrolyte solution.
    Type: Application
    Filed: August 28, 2014
    Publication date: March 12, 2015
    Inventors: Aya Harada, Takao Tsutsumi
  • Publication number: 20150072240
    Abstract: Provided are a porous silicon-based particle including a silicon (Si) or SiOx (0<x<2) particle, wherein the particle includes a plurality of nonlinear pores, and the nonlinear pores are formed as open pores in a surface of the particle, and a method of preparing the porous silicon-based particles. Porous silicon-based particles according to an embodiment of the present invention may be more easily dispersed in an anode active material slurry, may minimize side reactions with an electrolyte, and may reduce volume expansion during charge and discharge. Also, according to an embodiment of the present invention, the shape, form, and size of pores formed in the porous silicon-based particle may be controlled by adjusting the type of a metal catalyst, the concentration of the catalyst, and etching time.
    Type: Application
    Filed: November 14, 2014
    Publication date: March 12, 2015
    Applicants: LG CHEM, LTD., SEJIN INNOTECH. CO., LTD.
    Inventors: Jung Woo Yoo, Mi Rim Lee, Yong Ju Lee, Eun Kyung Kim, Han Ho Lee, Ji Hyun Yoon, Byoung Man Bang, Chang Rae Lee, Il Kyo Jeong, Mi Kyeong Lee
  • Publication number: 20150072238
    Abstract: Provided is an anode active material including a transition metal-pyrophosphate of Chemical Formula 1 below: M2P2O7??<Chemical Formula 1> where M is any one selected from the group consisting of titanium (Ti), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), ruthenium (Ru), palladium (Pd), and silver (Ag), or two or more elements thereof. Since the anode active material of the present invention is stable and has excellent conversion reactivity while including only transition metal and phosphate without using lithium in which the price thereof is continuously increased, the anode active material of the present invention may improve capacity characteristics.
    Type: Application
    Filed: November 13, 2014
    Publication date: March 12, 2015
    Applicant: LG CHEM, LTD.
    Inventors: Sang Wook Woo, Ji Heon Ryu, Eun Kyung Kim, Je Young Kim, Sang Jo An, Min Young Hong
  • Publication number: 20150072220
    Abstract: Provided are a lithium secondary battery wherein gas generation associated with charging and discharging can be suppressed even in case where silicon and silicon oxide are contained as negative electrode active materials, and wherein deformation due to the gas generation can be suppressed even in case where a resin film is used as an outer package; and a method for manufacturing the lithium secondary battery. A lithium secondary battery comprises a negative electrode containing a negative electrode active material, a positive electrode containing a positive electrode active material, and an electrolytic solution used to immerse the negative electrode active material and the positive electrode active material, wherein the negative electrode active material contains silicon and silicon oxide that have been subjected to a reduction treatment.
    Type: Application
    Filed: March 22, 2013
    Publication date: March 12, 2015
    Applicant: NEC CORPORATION
    Inventors: Tetsuya Kajita, Jiro Iriyama, Shin Serizawa
  • Publication number: 20150072237
    Abstract: Provided is an anode active material including a transition metal-metaphosphate of Chemical Formula 1: M(PO3)2??<Chemical Formula 1> where M is any one selected from the group consisting of titanium (Ti), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), ruthenium (Ru), palladium (Pd), and silver (Ag), or two or more elements thereof. Since the anode active material of the present invention is stable and has excellent conversion reactivity while including only transition metal and phosphate without using lithium in which the price thereof is continuously increased, the anode active material of the present invention may improve capacity characteristics.
    Type: Application
    Filed: November 13, 2014
    Publication date: March 12, 2015
    Applicant: LG Chem, Ltd.
    Inventors: Sang Wook Woo, Ji Heon Ryu, Eun Kyung Kim, Je Young Kim, Sang Jo An, Min Young Hong
  • Publication number: 20150072235
    Abstract: Provided is an apparatus for manufacturing a powder alloy used as an anode active material of a secondary battery. The apparatus includes a nozzle unit for melting and spraying an alloy, a cooling unit for cooling down the alloy sprayed from the nozzle unit, a grinding unit for grinding the alloy cooled by the cooling unit, and a first chamber accommodating the nozzle unit, the cooling unit, and the grinding unit, and maintained to be a vacuum state.
    Type: Application
    Filed: December 30, 2013
    Publication date: March 12, 2015
    Applicant: MK ELECTRON CO., LTD.
    Inventors: Soon Ho HONG, Jong Soo CHO, Hyung Ki AHN
  • Patent number: 8974963
    Abstract: A lithium secondary battery includes: a positive electrode that contains a positive electrode active material; a negative electrode; and a nonaqueous electrolyte. The positive electrode active material is amorphous and is expressed by LixA[PaM1-a]yOz where, in the formula, A is Mn or Ni; M is a glass former element having an electronegativity lower than P; and x, y, a and z respectively satisfy 1<x?2.5, 0<y?3, 0?a<1 and z=(x+(valence of A)+(valence of P)×a×y+(valence of M)×(1?a)×y)/2.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: March 10, 2015
    Assignees: Toyota Jidosha Kabushiki Kaisha, Kyushu University, National University Corporation
    Inventors: Motoshi Isono, Shigeto Okada, Jun-ichi Yamaki
  • Patent number: 8974959
    Abstract: Multi-component intermetallic negative electrodes prepared by electrochemical deposition for non-aqueous lithium cells and batteries are disclosed. More specifically, the invention relates to composite intermetallic electrodes comprising two or more compounds containing metallic or metaloid elements, at least one element of which can react with lithium to form binary, ternary, quaternary or higher order compounds, these compounds being in combination with one or more other metals that are essentially inactive toward lithium and act predominantly, but not necessarily exclusively, to the electronic conductivity of, and as current collection agent for, the electrode. The invention relates more specifically to negative electrode materials that provide an operating potential between 0.05 and 2.0 V vs. metallic lithium.
    Type: Grant
    Filed: July 16, 2009
    Date of Patent: March 10, 2015
    Assignee: UChicago Argonne, LLC
    Inventors: Michael M. Thackeray, Lynn Trahey, John T. Vaughey
  • Patent number: 8974961
    Abstract: Disclosed are an anode active material for secondary batteries, capable of intercalating and deintercalating ions, comprising a core comprising a crystalline carbon-based material and a composite coating layer comprising one or more materials selected from the group consisting of low crystalline carbon and amorphous carbon, and a metal and/or a non-metal capable of intercalating and deintercalating ions, wherein the composite coating layer comprises a matrix comprising one component selected from one or more materials selected from the group consisting of low crystalline carbon and amorphous carbon and a metal and/or a non-metal capable of intercalating and deintercalating ions, and a filler comprising the other component, incorporated in the matrix, and a secondary battery comprising the anode active material.
    Type: Grant
    Filed: November 29, 2012
    Date of Patent: March 10, 2015
    Assignee: LG Chem, Ltd.
    Inventors: Sung-Kyun Chang, WonSeok Jang, Je Young Kim, JungMin Han
  • Patent number: 8974946
    Abstract: A battery with a sulfur-containing cathode, an anode, and a separator between the cathode and the anode has a coating comprising a single-lithium ion conductor on at least one of the cathode or the separator.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: March 10, 2015
    Assignee: GM Global Technology Operations
    Inventors: Mei Cai, Mark W. Verbrugge, Xiaosong Huang, Li Yang
  • Patent number: 8974962
    Abstract: Disclosed are an anode active material for secondary batteries, capable of intercalating and deintercalating ions, the anode active material including a core including a crystalline carbon-based material, and a composite coating layer including one or more materials selected from the group consisting of low crystalline carbon and amorphous carbon, and a hydrophilic material, wherein the composite coating layer includes a matrix comprising one component selected from one or more materials selected from the group consisting of low crystalline carbon and amorphous carbon, and a hydrophilic material, and a filler including the other component, incorporated in the matrix, and a secondary battery including the anode active material.
    Type: Grant
    Filed: May 29, 2013
    Date of Patent: March 10, 2015
    Assignee: LG Chem, Ltd.
    Inventors: Sung-Kyun Chang, WonSeok Chang, Je Young Kim, JungMin Han
  • Patent number: 8974966
    Abstract: A negative electrode for a lithium rechargeable battery comprising: active material layers including metal-carbon combination active material particles including at least one active material selected from metal or metal oxide and carbonaceous active material, soft graphite particles, and a binder for binding the metal-carbon combination active material particles and the soft graphite particles; and a current collector on which surface the active material layers are stacked, wherein the soft graphite particles have a pellet density of 1.6˜1.9 g/cc when a pellet is formed at a press pressure of 1 ton/cm2, and the lithium rechargeable battery adopting the negative electrode.
    Type: Grant
    Filed: October 22, 2008
    Date of Patent: March 10, 2015
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Bongchull Kim, Jangho Lee, Dongwoo Kim, Hayoung Lee
  • Patent number: 8974969
    Abstract: A mixed carbon material is useful for an electrode of a nonaqueous secondary battery. The material has two component materials: carbon material A and carbon material B. Both materials have high capacity and rapid charge-discharge characteristics. Carbon material A, a multilayer-structure material containing an amorphous carbon covering the surface of a graphitic particle, has particularly excellent charging-discharging properties. Carbon material B has particularly excellent electrical conductivity properties. A battery with an electrode having the mixed carbon material can have both rapid charge-discharge characteristics and high cycle characteristics.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: March 10, 2015
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Takashi Kameda, Hideharu Sato
  • Patent number: 8974960
    Abstract: The present disclosure includes a sulfur-carbon nanotube composite comprising a sheet of carbon nanotubes and sulfur nucleated upon the carbon nanotubes, and methods for synthesizing the same. In some embodiments, the sulfur-carbon composite may further be binder-free and include a sheet of carbon nanotubes, rendering a binder and a current collector unnecessary. In other embodiments of the present disclosure, a cathode comprising the sulfur-carbon nanotube composite is disclosed. In additional embodiments of the present disclosure, batteries may include the cathodes described herein. Those batteries may achieve high rate capabilities.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: March 10, 2015
    Assignee: Board of Regents, The University of Texas System
    Inventors: Arumugam Manthiram, Yu-Sheng Su
  • Patent number: 8974957
    Abstract: Provided is a cathode active material having a composition represented by the following Formula I: LiFe(P1-XO4) (I) wherein a molar fraction (1?x) of phosphorus (P) is in the range of 0.910 to 0.999, to allow operational efficiency of the cathode active material to be leveled to a lower operational efficiency of an anode active material and improve energy density of the cathode active material. Furthermore, a cathode active material, wherein a molar fraction (1?x) of phosphorus (P) is lower than 1, contains both Fe2+ and Fe3+, thus advantageously preventing structural deformation, improving ionic conductivity, exhibiting superior rate properties and inhibiting IR drop upon charge/discharge, thereby imparting high energy density to batteries.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: March 10, 2015
    Assignee: LG Chem, Ltd.
    Inventors: Sanghoon Choy, Yong Tae Lee, Hong-Kyu Park, Soo Min Park, Hyo-shik Kil, Cheol-Hee Park, Ji Eun Lee
  • Patent number: 8974967
    Abstract: As consistent with various embodiments, an electronic device includes a carbon nanotube film having a plurality of carbon nanotubes. In certain embodiments, a coating, such as an inorganic coating, is formed on a surface of carbon nanotube. The nanotube film supports the device and facilitates electrical conduction therein. The coated nanotube is amenable to implementation with devices such as thin film batteries, a battery separator, thin film solar cells and high-energy Lithium ion batteries.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: March 10, 2015
    Assignee: The Board of Trustees of the Leland Stanford Junior Univerity
    Inventors: Li-Feng Cui, Yi Cui, Liangbing Hu
  • Publication number: 20150064555
    Abstract: Provided is a novel negative electrode for nonaqueous electrolyte secondary batteries, which is capable of improving cycle characteristics and is also capable of suppressing aggregation of active material particles in a slurry. The negative electrode active material for nonaqueous electrolyte secondary batteries, which contains silicon and has a D50 of 0.1 ?m to 5 ?m, and the amount of water measured at 120° C. to 300° C. by the Karl-Fischer method (referred to as “amount of water”) per specific surface area (referred to as “CS”), that is, the amount of water/CS, of 0.1 to 80 ppm/(m2/cc).
    Type: Application
    Filed: April 2, 2013
    Publication date: March 5, 2015
    Applicant: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Daisuke Inoue, Yanko Marinov Todorov, Shinya Kagei
  • Publication number: 20150064564
    Abstract: A composite material for a lithium ion battery anode and a method of producing the same is disclosed, wherein the composite material comprises a porous electrode composite material. Pores with carbon-based material forming at the pore wall are created in situ. The porous electrode composite material provide space to accommodate volumetric changes during battery charging and discharging while the carbon-based material improved the conductivity of the electrode composite material. The method creates pores to have a denser carbon content inside the pores and a wider mouth of the pores to enhance lithium ion distribution.
    Type: Application
    Filed: August 30, 2013
    Publication date: March 5, 2015
    Applicant: Hong Kong Applied Science and Technology Research Institute Co. Ltd.
    Inventors: Pau Yee LIM, Yingkai JIANG, Man On FU, Tak Cheung YAU
  • Publication number: 20150064556
    Abstract: An electrode for a rechargeable battery and a rechargeable battery, the electrode including a current collector; an electrode active material layer; and an electrolyte solution impregnation layer, wherein the electrolyte solution impregnation layer includes a metal oxide and a conductive material.
    Type: Application
    Filed: January 17, 2014
    Publication date: March 5, 2015
    Applicant: SAMSUNG SDI CO., LTD.
    Inventors: Jin-Hyon LEE, Ju-Hee SOHN, Jung-Yeon WON, Eun-Young GOH, Jong-Ki LEE, Sang-In PARK
  • Patent number: 8968915
    Abstract: Provided is a flat plate electrode cell, comprises positive electrode plates and negative electrode plates. The positive electrode plates each comprise manganese and compressed metal foam. The negative electrode plates each comprise zinc and compressed metal foam. Both the positive and negative electrodes can have alignment tabs, wherein the flat plate electrode cell can further comprise electrical terminals formed from the aligned tabs. The rechargeable flat plate electrode cell of the present disclosure, formed from compressed metal foam, provides both low resistance and high rate performance to the electrodes and the cell. Examples of improvements over round bobbin and flat plate cells are current density, memory effect, shelf life, charge retention, and voltage level of discharge curve. In particular, the rechargeable flat plate electrode cell of the present disclosure provides longer cycle life with reduced capacity fade as compared with known round bobbin and flat plate cells.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: March 3, 2015
    Assignee: Encell Technology, Inc.
    Inventor: Randy Ogg
  • Patent number: 8968934
    Abstract: The present invention relates to an electrode for a secondary battery, comprising a collector and a porous electrode active material layer disposed on at least one surface of the collector by spraying metal oxide nanoparticle dispersion, wherein the porous electrode active material comprises one selected from the group consisting of aggregated metal oxide nanoparticles, metal oxide nanoparticles and a mixture thereof, which is capable of undergoing stable high speed charging/discharging cycles under a high-energy-density and high-current condition.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: March 3, 2015
    Assignee: Korea Institute of Science and Technology
    Inventor: Il Doo Kim
  • Patent number: 8968930
    Abstract: An electrode for a nonaqueous electrolyte secondary battery includes a current collector and an electrode material disposed on the current collector. the electrode material has a thickness of 50 ?m or larger. The electrode material contains at least active material particles, an electro-conductive material, and a crack preventive material. An average particle diameter of the crack preventive material is two times or larger than an average particle diameter of the active material particles.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: March 3, 2015
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Shumpei Nishinaka, Takahiro Matsuyama
  • Patent number: 8968917
    Abstract: Provided is a flat plate electrode cell, comprises positive electrode plates and negative electrode plates. The positive electrode plates each comprise manganese and compressed metal foam. The negative electrode plates each comprise zinc and compressed metal foam. Both the positive and negative electrodes can have alignment tabs, wherein the flat plate electrode cell can further comprise electrical terminals tanned from the aligned tabs. The rechargeable flat plate electrode cell of the present disclosure, formed from compressed metal foam, provides both low resistance and high rate performance to the electrodes and the cell. Examples of improvements over round bobbin and flat plate cells are current density, memory effect, shelf life, charge retention, and voltage level of discharge curve. In particular, the rechargeable flat plate electrode cell of the present disclosure provides longer cycle life with reduced capacity fade as compared with known round bobbin and flat plate cells.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: March 3, 2015
    Assignee: Encell Technology, Inc.
    Inventor: Randy Ogg
  • Patent number: 8968928
    Abstract: Primer arrangements that facilitate electrical conduction and adhesive connection between an electroactive material and a current collector are presented. In some embodiments, primer arrangements described herein include first and second primer layers. The first primer layer may be designed to provide good adhesion to a conductive support. In one particular embodiment, the first primer layer comprises a substantially uncrosslinked polymer having hydroxyl functional groups, e.g., polyvinyl alcohol. The materials used to form the second primer layer may be chosen such that the second primer layer adheres well to both the first primer layer and an electroactive layer. In certain embodiments including combinations of first and second primer layers, one or both of the first and second primer layers comprises less than 30% by weight of a crosslinked polymeric material. A primer including only a single layer of polymeric material is also provided.
    Type: Grant
    Filed: November 12, 2013
    Date of Patent: March 3, 2015
    Assignee: Sion Power Corporation
    Inventors: Yongzhong Wang, Zhesheng Xu, John D. Affinito, Charles D. Skaggs
  • Patent number: 8968929
    Abstract: The present disclosure is directed at an electrode and methods for forming such electrode for a battery wherein the electrode comprises silicon clathrate. The silicon clathrate may include silicon clathrate Si46 containing an arrangement of 20-atom and 24-atom cages fused together through 5 atom pentagonal rings and/or silicon clathrate Si34 containing an arrangement of 20-atom and 28-atom cages fused together through 5 atom pentagonal rings. The silicon clathrate may be present as particles having a largest linear dimension in the range of 0.1 ?m to 100.0 ?m.
    Type: Grant
    Filed: July 23, 2010
    Date of Patent: March 3, 2015
    Assignee: Southwest Research Institute
    Inventors: Kwai S. Chan, Candace K. Chan, Wuwei Liang
  • Patent number: 8968921
    Abstract: Electrochemical cells of the present invention are versatile and include primary and secondary cells useful for a range of important applications including use in portable electronic devices. Electrochemical cells of the present invention also exhibit enhanced safety and stability relative to conventional state of the art primary lithium batteries and lithium ion secondary batteries. For example, electrochemical cells of the present invention include secondary electrochemical cells using anion charge carriers capable of accommodation by positive and negative electrodes comprising anion host materials, which entirely eliminate the need for metallic lithium or dissolved lithium ion in these systems.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: March 3, 2015
    Assignees: California Institute of Technology, Centre National de la Recherche Scientifique (C.N.R.S.)
    Inventor: Rachid Yazami
  • Patent number: 8968935
    Abstract: A lithium ion secondary battery having more superior cycle characteristics is provided. The lithium ion secondary battery includes a cathode, an anode, and an electrolyte. The anode has an anode active material layer in which a first layer containing silicon as an anode active material, and a second layer containing silicon and a metal element as an anode active material are alternately layered on an anode current collector. At least one of a lamellar oxide-containing region and a lamellar nitrogen-containing region is inserted in at least one of the first layer and the second layer.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: March 3, 2015
    Assignee: Sony Corporation
    Inventors: Shunsuke Kurasawa, Kenichi Kawase, Takashi Fujinaga
  • Publication number: 20150056511
    Abstract: To provide a cathode active material for a lithium ion secondary battery, which has high packing properties and high volume capacity density, and a method for its production.
    Type: Application
    Filed: November 5, 2014
    Publication date: February 26, 2015
    Applicant: AGC SEIMI CHEMICAL CO., LTD.
    Inventors: Satoshi TAKAMATSU, Yukimitsu WAKASUGI, Megumi UCHIDA
  • Publication number: 20150056507
    Abstract: An example of a positive electrode includes sulfur based active material particles, a carbon coating encapsulating the sulfur based active material particles, and a structure coating formed on a surface of the carbon coating. The structure coating is selected from the group consisting of a metal oxide composite structure, a mixed carbon and metal oxide composite structure, and a polymeric structure coating.
    Type: Application
    Filed: August 20, 2014
    Publication date: February 26, 2015
    Inventors: Gayatri Vyas Dadheech, Mei Cai, Li Yang
  • Patent number: 8962185
    Abstract: Provided is a cathode mix for lithium secondary batteries, comprising a cathode active material having a composition represented by the following Formula I: LiFe(P1-XO4) (I) wherein a molar fraction (1?x) of phosphorus (P) is in the range of 0.910 to 0.999, to allow operational efficiency of the cathode active material to be leveled to a lower operational efficiency of an anode active material and improve energy density of the cathode active material. The cathode mix maximizes operational efficiency of batteries, minimizes electrode waste and thus reduces manufacturing costs of batteries. Furthermore, The cathode active material, wherein a molar fraction (1?x) of phosphorus (P) is lower than 1, according to the present invention contains both Fe2+ and Fe3+, thus advantageously causing no structural deformation, improving ionic conductivity, exhibiting superior rate properties, inhibiting IR drop upon charge/discharge, thereby imparting high energy density to batteries.
    Type: Grant
    Filed: February 19, 2010
    Date of Patent: February 24, 2015
    Assignee: LG Chem, Ltd.
    Inventors: Sanghoon Choy, Yong Tae Lee, Hong-Kyu Park, Soo Min Park, Hyo-Shik Kil, Cheol-Hee Park
  • Patent number: 8962184
    Abstract: Disclosed are an anode active material for secondary batteries, capable of intercalating and deintercalating ions, the anode active material including a core including a crystalline carbon-based material, and a composite coating layer including one or more materials selected from the group consisting of low crystalline carbon and amorphous carbon, and silicon oxide capable of intercalating and deintercalating ions, wherein the composite coating layer includes a matrix comprising one component selected from (a) the one or more materials selected from the group consisting of low crystalline carbon and amorphous carbon and (b) the silicon oxide capable of intercalating and deintercalating ions, and a filler including the other component, incorporated in the matrix, and a secondary battery including the anode active material.
    Type: Grant
    Filed: June 7, 2013
    Date of Patent: February 24, 2015
    Assignee: LG Chem, Ltd.
    Inventors: Sung-Kyun Chang, WonSeok Chang, Je Young Kim, JungMin Han
  • Patent number: 8961767
    Abstract: An apparatus and method for measuring the isoelectric pH for materials deposited on or otherwise affixed onto and in contact with an electrode surface, and a method for utilizing the isoelectric pH to form nanometer thickness, self-assembled layers on the material, are described. Forming such layers utilizing information obtained about the isoelectric pH values of the substrate and the coating is advantageous since the growth of the coating is self-limiting because once the surface charge has been neutralized there is no longer a driving force for the solid electrolyte coating thickness to increase, and uniform coatings without pinhole defects will be produced because a local driving force for assembly will exist if any bare electrode material is exposed to the solution. The present self-assembly procedure, when combined with electrodeposition, may be used to increase the coating thickness.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: February 24, 2015
    Assignee: Colorado State University Research Foundation
    Inventors: Amy L. Prieto, Derek C. Johnson, James M. Mosby