Chemically Specified Inorganic Electrochemically Active Material Containing Patents (Class 429/218.1)
  • Patent number: 8871117
    Abstract: Provided is a cathode for lithium secondary batteries comprising a combination of one or more compounds selected from Formula 1 and one or more compounds selected from Formula 2. The cathode provides a high-power lithium secondary battery composed of a non-aqueous electrolyte which exhibits long lifespan, long-period storage properties and superior stability at ambient temperature and high temperatures.
    Type: Grant
    Filed: April 16, 2013
    Date of Patent: October 28, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Sung Kyun Chang, Hong-Kyu Park, Sinyoung Park, Soo Min Park, Ji Eun Lee
  • Patent number: 8871385
    Abstract: An electrode comprising a polyphosphazene cyclomatrix and particles within pores of the polyphosphazene cyclomatrix. The polyphosphazene cyclomatrix comprises a plurality of phosphazene compounds and a plurality of cross-linkages. Each phosphazene compound of the plurality of phosphazene compounds comprises a plurality of phosphorus-nitrogen units, and at least one pendant group bonded to each phosphorus atom of the plurality of phosphorus-nitrogen units. Each phosphorus-nitrogen unit is bonded to an adjacent phosphorus-nitrogen unit. Each cross-linkage of the plurality of cross-linkages bonds at least one pendant group of one phosphazene compound of the plurality of phosphazene compounds with the at least one pendant group of another phosphazene compound of the plurality of phosphazene compounds. A method of forming a negative electrode and an electrochemical cell are also described.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: October 28, 2014
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Kevin L. Gering, Frederick F. Stewart, Aaron D. Wilson, Mark L. Stone
  • Patent number: 8870975
    Abstract: Pillared particles of silicon or silicon-comprising material and a method of fabricating the same are disclosed. These particles may be used to create both a composite anode structure with a polymer binder, a conductive additive and a metal foil current collector, and an electrode structure. The structure of the particles overcomes the problems of charge/discharge capacity loss.
    Type: Grant
    Filed: November 3, 2010
    Date of Patent: October 28, 2014
    Assignee: Nexeon Ltd.
    Inventors: Mino Green, Feng-Ming Liu
  • Publication number: 20140315091
    Abstract: The adhesion between metal foil serving as a current collector and a negative electrode active material is increased to enable long-term reliability. An electrode active material layer (including a negative electrode active material or a positive electrode active material) is formed over a base, a metal film is formed over the electrode active material layer by sputtering, and then the base and the electrode active material layer are separated at the interface therebetween; thus, an electrode is formed. The electrode active material particles in contact with the metal film are bonded by being covered with the metal film formed by the sputtering. The electrode active material is used for at least one of a pair of electrodes (a negative electrode or a positive electrode) in a lithium-ion secondary battery.
    Type: Application
    Filed: April 4, 2014
    Publication date: October 23, 2014
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Minoru Takahashi
  • Publication number: 20140315085
    Abstract: Several embodiments related to batteries having electrodes with nanostructures, compositions of such nanostructures, and associated methods of making such electrodes are disclosed herein. In one embodiment, a method for producing an anode suitable for a lithium-ion battery comprising preparing a surface of a substrate material and forming a plurality of conductive nanostructures on the surface of the substrate material via electrodeposition without using a template.
    Type: Application
    Filed: June 2, 2012
    Publication date: October 23, 2014
    Applicant: WASHINGTON STATE UNIVERSITY
    Inventors: M. Grant Norton, Uttara Sahaym
  • Publication number: 20140315100
    Abstract: A rechargeable lithium-sulfur cell comprising an anode, a separator and/or electrolyte, a sulfur cathode, an optional anode current collector, and an optional cathode current collector, wherein the cathode comprises (a) exfoliated graphite worms that are interconnected to form a porous, conductive graphite flake network comprising pores having a size smaller than 100 nm; and (b) nano-scaled powder or coating of sulfur, sulfur compound, or lithium polysulfide disposed in the pores or coated on graphite flake surfaces wherein the powder or coating has a dimension less than 100 nm. The exfoliated graphite worm amount is in the range of 1% to 90% by weight and the amount of powder or coating is in the range of 99% to 10% by weight based on the total weight of exfoliated graphite worms and sulfur (sulfur compound or lithium polysulfide) combined. The cell exhibits an exceptionally high specific energy and a long cycle life.
    Type: Application
    Filed: April 22, 2013
    Publication date: October 23, 2014
    Inventors: Yanbo Wang, Bor Z. Jang, Hui He, Aruna Zhamu, Yi-jun Lin
  • Publication number: 20140315084
    Abstract: In accordance with an example embodiment of the present invention, apparatus is provided comprising first and second electrodes, first and second current collectors, an electrolyte, and a first contact layer; wherein the electrolyte is configured to separate the first and second electrodes; and wherein the first contact layer is configured to form an electrical contact between the first current collector and the first electrode.
    Type: Application
    Filed: April 18, 2013
    Publication date: October 23, 2014
    Applicant: Nokia Corporation
    Inventors: Yinglin LIU, Mark Allen, Piers Andrew
  • Publication number: 20140315086
    Abstract: This invention relates to a negative electrode material for lithium-ion batteries comprising silicon and having a chemically treated or coated surface influencing the zeta potential of the surface. The active material consists of particles or particles and wires comprising a core (11) comprising silicon, wherein the particles have a positive zeta potential in an interval between pH 3.5 and 9.5, and preferably between pH 4 and 9.5. The core is either chemically treated with an amino-functional metal oxide, or the core is at least partly covered with OySiHx groups, with 1<x<3, 1<y<3, and x>y, or is covered by adsorbed inorganic nanoparticles or cationic multivalent metal ions or oxides.
    Type: Application
    Filed: December 13, 2012
    Publication date: October 23, 2014
    Inventors: Stijn Put, Jan Gilleir, Kris Driesen, Jean-Sebastien Bridel, Nicolas Marx, Delphine Longrie, Dan V. Goia, John I. Njagi
  • Patent number: 8865352
    Abstract: An object of the present invention is to provide a negative electrode, an electrode assembly and an electric storage device. The negative electrode has a negative electrode layer containing: an active material containing an amorphous carbon particle capable of occluding and releasing at least one of an alkali metal and an alkaline earth metal; and a binder, the negative electrode layer having a plurality of pores; and the ratio S1/S2 of the specific surface area (S1) of micropores having a pore diameter of 1 nm or larger and 3 nm or smaller in the pores to the specific surface area (S2) of mesopores having a pore diameter of 20 nm or larger and 100 nm or smaller therein being 0.3 or higher and 0.9 or lower.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: October 21, 2014
    Assignee: GS Yuasa International Ltd.
    Inventors: Takeshi Sasaki, Yoshihiro Katayama
  • Patent number: 8865345
    Abstract: Various methods, systems, and apparatus for implementing aspects of the use of alloy anodes in three-dimensional lithium-ion batteries are disclosed, while accounting for volume change that occurs in these alloy anodes during charging and discharging. A three-dimensional lithium-ion battery according to certain embodiments comprises a battery enclosure, and an anode protruding from a first surface within the enclosure, with the anode having a first state and an expanded state, where the volume occupied by said anode is larger in the expanded state than in the first state. A first cathode is separated from the anode along a first direction, and a second cathode is separated from the anode along a second direction. A separator contacts the first cathode, the second cathode, and a portion of the anode. A gap is provided between the anode and the separator, the gap being larger in the first state than in the expanded state.
    Type: Grant
    Filed: January 11, 2008
    Date of Patent: October 21, 2014
    Assignee: Enovix Corporation
    Inventors: Murali Ramasubramanian, Ashok Lahiri
  • Publication number: 20140308588
    Abstract: A negative-electrode stuff has negative-electrode active-material particles including: an element being capable of sorbing and desorbing lithium ions, and being capable of undergoing an alloying reaction with lithium; or/and an elementary compound being capable of undergoing an alloying reaction with lithium. The negative-electrode active-material particles includes particles whose particle diameter is 1 ?m or more in an amount of 85% by volume or more of them when the entirety is taken as 100% by volume, exhibit a BET specific surface area that is 6 m2/g or less, and exhibits a “D50” that is 4.5 ?m or more.
    Type: Application
    Filed: October 3, 2012
    Publication date: October 16, 2014
    Applicant: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Yuichi Hirakawa, Manabu Miyoshi, Hideaki Shinoda, Takayuki Kato, Keiichi Hayashi, Kayo Mizuno, Yoshikatsu Kawabata, Megumi Yamamoto
  • Publication number: 20140308576
    Abstract: Process for fabrication of all-solid-state thin film batteries, said batteries comprising a film of anode materials, a film of solid electrolyte materials and a film of cathode materials, in which: each of these three films is deposited using an electrophoresis process, the anode film and the cathode film are each deposited on a conducting substrate, preferably a thin metal sheet or band, or a metalized insulating sheet or band or film, said conducting substrates or their conducting elements being useable as battery current collectors, the electrolyte film is deposited on the anode and/or cathode film, and in which said process also comprises at least one step in which said sheets or bands are stacked so as to form at least one battery with a “collector/anode/electrolyte/cathode/collector” type of stacked structure.
    Type: Application
    Filed: October 30, 2012
    Publication date: October 16, 2014
    Inventors: Fabien Gaben, Frédéric Bouyer, Bruno Vuillemin
  • Patent number: 8859149
    Abstract: A lithium secondary battery that has high capacity and excellent cycle characteristics is provided. The lithium ion secondary battery includes a cathode, an anode, and an electrolyte. The anode has, on an anode current collector, an anode active material layer including LixSiFy (1?x?2 and 5?y?6) as an anode active material.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: October 14, 2014
    Assignee: Sony Corporation
    Inventor: Toshikazu Nakamura
  • Patent number: 8859144
    Abstract: A particulate composite of silicon, tin, and aluminum (or other suitable metal) is prepared as a negative electrode composition with increased lithium insertion capacity and durability for use with a metal current collector in cells of a lithium-ion battery or a lithium-sulfur battery. This electrode material is formed such that the silicon is present as a distinct amorphous phase in separate matrix phases of crystalline tin and crystalline aluminum. While the distinct tin and aluminum phases provide electron conductivity, each phase accommodates the insertion and extraction of lithium in the operation of the cell and all phases interact in minimizing mechanical damage to the material as the cell experiences repeated charge and discharge cycles. Other suitable metals for use in the composite with silicon and tin include copper and titanium.
    Type: Grant
    Filed: January 10, 2014
    Date of Patent: October 14, 2014
    Assignee: GM Global Technology Operations LLC
    Inventor: Xingcheng Xiao
  • Publication number: 20140302391
    Abstract: The present disclosure is directed at clathrate (Type I) allotropes of silicon, germanium and tin. In method form, the present disclosure is directed at methods for forming clathrate allotropes of silicon, germanium or tin which methods lead to the formation of empty cage structures suitable for use as electrodes in rechargeable type batteries.
    Type: Application
    Filed: March 27, 2014
    Publication date: October 9, 2014
    Applicant: Southwest Research Institute
    Inventors: Michael A. MILLER, Kwai S. CHAN, Wuwei LIANG, Candace K. CHAN
  • Patent number: 8852769
    Abstract: A nonaqueous secondary battery includes a current cutoff mechanism that cuts off a current in a short period of time in response to a rise in pressure inside a battery outer body in at least one of a conductive path through which a current is taken out from a positive electrode plate to outside of the battery and a conductive path through which a current is taken out from a negative electrode plate to outside of the battery. At least one type selected from an oligomer containing a cyclohexyl group and a phenyl group, a modified product of the oligomer containing a cyclohexyl group and a phenyl group, a polymer containing a cyclohexyl group and a phenyl group, and a modified product of the polymer containing a cyclohexyl group and a phenyl group is present on the surface of the positive electrode plate.
    Type: Grant
    Filed: October 24, 2011
    Date of Patent: October 7, 2014
    Assignee: SANYO Electric Co., Ltd.
    Inventors: Masahiro Iyori, Hirofusa Tanaka, Naoki Terada, Seiji Omura, Yasuhiro Yamauchi, Toshiyuki Nohma, Masahide Miyake, Yasuyuki Kusumoto, Shigeki Matsuta, Toyoki Fujihara, Takeshi Yoshida
  • Patent number: 8852809
    Abstract: A positive electrode for a rechargeable lithium battery capable of providing a high voltage and a high voltage rechargeable lithium battery including the same, wherein the positive electrode includes a positive active material and a capacitor-reactive carbonaceous material having a specific surface area at or between 10 m2/g and 100 m2/g.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: October 7, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Kyeu-Yoon Sheem, Bok-Hyun Ka, Sumihito Ishida, Da-Woon Han, Eui-Hwan Song
  • Patent number: 8852803
    Abstract: A composite includes a compound selected from the group consisting of a lithium lanthanum zirconium oxide and a lithium lanthanum tantalum oxide; a lanthanum oxide; and an oxide selected from the group consisting of a lanthanum zirconium oxide and a lanthanum tantalum oxide. An electrode active material for a secondary lithium battery may include such composite. Methods of preparing the composite, an electrode for a secondary lithium battery including the electrode active material, and a secondary lithium battery including the electrode are disclosed.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: October 7, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Sung-Hwan Moon, Yury Matulevich, Jae-Hyuk Kim, Hee-Young Chu, Myung-Hwan Jeong, Chang-Ui Jeong, Jong-Seo Choi
  • Patent number: 8852802
    Abstract: A battery capable of improving the cycle characteristics is provided. The battery includes a cathode, an anode, and an electrolytic solution. The anode has an anode active material layer that contains an anode active material containing silicon on an anode current collector, and intensity ratio I1/I2 between peak intensity I1 originated in (220) crystalline plane of silicon obtained by X-ray diffraction and peak intensity I2 originated in (111) crystalline plane of silicon obtained by X-ray diffraction is 0.05 or more.
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: October 7, 2014
    Assignee: Sony Corporation
    Inventors: Takakazu Hirose, Takayuki Fujii, Kazunori Noguchi, Kenichi Kawase
  • Patent number: 8852800
    Abstract: A phosphorated composite capable of electrochemical reversible lithium storage includes a conductive matrix and red phosphorus. The conductive matrix includes a material being selected from the group consisting of conductive polymer and conductive carbonaceous material. A weight percentage of the conductive matrix in the phosphorated composite ranges from about 10% to about 85%. A weight percentage of the red phosphorus in the phosphorated composite ranges from about 15% to about 90%. An anode using the phosphorated composite is also provided.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: October 7, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Li Wang, Xiang-Ming He, Jian-Guo Ren, Wei-Hua Pu, Jian-Jun Li, Jian Gao
  • Patent number: 8852818
    Abstract: A non-aqueous secondary battery contains a positive electrode, a negative electrode, a separator and a non-aqueous electrolytic solution. The positive electrode contains a layered structure lithium-containing compound oxide, or a spinel lithium-containing compound oxide containing manganese as an active material. The non-aqueous electrolytic solution contains at least one additive selected from a sulfonic acid anhydride, a sulfonate ester derivative, a cyclic sulfate derivative and a cyclic sulfonate ester derivative, and a vinylene carbonate or a derivative of the vinylene carbonate.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: October 7, 2014
    Assignee: Hitachi Maxell, Ltd.
    Inventors: Jinbao Zhao, Eri Kojima
  • Publication number: 20140295293
    Abstract: Provided is an electrode that contributes to higher performance improvement of batteries and capacitors by selecting a dispersant not only for uniformalizing an electrode structure but also playing the performance improvement role for the batteries or capacitors. An electrode 1 includes an active material 2 and a conductive additive 3. The electrode 1 also includes a dispersant 5, and the dispersant 5 is adsorbed onto the surfaces of the conductive additive 3 and the active material 2. More preferably, the electrode 1 includes the dispersant 5 having at least one kind selected from a group consisting of molecular structures, atoms, and ions which acts as a charge transfer medium, and most preferably, the electrode 1 includes the dispersant 5 having the same charge as the charge transfer medium contained in the active material 2.
    Type: Application
    Filed: March 24, 2014
    Publication date: October 2, 2014
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Hidefumi NIKAWA, Toshio TOKUNE
  • Publication number: 20140295268
    Abstract: The invention generally relates to new materials based on C49 titanium disilicide (TiSi2) as a new, layered anode material, within which lithium ions can react with the Si-only layers. Stabilization by a coating a thin layer of oxide on the surface of TiSi2 significantly improves the charge and discharge performance.
    Type: Application
    Filed: March 11, 2014
    Publication date: October 2, 2014
    Inventors: Dunwei Wang, Sa Zhou
  • Publication number: 20140295290
    Abstract: Electrodes and methods of forming electrodes are described herein. The electrode can be an electrode of an electrochemical cell or battery. The electrode includes a current collector and a film in electrical communication with the current collector. The film may include a carbon phase that holds the film together. The electrode further includes an electrode attachment substance that adheres the film to the current collector.
    Type: Application
    Filed: June 11, 2014
    Publication date: October 2, 2014
    Inventors: Benjamin Yong Park, Ian R. Browne, Stephen W. Schank, Steve Pierce
  • Publication number: 20140295270
    Abstract: A secondary battery capable of improving cycle characteristics is provided. An anode includes: an anode active material layer on an anode current collector, the anode active material layer including a plurality of anode active material particles, in which the average particle area of the plurality of anode active material particles observed from a surface of the anode active material layer is within a range of 1 ?m2 to 60 ?m2 both inclusive.
    Type: Application
    Filed: June 12, 2014
    Publication date: October 2, 2014
    Inventors: Momoe Adachi, Shunsuke Kurasawa, Isamu Konishiike, Kenichi Kawase
  • Publication number: 20140295269
    Abstract: A nanostructured composite material includes a substrate, a porous layer including a highly structured material, and a coating including nanoparticles. A method for forming the nanostructured composite material can include forming a porous layer on a substrate, the porous layer including a highly structured material, and applying nanoparticles to the porous layer to form the nanostructured composite material.
    Type: Application
    Filed: April 2, 2014
    Publication date: October 2, 2014
    Applicant: The Regents of the University of California
    Inventors: Lorenzo Mangolini, Lanlan Zhong
  • Patent number: 8845994
    Abstract: An active material of the present invention has fine pores formed in the interlayer of a carbon material capable of exhibiting electrochemical double layer capacitance. The fine pores are formed by forming an oxidized graphite structure combined with oxygen in the interlayer of a part or whole of the carbon material containing soft carbon and then removing a part or whole of oxygen in the interlayer. A method for producing an energy storage active material for use in an electrochemical double layer capacitor comprises pre-treating a carbon material through heat treatment and oxidizing the pre-treated carbon material using an oxidant. The method further comprises reducing the oxidized carbon material through heat treatment. The interlayer distances of an active material for respective steps, measured by a powder X-ray diffraction method, are 0.33˜0.36 nm in the pre-treatment step, 0.5˜2.1 nm in the oxidation step, and 0.34˜0.5 nm in the reduction step.
    Type: Grant
    Filed: February 9, 2007
    Date of Patent: September 30, 2014
    Assignee: Korea Electrotechnology Research Institution
    Inventors: Ick Jun Kim, Sun Hye Yang, Seong In Moon, Hyun Soo Kim, Min Jae Jeon
  • Publication number: 20140287306
    Abstract: An electrode material is provided. The electrode material includes a porous carbon material, wherein the porous carbon material has a half-width of diffraction intensity peak of a (100) face or a (101) face of 4 degrees or less with reference to a diffraction angle 2 theta on a basis of an X-ray diffraction method. An absolute value of a differential value of mass can be obtained when a mixture of the porous carbon material and S8 sulfur mixed at a mass ratio of 1:2 is subjected to thermal analysis, where temperature is employed as a parameter, has a value of more than 0 at 450° C. and a value of 1.9 or more at 400° C. A battery and method of manufacture are also provided.
    Type: Application
    Filed: July 19, 2013
    Publication date: September 25, 2014
    Applicant: Sony Corporation
    Inventors: Kazumasa Takeshi, Seiichiro Tabata, Hironori Iida, Shun Yamanoi, Yosuke Saito, Koichiro Hinokuma, Shinichiro Yamada
  • Publication number: 20140287311
    Abstract: Hetero-nanostructure materials for use in energy-storage devices are disclosed. In some embodiments, a hetero-nanostructure material (100) includes a silicide nanoplatform (110), ionic host nanoparticles (120) disposed on the silicide nanoplatform (110) and in electrical communication with the silicide nanoplatform (110), and a protective coating (130) disposed on the silicide nanoplatform (110) between the ionic host nanoparticles (120). In some embodiments, the silicide nanoplatform (110) includes a plurality of connected and spaced-apart nanobeams comprising a silicide core (110), ionic host nanoparticles (120) formed on the silicide core, and a protective coating (130) formed on the silicide core (110) between the ionic host nanoparticles (120).
    Type: Application
    Filed: October 31, 2012
    Publication date: September 25, 2014
    Inventors: Dunwei Wang, Sa Zhou
  • Publication number: 20140287307
    Abstract: A subject-matter of the invention is a novel process for the preparation of sulphur-modified monolithic porous carbon-based materials by impregnation with a strong sulphur-based acid, the materials capable of being obtained according to this process and the use of these materials with improved supercapacitance properties to produce electrodes intended for energy storage systems. Electrodes composed of sulphur-modified monolithic porous carbon-based materials according to the invention and lithium batteries and supercapacitors having such electrodes also form part of the invention.
    Type: Application
    Filed: April 22, 2014
    Publication date: September 25, 2014
    Inventors: David Ayme-Perrot, Marie Dieudonne, Philippe Sonntag, Anne-Caroline Pasquier
  • Patent number: 8841025
    Abstract: A positive electrode for a nonaqueous electrolyte battery includes a collector, and a positive electrode active material layer. The positive electrode active material layer includes a positive electrode active material, and also includes a heteropoly acid and/or heteropoly acid compound and phosphorous acid as additives.
    Type: Grant
    Filed: November 4, 2010
    Date of Patent: September 23, 2014
    Assignee: Sony Corporation
    Inventors: Haruo Watanabe, Tomoyo Ooyama, Shunsuke Saito, Yosuke Hosoya, Shigeru Fujita
  • Patent number: 8841027
    Abstract: A power storage device with favorable battery characteristics and a manufacturing method thereof are provided. The power storage device includes at least a positive electrode and a negative electrode provided so as to face the positive electrode with an electrolyte provided therebetween. The positive electrode includes a collector and a film containing an active material over the collector. The film containing the active material contains LieFefPgOh satisfying relations 3.5?h/g?4.5, 0.6?g/f?1.1, and 0?e/f?1.3 and LiaFebPcOd satisfying relations 3.5?d/c?4.5, 0.6?c/b?1.8, and 0.7?a/b?2.8. The film containing the active material contains the LiaFebPcOd satisfying the relations 3.5?d/c?4.5, 0.6?c/b?1.8, and 0.7?a/b?2.8 in a region which is in contact with the electrolyte.
    Type: Grant
    Filed: March 16, 2011
    Date of Patent: September 23, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Mikio Yukawa, Tamae Moriwaka
  • Patent number: 8841030
    Abstract: A structure for use in an energy storage device, the structure comprising a backbone system extending generally perpendicularly from a reference plane, and a population of microstructured anodically active material layers supported by the lateral surfaces of the backbones, each of the microstructured anodically active material layers having a void volume fraction of at least 0.1 and a thickness of at least 1 micrometer.
    Type: Grant
    Filed: January 24, 2012
    Date of Patent: September 23, 2014
    Assignee: Enovix Corporation
    Inventors: Ashok Lahiri, Robert Spotnitz, Nirav Shah, Murali Ramasubramanian, Harrold J. Rust, III, James D. Wilcox, Michael J. Armstrong, Brian E. Brusca, Christopher G. Castledine, Laurie J. Lauchlan
  • Patent number: 8841029
    Abstract: Disclosed are a negative electrode for lithium secondary batteries, containing an active material (A) capable of absorbing/desorbing lithium ions and a binder (B), wherein the active material (A) is a carbon-based material obtained from at least one starting material selected from a group consisting of petroleum cokes and coal cokes and having a mean particle size of from 1 to 30 and a true density of from 1.90 to 2.00 g/cm3 and its use; and a method for producing a carbon-based negative electrode active material having a mean particle size of from 1 to 30 ?m and a true density of from 1.90 to 2.00 g/cm3, the method comprising (a) a step of grinding at least one selected from a group consisting of petroleum cokes and coal cokes, (b) a step of controlling the particle size, and (c) a step of heat-treating in an inert gas atmosphere at 900 to 1900° C.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: September 23, 2014
    Assignee: Showa Denko K.K.
    Inventors: Chiaki Sotowa, Akinori Sudoh, Masataka Takeuchi
  • Patent number: 8841026
    Abstract: A cathode, a method of preparing the same, and a lithium battery including the cathode. The cathode includes: a current collector; a first cathode active material layer disposed on the current collector; and a second cathode active material layer disposed on the first cathode active material layer, wherein the first cathode active material layer comprises a lithium transition metal oxide having a layered structure, and the second cathode active material layer comprises a lithium transition metal oxide having a spinel structure and an average working potential of 4.5 V or more.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: September 23, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kyu-sung Park, Seung-sik Hwang
  • Publication number: 20140272586
    Abstract: A method of forming an electrode active material by reacting a metal fluoride and a reactant. The reactant can be a metal oxide, metal phosphate, metal fluoride, or a precursors expected to decompose to oxides. The method includes a milling step and an annealing step. The method can alternately include a solution coating step. Also included is the composition formed following the method.
    Type: Application
    Filed: March 19, 2014
    Publication date: September 18, 2014
    Applicant: WILDCAT DISCOVERY TECHNOLOGIES, INC.
    Inventors: Steven Kaye, David Keogh, Cory O'Neill
  • Publication number: 20140272582
    Abstract: In a non-aqueous electrolyte secondary battery including a positive electrode 1, a negative electrode 2 and a non-aqueous electrolyte, a positive electrode active material wherein a particle of at least one compound selected from Er hydroxide, Er oxyhydroxide, Yb hydroxide, Yb oxyhydroxide, Tb hydroxide, Tb oxyhydroxide, Dy hydroxide, Dy oxyhydroxide, Ho hydroxide, Ho oxyhydroxide, Tm hydroxide, Tm oxyhydroxide, Lu hydroxide, and Lu oxyhydroxide is dispersed and adhered on a surface of a positive electrode active material particle containing Li is used.
    Type: Application
    Filed: April 28, 2014
    Publication date: September 18, 2014
    Applicant: SANYO Electric Co., Ltd.
    Inventors: Takeshi Ogasawara, Naoki Imachi
  • Publication number: 20140272581
    Abstract: A method of forming an electrode active material by reacting a metal fluoride and a reactant. The reactant can be a metal oxide, metal phosphate, metal fluoride, or a precursors expected to decompose to oxides. The method includes a milling step and an annealing step. The method can alternately include a solution coating step. Also included is the composition formed following the method.
    Type: Application
    Filed: March 19, 2014
    Publication date: September 18, 2014
    Applicant: Wildcat Discovery Technologies, Inc.
    Inventors: Steven Kaye, David Keogh, Cory O'Neill
  • Publication number: 20140272578
    Abstract: Porous, amorphous lithium storage materials and a method for making these materials are disclosed herein. In an example of the method, composite particles of a lithium storage material in an amorphous phase and a material that is immiscible with the lithium storage material are prepared. Phase separation is induced within the composite particles to precipitate out the amorphous phase lithium storage material and form phase separated composite particles. The immiscible material is chemically etched from the phase separated composite particles to form porous, amorphous lithium storage material particles.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Xingcheng Xiao, Anil K. Sachdev, Mark W. Verbrugge
  • Publication number: 20140272565
    Abstract: An electrode structure and its method of manufacture are disclosed. The disclosed electrode structures may be manufactured by depositing a first release layer on a first carrier substrate. A first protective layer may be deposited on a surface of the first release layer and a first electroactive material layer may then be deposited on the first protective layer.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicants: BASF SE, Sion Power Corporation
    Inventors: Oliver Gronwald, Ruediger Schmidt, Martin Weber, Ingrid Haupt, Ursula Huber-Moulliet, Nicole Janssen, Yuriy V. Mikhaylik, Bala Sankaran, David L. Coleman
  • Publication number: 20140272585
    Abstract: An electrode for an electrochemical energy store, including an active material layer having an active material, a protective layer being at least partially applied to the active material, and the protective layer at least partially including a fluorophosphate-based material. Such an electrode offers a particularly high stability, even when high voltages are present. Also described is a method for manufacturing an electrode, to an electrochemical energy store and to the use of a fluorophosphate-based material for generating a protective layer for an active material of an electrode of an electrochemical energy store.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: Robert Bosch GmbH
    Inventor: Ingo KERKAMM
  • Publication number: 20140272568
    Abstract: A compound MjXp which is particularly suitable for use in a battery prepared by the complexometric precursor formulation methodology wherein: Mj is at least one positive ion selected from the group consisting of alkali metals, alkaline earth metals and transition metals and j is an integer representing the moles of said positive ion per moles of said MjXp; and Xp, a negative anion or polyanion from Groups IIIA, IV A, VA, VIA and VIIA and may be one or more anion or polyanion and p is an integer representing the moles of said negative ion per moles of said MjXp.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: PERFECT LITHIUM CORP.
    Inventor: PERFECT LITHIUM CORP.
  • Publication number: 20140272580
    Abstract: A battery with improved properties is provided. The battery has a cathode material prepared by the complexometric formulation methodology comprising MjXp wherein: Mj is at least one positive ion selected from the group consisting of alkali metals, alkaline earth metals and transition metals and n represents the moles of said positive ion per mole of said MjXp; and Xp is a negative anion or polyanion selected from Groups IIIA, IV A, VA, VIA and VIIA and may be one or more anion or polyanion and p representing the moles of said negative ion per moles of said MjXp. The battery has a discharge capacity at the 1000th discharge cycle of at least 120 mAh/g at room temperature at a discharge rate of 1 C when discharged from at least 4.6 volts to at least 2.0 volts.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Inventor: Teresita Frianeza-Kullburg
  • Publication number: 20140272577
    Abstract: An electrode is provided for an electrochemical lithium battery cell. The electrode includes multiple silicon sheets, each silicon sheet including multiple apertures, each aperture extending all or partly through a thickness of the silicon sheet. Numerous other aspects are provided.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: SanDisk 3D LLC
    Inventors: Renee Hartner, Yitzhak Gilboa, Priyanka Kamat, Kang-Jay Hsia
  • Publication number: 20140272589
    Abstract: A negative electrode active material for an electric device according to the present invention includes crystalline metal having a structure in which a size in a perpendicular direction to a crystal slip plane is 500 nm or less. More preferably, the size in the perpendicular direction to the crystal slip plane is controlled to become 100 nm or less. As described above, a thickness in an orientation of the slip plane is controlled to become sufficiently small, and accordingly, micronization of the crystalline metal is suppressed even if breakage occurs from the slip plane taken as a starting point. Hence, a deterioration of a cycle lifetime can be prevented by applying the negative electrode active material for an electric device, which is as described above, or a negative electrode using the same, to an electric device, for example, such as a lithium ion secondary battery.
    Type: Application
    Filed: October 1, 2012
    Publication date: September 18, 2014
    Applicant: NISSAN MOTOR CO., LTD
    Inventors: Takashi Sanada, Wataru Ogihara, Manabu Watanabe, Atsushi Ito
  • Publication number: 20140272573
    Abstract: Anodes including mesoporous hollow silicon particles are disclosed herein. A method for synthesizing the mesoporous hollow silicon particles is also disclosed herein. In one example of the method, a silicon dioxide sphere having a silicon dioxide solid core and a silicon dioxide mesoporous shell is formed. The silicon dioxide mesoporous shell is converted to a silicon mesoporous shell using magnesium vapor. The silicon dioxide solid core, any residual silicon dioxide, and any magnesium-containing by-products are removed to form the mesoporous, hollow silicon particle.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Qiangfeng Xiao, Mei Cai
  • Publication number: 20140272545
    Abstract: A secondary cell has a positive electrode, a negative electrode, and an electrolyte, and the positive electrode contains insoluble sulfur.
    Type: Application
    Filed: March 7, 2014
    Publication date: September 18, 2014
    Applicant: Sony Corporation
    Inventors: Yosuke Saito, Kazumasa Takeshi, Masataka Nakajin
  • Publication number: 20140272576
    Abstract: An electrode is provided for an electrochemical lithium battery cell. The electrode includes a bulk material that has a plurality of voids dispersed substantially throughout the bulk material. The bulk material is silicon. Numerous other aspects are provided.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: SANDISK 3D LLC
    Inventors: Priyanka Kamat, Rene Hartner, Yitzhak Gilboa, Kang-Jay Hsia, Srikanth Ranganathan, Xiaofeng Liang
  • Publication number: 20140272579
    Abstract: A compound MjXp which is particularly suitable for use in a battery prepared by the complexometric precursor formulation methodology wherein: Mj is at least one positive ion selected from the group consisting of alkali metals, alkaline earth metals and transition metals and j is an integer representing the moles of said positive ion per moles of said MjXp; and Xp, a negative anion or polyanion from Groups IIIA, IV A, VA, VIA and VIIA and may be one or more anion or polyanion and p is an integer representing the moles of said negative ion per moles of said MjXp.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: PERFECT LITHIUM CORP.
    Inventor: Teresita Frianeza-Kullberg
  • Patent number: 8835052
    Abstract: A negative electrode active material for an electric device. The negative electrode active material including an alloy having a composition formula SixTiyZnz, where (1) x+y+z=100, (2) 38?x<100, (3) 0<y<62, and (4) 0<z<62 in terms of mass percent.
    Type: Grant
    Filed: November 26, 2010
    Date of Patent: September 16, 2014
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Manabu Watanabe, Osamu Tanaka