Chemically Specified Inorganic Electrochemically Active Material Containing Patents (Class 429/218.1)
  • Publication number: 20140377655
    Abstract: A composite cathode active material, a method of preparing the composite cathode active material, a cathode including the composite cathode active material, and a lithium battery including the cathode. The composite cathode active material includes a lithium intercalatable material; and a garnet oxide, wherein an amount of the garnet oxide is about 1.9 wt % or less, based on a total weight of the composite cathode active material.
    Type: Application
    Filed: April 25, 2014
    Publication date: December 25, 2014
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Jun-young MUN, Jae-myung LEE, Gue-sung KIM, Yoon-sok KANG, Myung-hoon KIM, Jun-ho PARK, Jin-hwan PARK, Jae-gu YOON, Byung-jin CHOI
  • Publication number: 20140377643
    Abstract: Provided are a porous silicon-based anode active material including crystalline silicon (Si) particles, and a plurality of pores on surfaces, or the surfaces and inside of the crystalline silicon particles, wherein at least one plane of crystal planes of at least a portion of the plurality of pores includes a (100) plane, and a method of preparing the porous silicon-based anode active material. Since a porous silicon-based anode active material of the present invention may allow volume expansion, which is occurred during charge and discharge of a lithium secondary battery, to be concentrated on pores instead of the outside of the anode active material, the porous silicon-based anode active material may improve life characteristics of the lithium secondary battery by efficiently controlling the volume expansion.
    Type: Application
    Filed: September 11, 2014
    Publication date: December 25, 2014
    Applicant: LG CHEM, LTD.
    Inventors: Yong Ju Lee, Mi Rim Lee, Jung Woo Yoo, Je Young Kim
  • Publication number: 20140377654
    Abstract: A negative electrode and a lithium battery including the same, the negative electrode including nanotubes including a Group 14 metal/metalloid, disposed on a conductive substrate.
    Type: Application
    Filed: September 8, 2014
    Publication date: December 25, 2014
    Inventors: Han-su KIM, Un-gyu PAIK, Jae-man CHOI, Moon-seok KWON, Tae-seob SONG, Won-il PARK
  • Patent number: 8916296
    Abstract: The present application is directed to mesoporous carbon materials comprising bi-functional catalysts. The mesoporous carbon materials find utility in any number of electrical devices, for example, in lithium-air batteries. Methods for making the disclosed carbon materials, and devices comprising the same, are also disclosed.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: December 23, 2014
    Assignee: EnerG2 Technologies, Inc.
    Inventors: Aaron M. Feaver, Henry R. Costantino, Richard D. Varjian
  • Patent number: 8916062
    Abstract: A composition for forming an electrode. The composition includes a metal fluoride, such as copper fluoride, and a matrix material. The matrix material adds capacity to the electrode. The copper fluoride compound is characterized by a first voltage range in which the copper fluoride compound is electrochemically active and the matrix material characterized by a second voltage range in which the matrix material is electrochemically active and substantially stable. A method for forming the composition is included.
    Type: Grant
    Filed: March 19, 2014
    Date of Patent: December 23, 2014
    Assignee: Wildcat Discovery Technologies, Inc.
    Inventors: Wei Tong, Steven Kaye, David Keogh, Cory O'Neill
  • Publication number: 20140370391
    Abstract: A secondary battery includes a positive electrode and a negative electrode. The negative electrode includes first particles made of metal and second particles made of a silicon containing substance. The first particles are in contact with the second particles.
    Type: Application
    Filed: June 25, 2013
    Publication date: December 18, 2014
    Applicant: GREENFUL NEW ENERGY CO., LTD.
    Inventors: Si MENGQUN, Zhou YING
  • Publication number: 20140370380
    Abstract: Provided are nanostructures containing electrochemically active materials, battery electrodes containing these nanostructures for use in electrochemical batteries, such as lithium ion batteries, and methods of forming the nanostructures and battery electrodes. The nanostructures include conductive cores, inner shells containing active materials, and outer shells partially coating the inner shells. The high capacity active materials having a stable capacity of at least about 1000 mAh/g can be used. Some examples include silicon, tin, and/or germanium. The outer shells may be configured to substantially prevent formation of Solid Electrolyte lnterphase (SEI) layers directly on the inner shells. The conductive cores and/or outer shells may include carbon containing materials. The nanostructures are used to form battery electrodes, in which the nanostructures that are in electronic communication with conductive substrates of the electrodes.
    Type: Application
    Filed: May 25, 2010
    Publication date: December 18, 2014
    Inventors: Yi Cui, Song Han, Ghyrn E. Loveness
  • Publication number: 20140370392
    Abstract: A secondary battery includes a positive electrode and a negative electrode. The negative electrode includes a layered material with an interlayer distance of 10 nm to 500 nm and interlayer particles with a diameter of smaller than 1 ?m arranged among layers of the layered material.
    Type: Application
    Filed: June 25, 2013
    Publication date: December 18, 2014
    Applicant: GREENFUL NEW ENERGY CO., LTD.
    Inventors: Si MENGQUN, Zhou YING
  • Publication number: 20140370385
    Abstract: A method for producing an electrode with an electrically conductive main body on which an active material having a silicon nano-structure is arranged includes introducing a precursor mixture having a silicon-containing material and a basic matrix into a spinning unit and arranging the main body at a defined distance from a discharge device of the spinning unit. At least part of the precursor mixture from the discharge device is discharged. An electrical voltage is applied between at least one part of the spinning unit and the main body for laminating a silicon-containing nano-structure on the main body. The silicon-containing nano-structure is then tempered. The method produces an electrode with an especially high capacity coupled with good cycle resistance. An energy store includes the electrode.
    Type: Application
    Filed: October 22, 2012
    Publication date: December 18, 2014
    Inventors: Ingo Zeitler, Juergen Hackenberg, Benjamin Walther
  • Patent number: 8911895
    Abstract: An all solid state rechargeable oxide-ion (ROB) battery (30) has a thermal energy storage (TES) unit (20) between two oxide-ion cells (22, 24) with metal-metal oxide electrodes (34, 36, 40, 42) on opposite sides of an anion conducting solid electrolyte (32,38) where none of the electrodes is contact with air.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: December 16, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Kevin Huang, Chun Lu, James L. Shull, Shih-Yu W. Liu, Gong Zhang, Kevin P. Litzinger
  • Patent number: 8911901
    Abstract: The object of the present invention is to inhibit occurrence of structural collapse caused by volumetric change of primary particles of negative electrode active material and to improve adhesion between negative electrode active material and electrically conductive agent and between negative electrode mix layer and collector, whereby improvement of life is attained in negative electrode for non-aqueous secondary battery and non-aqueous secondary battery. In the negative electrode for non-aqueous secondary battery of the present invention, the negative electrode active material comprises silicon and/or tin, and at least one element selected from elements which do not react with lithium and has pores in both of the inner core portion and the outer peripheral portion of primary particles and a material which cures by a heat treatment is used as a binder.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: December 16, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Takashi Nakabayashi, Shin Takahashi
  • Publication number: 20140363740
    Abstract: Solid state energy storage systems and devices are provided. A solid state energy storage devices can include an active layer disposed between conductive electrodes, the active layer having one or more quantum confinement species (QCS), such as quantum dots, quantum particles, quantum wells, nanoparticles, nanostructures, nanowires and nanofibers. The solid state energy storage device can have a charge rate of at least about 500 V/s and an energy storage density of at least about 150 Whr/kg.
    Type: Application
    Filed: July 10, 2012
    Publication date: December 11, 2014
    Applicant: QUANTUMSCAPE CORPORATION
    Inventors: Timothy P. Holme, Rainer Fasching, Joseph Han, Weston Arthur Hermann, Friedrich B. Prinz, Phil Reilly, Jagdeep Singh
  • Patent number: 8906254
    Abstract: Disclosed are a cathode material for a secondary battery, and a manufacturing method of the same. The cathode material includes a lithium manganese phosphate LiMnPO4/sodium manganese fluorophosphate Na2MnPO4F composite, in which the LiMnPO4 and Na2MnPO4F have different crystal structures. Additionally, the method of manufacturing the cathode material may be done in a single step through a hydrothermal synthesis, which greatly reduces the time and cost of production. Additionally, the disclosure provides that the electric conductivity of the cathode material may be improved through carbon coating, thereby providing a cathode material with excellent electrochemical activity.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: December 9, 2014
    Assignees: Hyundai Motor Company, Korea Electronics Technology Institute
    Inventors: Sa Heum Kim, Dong Gun Kim, Young Jun Kim, Jun Ho Song, Woo Suk Cho, Jeom Soo Kim, Dong Jin Kim
  • Patent number: 8906555
    Abstract: A negative active material for a rechargeable lithium battery includes: a crystalline carbon core including pores; an amorphous carbon shell positioned on the core surface; metal nanoparticles dispersed inside the pores; and amorphous carbon inside the pores, wherein a first particle diameter difference (D50?D10) of the nanoparticles is from about 70 to about 150 nm and the second particle diameter difference (D90?D50) of the nanoparticles is from about 440 to about 520 nm.
    Type: Grant
    Filed: November 6, 2012
    Date of Patent: December 9, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Cheol-Hee Hwang, Bong-Chull Kim, Se-Ho Park, Dong-Yung Kim
  • Patent number: 8906551
    Abstract: The present disclosure is directed at an electrode for a battery wherein the electrode comprises clathrate alloys of silicon, germanium or tin. In method form, the present disclosure is directed at methods of forming clathrate alloys of silicon, germanium or tin which methods lead to the formation of empty cage structures suitable for use as electrodes in rechargeable type batteries.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: December 9, 2014
    Assignee: Southwest Research Institute
    Inventors: Candace K. Chan, Michael A. Miller, Kwai S. Chan
  • Patent number: 8906557
    Abstract: Anode active materials and methods of preparing the same are provided. One anode active material includes a carbonaceous material capable of improving battery cycle characteristics. The carbonaceous material bonds to and coats metal active material particles and fibrous metallic particles to suppress volumetric changes.
    Type: Grant
    Filed: March 22, 2007
    Date of Patent: December 9, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Gue-sung Kim, Yong-nam Ham, Han-su Kim, Dong-min Im
  • Patent number: 8906552
    Abstract: Disclosed is lithium iron phosphate having an olivine crystal structure wherein carbon (C) is coated on particle surfaces of the lithium iron phosphate, wherein, when a powder of the lithium iron phosphate is dispersed in water, water is removed from the resulting dispersion and the resulting lithium iron phosphate residue is quantitatively analyzed, a ratio of the carbon-released lithium iron phosphate with respect to the total weight of the carbon-coated lithium iron phosphate is 0.005% by weight or less. Advantageously, the olivine-type lithium iron phosphate is not readily separated through uniform thin film coating on the surface of the lithium iron phosphate and exhibits superior conductivity and density, since carbon is coated on particle surfaces of lithium iron phosphate in a state in which the amount of carbon released in water is considerably small.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: December 9, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Hyun Kuk Noh, Hong Kyu Park, Su-min Park, Ji Eun Lee, Cheol-Hee Park
  • Publication number: 20140356731
    Abstract: In a secondary battery, a negative electrode, an electrolytic solution for negative electrode, a diaphragm, an electrolytic solution for positive electrode, and a positive electrode are disposed in order. The negative electrode includes a negative-electrode active material that has an element whose oxidation-reduction potential is more “base” by 1.5 V or more than an oxidation-reduction potential of hydrogen, and whose volume density is larger than that of lithium metal. The diaphragm includes a solid electrolyte transmitting ions of said element alone. A secondary battery with high volumetric density is provided.
    Type: Application
    Filed: September 21, 2012
    Publication date: December 4, 2014
    Applicant: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventors: Junichi Niwa, Masataka Nakanishi, Kazuhito Kawasumi, Masakazu Murase
  • Publication number: 20140356721
    Abstract: A method includes combining a coating material and an uncoated particulate core material in a solution having a selected ionic strength. The selected ionic strength promotes coating of the uncoated particulate core material with the coating material to form coated particles; and the coated particles can be collected after formation. The coating material has a higher electrical conductivity than the core material.
    Type: Application
    Filed: May 30, 2014
    Publication date: December 4, 2014
    Applicant: University of Southern California
    Inventors: Chongwu Zhou, Jiepeng Rong, Mingyuan Ge, Xin Fang
  • Publication number: 20140356726
    Abstract: A hollow silicon-based particle including silicon (Si) or silicon oxide (SiOx, 0<x<2) particle including a hollow core part therein, wherein a size of the hollow core part is from 5 nm to 45 ?m, and a novel preparation method thereof are provided. Hollow is formed in the silicon-based particle, and volume expansion to the inward/outward of the silicon-based particle may be induced. Thus, the volume expansion of the silicon-based particle to the outward may be decreased, and the capacity properties and the life characteristics of a lithium secondary battery may be improved. According to the novel preparation method of the hollow silicon-based particle of the present invention, mass production is possible, producing rate is faster when compared to a common chemical vapor deposition (CVD) method or a vapor-liquid-solid (VLS) method, and the preparation method of the present invention is favorable when considering processes and safety.
    Type: Application
    Filed: August 21, 2014
    Publication date: December 4, 2014
    Applicant: LG CHEM, LTD.
    Inventors: Gi Beom Han, Hong Kyu Park, Wang Mo Jung, Sung Joong Kang, Chi Ho Jo, Ji Hoon Ryu
  • Patent number: 8900749
    Abstract: A negative electrode material powder for a lithium ion secondary battery having a conductive carbon film on the surface of a lower-silicon-oxide powder; wherein a specific surface area in BET measurement ranges from more than 0.3 m2/g to 40 m2/g, and no SiC peak appears at 2?=35.6°±0.01° or the half-value width of the appeared peak is 2° or more in XRD measurement using CuK? rays. The proportion of said carbon film preferably ranges from 0.2% to 2.5% by mass. Said powder preferably has 100000 ?cm or less of specific resistance. In XRD, P2/P1<0.01 is preferably satisfied between the highest value P1 of halo of SiOx and a value P2 of the strongest linear peak of Si (111) above the halo. Accordingly, said powder can be used in the secondary battery with a large discharge capacity and a preferable cycle characteristics for practical use.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: December 2, 2014
    Assignee: OSAKA Titanium technologies Co., Ltd.
    Inventors: Kouji Yasuda, Shingo Kizaki, Shinji Shimosaki
  • Patent number: 8900748
    Abstract: A negative active material and a lithium battery including the negative active material. The negative active material includes a carbonaceous substrate with a plurality of recessed portions at its surface; and a silicon-based nanowire placed in each of the recessed portions. The negative active material provides the silicon-based nanowires with separate places to control volumetric expansion of the silicon-based nanowires, and thus, a lithium battery including the negative active material has improved efficiency and lifetime.
    Type: Grant
    Filed: May 23, 2012
    Date of Patent: December 2, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventor: Yu-Jeong Cho
  • Patent number: 8900757
    Abstract: A positive electrode capable of achieving both of high volumetric energy density and high volumetric power density and a lithium ion secondary battery using the same are provided. A lithium ion secondary battery includes a positive electrode including a current collector with a positive active material mixture layer applied on both faces thereof, the positive active material mixture layer including active material particles, conductive additive particles and a binder. The active material particles used have a value D of an average particle diameter D50 of the active material particles in the range from 1 to 10 ?m. The ratio b/a of the volume fraction b of the vacancy volume in the positive active material mixture layer to the volume fraction a of the active material particles in the positive active material mixture layer is in the range of ?0.01D+0.57?b/a??0.01D+0.97.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: December 2, 2014
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Ikuo Ozaki, Yoshimasa Koishikawa, Yoshihisa Okuda, Yuki Takei
  • Publication number: 20140349183
    Abstract: A composite particle is provided. The particle comprises a first particle component and a second particle component in which: (a) the first particle component comprises a body portion and a surface portion, the surface portion comprising one or more structural features and one or more voids, whereby the surface portion and body portion define together a structured particle; and (b) the second component comprises a removable filler; characterised in that (i) one or both of the body portion and the surface portion comprise an active material; and (ii) the filler is contained within one or more voids comprised within the surface portion of the first component.
    Type: Application
    Filed: February 27, 2013
    Publication date: November 27, 2014
    Applicant: Nexeon Limited
    Inventors: William James Macklin, Fiona Scott, Christopher Michael Friend
  • Publication number: 20140349162
    Abstract: A thermally managed Li-ion battery assembly including an anode and a cathode, wherein at least one of the anode and the cathode includes a thermocrystal metamaterial structure.
    Type: Application
    Filed: May 24, 2013
    Publication date: November 27, 2014
    Applicant: The Boeing Company
    Inventors: Nicholas Koumvakalis, Jeffrey H. Hunt
  • Patent number: 8895184
    Abstract: In regards with the porous film provided on the surface of the electrode used for the secondary battery or so, the present invention provides the porous film which can contribute to reduce the adhered material to the roll during the roll winding of the electrode. The secondary battery electrode formed by adhering; the porous film comprising the inorganic filler and the binder, and styrene and the polymer having the glass transition temperature of 15° C. or less as said binder, the porous film slurry comprising the inorganic filler, the polymer having the glass transition temperature of 15° C. or less and the solvent, and the electrode composite layer comprising the binder and the electrode active material, to the current collector, and said porous film is provided on the surface of the electrode composite layer.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: November 25, 2014
    Assignee: Zeon Corporation
    Inventors: Yasuhiro Wakizaka, Mayumi Fukumine
  • Patent number: 8895186
    Abstract: It is an objective of the present invention to provide a lithium-ion rechargeable battery anode which can control the volume change of a primary particle of a negative-electrode active material other than a carbon-based material and that can prevent cracks due to stress caused by the volume change from occurring and extending. There is provided an anode for a lithium-ion rechargeable battery including a primary particle of a negative-electrode active material, a conductive material, and a binder, the negative-electrode active material including at least one of silicon and tin, and at least one element selected from elements that do not chemically react with lithium, in which holes are present both in an inner core region in the central region of the primary particle of the negative-electrode active material and in a periphery region that covers the inner core region.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: November 25, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Takashi Nakabayashi, Shin Takahashi, Motoki Ohta, Yoshihito Yoshizawa
  • Publication number: 20140342227
    Abstract: A cathode for a lithium-sulphur cell includes a current collector. A cathode layer system is applied to the current collector in order to achieve a high energy density, current rate and cycle stability. This layer system includes at least one conductive layer and at least one layer that contains sulphur. The at least one conductive layer is in electrical contact with the current collector.
    Type: Application
    Filed: October 22, 2012
    Publication date: November 20, 2014
    Inventors: Ulrich Hasenkox, Constanze Sorhage
  • Publication number: 20140342194
    Abstract: A rechargeable battery that features two or more levels of internal resistance according to various temperature ranges is disclosed.
    Type: Application
    Filed: February 25, 2014
    Publication date: November 20, 2014
    Applicant: EC Power, LLC
    Inventors: Chao-Yang WANG, Wei ZHAO
  • Patent number: 8889291
    Abstract: A battery realizing the superior cycle characteristics is provided. An electrode includes a current collector including an active-material-layer-formation region and a flat and smooth region having a surface roughness smaller than that of the active-material-layer-formation region, and an active material layer provided in the active-material-layer-formation region of the current collector. An electrode lead is connected to the flat and smooth region.
    Type: Grant
    Filed: November 28, 2007
    Date of Patent: November 18, 2014
    Assignee: Sony Corporation
    Inventors: Masayuki Iwama, Kenichi Kawase, Yoshikazu Kato, Nozomu Morita
  • Patent number: 8888870
    Abstract: In order to enhance charge and discharge efficiency and to improve cycle characteristics by increasing a facing area between a positive electrode active material and a negative electrode active material, in a negative electrode for lithium secondary battery having a current collector and an active material layer carried on the current collector, the active material layer includes a plurality of columnar particles. The columnar particles include an element of silicon, and are tilted toward the normal direction of the current collector. Angle ? formed between the columnar particles and the normal direction of the current collector is preferably 10°??<90°.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: November 18, 2014
    Assignee: Panasonic Corporation
    Inventors: Yasutaka Kogetsu, Masaya Ugaji, Keiichi Takahashi, Shinji Mino, Nobuaki Nagao, Satoshi Shibutani, Kazuyoshi Honda
  • Patent number: 8889296
    Abstract: The hydration of cadmium oxide in the presence of nickel acetate gives the possibility of obtaining a compound of general formula Cd1-xNix(OH)2-y(CH3CO2)y with 0<x?0.05 and 0<y?0.10. This compound may be advantageously, used as an electrochemically active material of an anode of the envelope type of a nickel cadmium generator. This anode does not contain any sulfates responsible for the formation of short-circuits. Further, this anode has a high electrochemical yield. A method for preparing this compound and the anode is described.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: November 18, 2014
    Assignee: Saft Groupe SA
    Inventors: Stéphanie Chevalier, Claudette Audry, Mélanie Dendary, Philippe Desprez, Björn Marlid, Rune Sjövall, Jerry Gottfridsson
  • Patent number: 8889294
    Abstract: The present invention is a negative electrode material for a secondary battery with a non-aqueous electrolyte comprising at least a silicon-silicon oxide composite and a carbon coating formed on a surface of the silicon-silicon oxide composite, wherein at least the silicon-silicon oxide composite is doped with lithium, and a ratio I(SiC)/I(Si) of a peak intensity I(SiC) attributable to SiC of 2?=35.8±0.2° to a peak intensity I(Si) attributable to Si of 2?=28.4±0.2° satisfies a relation of I(SiC)/I(Si)?0.03, when x-ray diffraction using Cu—K? ray. As a result, there is provided a negative electrode material for a secondary battery with a non-aqueous electrolyte that is superior in first efficiency and cycle durability to a conventional negative electrode material.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: November 18, 2014
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventor: Nobuo Kawada
  • Patent number: 8889295
    Abstract: Described herein are improved composite anodes and lithium-ion batteries made therefrom. Further described are methods of making and using the improved anodes and batteries. In general, the anodes include a porous composite having a plurality of agglomerated nanocomposites. At least one of the plurality of agglomerated nanocomposites is formed from a dendritic particle, which is a three-dimensional, randomly-ordered assembly of nanoparticles of an electrically conducting material and a plurality of discrete non-porous nanoparticles of a non-carbon Group 4A element or mixture thereof disposed on a surface of the dendritic particle. At least one nanocomposite of the plurality of agglomerated nanocomposites has at least a portion of its dendritic particle in electrical communication with at least a portion of a dendritic particle of an adjacent nanocomposite in the plurality of agglomerated nanocomposites.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: November 18, 2014
    Assignees: Sila Nanotechnologies, Inc., Georgia Tech Research Corporation
    Inventors: Gleb Yushin, Oleksandr Magazynskyy, Patrick Dixon, Benjamin Hertzberg
  • Patent number: 8889297
    Abstract: The present disclosure relates to a nanocomposite cathode active material for a lithium secondary battery, a method for preparing same, and a lithium secondary battery including same. More particularly, the present disclosure relates to a nanocomposite cathode active material for a lithium secondary battery including: a core including LiMn2O4; and LiMn(PO3)3 distributed on the surface of the core. In accordance with the present disclosure, the time and cost for manufacturing a lithium secondary battery can be reduced and the manufactured lithium secondary battery has superior electrochemical properties.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: November 18, 2014
    Assignee: Korea Institute of Science and Technology
    Inventors: Kyung Yoon Chung, Dieky Susanto, Won Young Chang, Byung Won Cho
  • Publication number: 20140335412
    Abstract: A process is provided for etching a silicon-containing substrate to form nanowire arrays. In this process, one deposits nanoparticles and a metal film onto the substrate in such a way that the metal is present and touches silicon where etching is desired and is blocked from touching silicon or not present elsewhere. One submerges the metallized substrate into an etchant aqueous solution comprising HF and an oxidizing agent. In this way arrays of nanowires with controlled diameter and length are produced.
    Type: Application
    Filed: July 28, 2014
    Publication date: November 13, 2014
    Applicant: BANDGAP ENGINEERING, INC.
    Inventors: Brent Buchine, Marcie R. Black, Faris Modawar
  • Publication number: 20140335407
    Abstract: A method for configuring a non-lithium-intercalation electrode includes intercalating an insertion species between multiple layers of a stacked or layered electrode material. The method forms an electrode architecture with increased interlayer spacing for non-lithium metal ion migration. A laminate electrode material is constructed such that pillaring agents are intercalated between multiple layers of the stacked electrode material and installed in a battery.
    Type: Application
    Filed: May 9, 2014
    Publication date: November 13, 2014
    Inventors: Yan YAO, Yanliang LIANG
  • Publication number: 20140335409
    Abstract: A method is provided for fabricating a transition metal hexacyanometallate (TMHCM) electrode with a water-soluble binder. The method initially forms an electrode mix slurry comprising TMHCF and a water-soluble binder. The electrode mix slurry is applied to a current collector, and then dehydrated to form an electrode. The electrode mix slurry may additionally comprise a carbon additive such as carbon black, carbon fiber, carbon nanotubes, graphite, or graphene. The electrode is typically formed with TMHCM greater than 50%, by weight, as compared to a combined weight of the TMHCM, carbon additive, and binder. Also provided are a TMHCM electrode made with a water-soluble binder and a battery having a TMHCM cathode that is made with a water-soluble binder.
    Type: Application
    Filed: July 24, 2014
    Publication date: November 13, 2014
    Inventors: Long Wang, Yuhao Lu, Sean Vail
  • Publication number: 20140335411
    Abstract: A method of etching silicon, the method comprising the steps of: electrolessly depositing a first metal onto a silicon surface to be etched, wherein the electrolessly deposited first metal partially covers the surface of the silicon to be etched; depositing a second metal that is different from the first metal over the silicon surface and the electrolessly deposited first metal, wherein a film of the deposited second metal covers the silicon surface to be etched; removing the first metal and the second metal from regions of the film of the deposited second metal that overlie the first metal to leave the second metal partially covering the silicon surface to be etched; and etching the silicon by exposing the silicon surface to an aqueous etching composition comprising an oxidant and a source of fluoride ions.
    Type: Application
    Filed: December 21, 2012
    Publication date: November 13, 2014
    Inventors: Fengming Liu, Yuxiong Jiang, Mino Green
  • Publication number: 20140335416
    Abstract: An electric energy storage device comprises first and second conductor layers, and positive and negative electrodes. The first conductor layer has both surfaces coated with ionic or dipole material across entire surface thereof. The second conductor layer has both surfaces coated with ionic or dipole material across entire surface thereof. The positive electrode is attached to the first conductor layer. The negative electrode is attached to the second conductor. The stored electrical energy is discharged and output to the electrodes by using an external AC voltage in a predetermined frequency range as a trigger power.
    Type: Application
    Filed: May 9, 2013
    Publication date: November 13, 2014
    Inventor: Woo Yong LIE
  • Patent number: 8883347
    Abstract: This is to provide an all solid state secondary battery which can be produced by an industrially employable method capable of mass-production and has excellent secondary battery characteristics.
    Type: Grant
    Filed: February 13, 2007
    Date of Patent: November 11, 2014
    Assignee: Namics Corporation
    Inventors: Mamoru Baba, Shoichi Iwaya, Hitoshi Masumura, Hiroshi Sato, Hiroshi Sasagawa, Noriyuki Sakai, Takayuki Fujita
  • Patent number: 8883357
    Abstract: A ceramic material that can exhibit sufficient compactness and lithium (Li) conductivity to enable the use thereof as a solid electrolyte material for a lithium secondary battery and the like is provided. The ceramic material contains aluminum (Al) and has a garnet-type crystal structure or a garnet-like crystal structure containing lithium (Li), lanthanum (La), zirconium (Zr) and oxygen (O).
    Type: Grant
    Filed: August 19, 2009
    Date of Patent: November 11, 2014
    Assignee: NGK Insulators, Ltd.
    Inventors: Toshihiro Yoshida, Akihiko Honda, Yosuke Sato
  • Patent number: 8877374
    Abstract: A variety of methods and apparatus are implemented in connection with a battery. According to one such arrangement, an apparatus is provided for use in a battery in which ions are moved. The apparatus comprises a substrate and a plurality of growth-rooted nanowires. The growth-rooted nanowires extend from the substrate to interact with the ions.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: November 4, 2014
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Yi Cui, Candace K. Chan
  • Patent number: 8877378
    Abstract: The performance of an ABx type metal hydride alloy is improved by adding an element to the alloy which element is operative to enhance the surface area morphology of the alloy. The alloy may include surface regions of differing morphologies.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: November 4, 2014
    Assignee: Ovonic Battery Company, Inc.
    Inventors: Kwo Young, Benjamin Reichman, Michael A. Fetcenko
  • Patent number: 8877380
    Abstract: A positive active material, a method of preparing the same, and a lithium secondary battery including the positive active material.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: November 4, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Hyun-Deok Lee, Yong-Chul Park, Mi-Ran Song, Na-Leum Yoo, Jin-Hyoung Seo, Min-Ju Kim, Gyeong-Jae Heo, Jae-Dong Byun, Sun-Youn Ryou
  • Patent number: 8877377
    Abstract: A cathode active material has: a composite oxide particle containing at least lithium and one or a plurality of transition metals; and a coating layer provided on at least a part of the composite oxide particle. The coating layer contains at least one kind of element M differing from a main transition metal element A forming the composite oxide particle and selected from Groups 2 to 16 of the periodic table and a halogen element X. In the coating layer, the element M and the halogen element X exhibit different distribution states.
    Type: Grant
    Filed: October 9, 2008
    Date of Patent: November 4, 2014
    Assignee: Sony Corporation
    Inventor: Yosuke Hosoya
  • Patent number: 8877383
    Abstract: An electrochemical device, such as a magnesium-ion battery, comprises a first electrode including a first active material, a second electrode, and an electrolyte located between the first electrode and the second electrode. The electrolyte may include a magnesium compound, such as a magnesium salt. In representative examples, an improved active material includes a group 15 chalcogenide, in particular a bismuth chalcogenide, such as bismuth oxide or other chalcogenide. In various examples, the improved active material may be used in a positive or negative electrode of an example battery.
    Type: Grant
    Filed: June 21, 2010
    Date of Patent: November 4, 2014
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventor: Masaki Matsui
  • Patent number: 8877100
    Abstract: A paste composition for forming an electrode on a silicon semiconductor substrate, the paste containing aluminum powder; an organic vehicle and a hydroxide. The paste composition finds applicability in a solar cell element wherein the electrode is formed by applying the paste on the silicon semiconductor substrate and thereafter, firing the paste composition.
    Type: Grant
    Filed: September 22, 2006
    Date of Patent: November 4, 2014
    Assignee: Toyo Aluminium Kabushiki Kaisha
    Inventors: Gaochao Lai, Takashi Watsuji, Haruzo Katoh
  • Publication number: 20140322597
    Abstract: An electrochemical cell includes a metal containing anode M? capturing and releasing cations, a metal containing cathode M? and an electrolyte including an anion X?and a cation M?+. During the charge process, the electrolyte allows reversible reactions wherein the anion dissociates from the electrolyte and reacts with the metal cathode forming M?Xy. At the same time, cations M?+ from the electrolyte deposit on the anode side. The reverse process happens during the discharge process.
    Type: Application
    Filed: April 25, 2013
    Publication date: October 30, 2014
    Applicant: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventor: Toyota Motor Engineering & Manufacturing North America, Inc.
  • Publication number: 20140322601
    Abstract: The anode active material of the present invention comprises silicon-based particles obtained from at least one of silicon, a silicon oxide and a silicon alloy, and the silicon-based particles have a faceted shape, thereby providing high capacity and good life characteristics without causing any deterioration which has been generated in the use of conventional silicon-based particles, and eventually providing a lithium secondary battery having such characteristics.
    Type: Application
    Filed: July 9, 2014
    Publication date: October 30, 2014
    Inventors: Yong-Ju Lee, Yoon-Ah Kang, Je-Young Kim, Seung-Youn Choi, Mi-Rim Lee, Hye-Ran Jung, Jung-Woo Yoo