Making Passive Device (e.g., Resistor, Capacitor, Etc.) Patents (Class 438/381)
  • Publication number: 20140117496
    Abstract: Semiconductor devices having a ground shield structure and methods for their formation are provided herein. An exemplary semiconductor device can include a substrate, a ground ring, a ground shield, an electronic device, and/or an insulation layer. The ground ring can be disposed over the substrate. The ground shield can be disposed over the substrate and surrounded by the ground ring. The ground shield can include a plurality of coaxial conductive wirings and a metal wire passing through the plurality of coaxial conductive wirings along a radial direction. The metal wire can be connected to the ground ring. The electronic device can be disposed over the ground shield. The insulation layer can be disposed between the ground shield and the electronic device.
    Type: Application
    Filed: September 17, 2013
    Publication date: May 1, 2014
    Applicant: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventors: JENHAO CHENG, XINING WANG, LING LIU
  • Publication number: 20140117302
    Abstract: A phase change memory cell includes a pair of electrodes having phase change material and heater material there-between. An electrically conductive thermal barrier material is between one of the electrodes and the heater material. Methods are disclosed.
    Type: Application
    Filed: November 1, 2012
    Publication date: May 1, 2014
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Jaydeb Goswami
  • Patent number: 8709956
    Abstract: BEOL memory cells are described that include one or more sidewall protection layers on the memory device (including, for example, an MTJ element) deposited prior to interconnect via etching to prevent the formation of electrical shorts between layers. One embodiment uses a single layer sidewall protection sleeve that is deposited after the memory device has been patterned. The layer material is vertically etched down to expose the upper surface of the top electrode while leaving a residual layer of protective material surrounding the rest of the memory device. The material for the protection layer is selected to resist the etchant used to remove the first dielectric material from the via in the subsequent interconnect process. A second embodiment uses dual-layer sidewall protection in which the first layer covers the memory element is preferably an oxygen-free dielectric and the second layer protects the first layer during via etching.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: April 29, 2014
    Assignee: Avalanche Technology Inc.
    Inventors: Kimihiro Satoh, Yiming Hual, Jing Zhang, Ebrahim Abedlfard
  • Patent number: 8709957
    Abstract: A method for spalling local areas of a base substrate utilizing at least one stressor layer portion which is located on a portion, but not all, of an uppermost surface of a base substrate. The method includes providing a base substrate having a uniform thickness and a planar uppermost surface spanning across an entirety of the base substrate. At least one stressor layer portion having a shape is formed on at least a portion, but not all, of the uppermost surface of the base substrate. Spalling is performed which removes a material layer portion from the base substrate and provides a remaining base substrate portion. The material layer portion has the shape of the at least one stressor layer portion, while the remaining base substrate portion has at least one opening located therein which correlates to the shape of the at least one stressor layer.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: April 29, 2014
    Assignee: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Keith E. Fogel, Paul A. Lauro, Ning Li, Devendra K. Sadana, Ibrahim Alhomoudi
  • Publication number: 20140110821
    Abstract: A semiconductor inductor structure may include a first spiral structure, located on a first metal layer, having a first outer-spiral electrically conductive track and a first inner-spiral electrically conductive track separated from the first outer-spiral electrically conductive track by a first dielectric material. A second spiral structure, located on a second metal layer, having a second outer-spiral electrically conductive track and a second inner-spiral electrically conductive track separated from the second outer-spiral electrically conductive track by a second dielectric material may also be provided. The first outer-spiral electrically conductive track may be electrically coupled to the second outer-spiral electrically conductive track and the first inner-spiral electrically conductive track may be electrically coupled to the second inner-spiral electrically conductive track.
    Type: Application
    Filed: October 18, 2012
    Publication date: April 24, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Robert L. Barry, Robert A. Groves, Venkata N.R. Vanukuru
  • Publication number: 20140113427
    Abstract: A phase-change random access memory (PCRAM) device includes a semiconductor substrate; switching elements formed on the semiconductor substrate; a plurality of phase-change structures formed on the switching elements; and heat absorption layers buried between the plurality of phase-change structures, wherein the plurality of phase-change structures are insulated from the heat absorption layers.
    Type: Application
    Filed: November 11, 2013
    Publication date: April 24, 2014
    Applicant: SK hynix Inc.
    Inventor: Nam Kyun PARK
  • Patent number: 8703562
    Abstract: A manufacturing method of a random access memory includes the following steps: providing a semiconductor structure having an array region and a peripheral region; forming a plurality of first trenches in the array region, and concurrently, a plurality of second trenches on the peripheral region; forming a polysilicon layer to cover the array region and the peripheral region, and the first and the second trenches are filled up with the polysilicon layer; planarizing the polysilicon layer so the remaining polysilicon layer only resides in the first and the second trenches; forming a conductive layer on the semiconductor structure; patterning the conductive layer to form a plurality of landing pads on the array region, and a plurality of bit line units on the peripheral region; and forming a plurality of capacitor units which is in electrical connection to the landing pads.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: April 22, 2014
    Assignee: Inotera Memories, Inc.
    Inventors: Tzung-Han Lee, Chung-Lin Huang, Ron-Fu Chu
  • Patent number: 8703573
    Abstract: A method of manufacturing the semiconductor device includes sequentially forming first to third mold layer patterns on a substrate and spaced apart from each other, forming a first semiconductor pattern between the first mold layer pattern and the second mold layer pattern, and a second semiconductor pattern between the second mold layer pattern and the third mold layer pattern, forming a first trench between the first mold layer pattern and the third mold layer pattern by removing a portion of the second mold layer pattern and portions of the first and second semiconductor patterns, depositing a material for a lower electrode conformally along side and bottom surfaces of the first trench, and forming first and second lower electrodes separated from each other on the first and second semiconductor patterns, respectively, by removing a portion of the material for a lower electrode positioned on the second mold layer pattern.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: April 22, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Gyu-Hwan Oh, Dong-Hyun Kim, Kyung-Min Chung, Dong-Hyun Im
  • Patent number: 8703548
    Abstract: A method of manufacturing a semiconductor device includes providing a substrate having a first conductive layer disposed on a top surface of the substrate. A high resistivity layer is formed over the substrate and the first conductive layer. A dielectric layer is deposited over the substrate, first conductive layer and high resistivity layer. A portion of the dielectric layer, high resistivity layer, and first conductive layer forms a capacitor stack. A first passivation layer is formed over the dielectric layer. A second conductive layer is formed over the capacitor stack and a portion of the first passivation layer. A first opening is etched in the dielectric layer to expose a surface of the high resistivity layer. A third and fourth conductive layer is deposited over the first opening in the dielectric layer and a portion of the first passivation layer.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: April 22, 2014
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Yaojian Lin, Robert C. Frye
  • Publication number: 20140103282
    Abstract: Provided are resistive random access memory (ReRAM) cells having diffusion barrier layers formed from various materials, such as beryllium oxide or titanium silicon nitrides. Resistive switching layers used in ReRAM cells often need to have at least one inert interface such that substantially no materials pass through this interface. The other (reactive) interface may be used to introduce and remove defects from the resistive switching layers causing the switching. While some electrode materials, such as platinum and doped polysilicon, may form inert interfaces, these materials are often difficult to integrate. To expand electrode material options, a diffusion barrier layer is disposed between an electrode and a resistive switching layer and forms the inert interface with the resistive switching layer. In some embodiments, tantalum nitride and titanium nitride may be used for electrodes separated by such diffusion barrier layers.
    Type: Application
    Filed: October 16, 2012
    Publication date: April 17, 2014
    Applicant: INTERMOLECULAR INC.
    Inventors: Yun Wang, Imran Hashim
  • Patent number: 8698310
    Abstract: A structure for a signal line has the signal line having a base, a lower insulating layer formed at an upper surface of the base, a semiconductor layer disposed along a pathway at an upper surface of the lower insulating layer, at least a part of the semiconductor layer configured to transmit a signal, an upper insulating layer formed at an upper surface of the semiconductor layer, at least a part of the upper insulating layer being mounted along the semiconductor layer; and a strip conductor formed at an upper surface of the upper insulating layer, at least a part of the strip conductor being mounted along the upper insulating layer.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: April 15, 2014
    Assignee: OMRON Corporation
    Inventors: Junya Yamamoto, Koji Narise
  • Publication number: 20140097519
    Abstract: A method for fabricating a semiconductor device includes forming a first semiconductor wafer, in which a circuit part and a first bonding layer are stacked, on a first semiconductor substrate, forming a second semiconductor wafer, which includes structures and an insulating layer for gap-filling between the structures, on a second semiconductor substrate, the structures including a pillar and bit lines stacked therein, bonding the first semiconductor wafer with the second semiconductor wafer so that the first bonding layer faces the insulating layer, and separating the second semiconductor substrate from the bonded second semiconductor wafer.
    Type: Application
    Filed: December 17, 2012
    Publication date: April 10, 2014
    Applicant: SK HYNIX INC.
    Inventors: Heung-Jae CHO, Eui-Seong HWANG, Tae-Yoon KIM, Kyu-Hyung YOON
  • Publication number: 20140097516
    Abstract: A high-voltage metal capacitor with easy integration into existing semiconductor manufacturing processes can provide isolation capacitors up to several kilovolts. The capacitor includes a support layer with internal structure, including a lower place, a bond pad on the support layer, an upper plate disposed on the support layer, the upper plate being arranged above the lower plate, a dielectric layer, at least part of which is between the lower and upper plates, and a passivation layer, at least part of which covers at least part of the upper plate and part of the dielectric layer. A first opening extends from the surface through the passivation and dielectric layers to the lower plate, and a second opening extends from the surface through the passivation layer to the upper plate. A method of manufacturing the capacitor.
    Type: Application
    Filed: October 10, 2012
    Publication date: April 10, 2014
    Inventors: Jerôme Guillaume Anna DUBOIS, Piet WESSELS
  • Patent number: 8691404
    Abstract: A method of constructing a solid-state energy-density micro radioisotope power source device. In such embodiments, the method comprises depositing the pre-voltaic semiconductor composition, comprising a semiconductor material and a radioisotope material, into a micro chamber formed within a power source device body. The method additionally includes heating the body to a temperature at which the pre-voltaic semiconductor composition will liquefy within the micro chamber to provide a liquid state composite mixture. Furthermore, the method includes cooling the body and liquid state composite mixture such that liquid state composite mixture solidifies to provide a solid-state composite voltaic semiconductor, thereby providing a solid-state high energy-density micro radioisotope power source device.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: April 8, 2014
    Assignee: The Curators of the University of Missouri
    Inventors: Jae Wan Kwon, Tongtawee Wacharasindhu, John David Robertson
  • Patent number: 8692291
    Abstract: Device structures, design structures, and fabrication methods for passive devices that may be used as electrostatic discharge protection devices in fin-type field-effect transistor integrated circuit technologies. A device structure is formed that includes a well of a first conductivity type in a device region and a doped region of a second conductivity in the well. The device region is comprised of a portion of a device layer of a semiconductor-on-insulator substrate. The doped region and a first portion of the well define a junction. A second portion of the well is positioned between the doped region and an exterior sidewall of the device region. Another portion of the device layer may be patterned to form fins for fin-type field-effect transistors.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: April 8, 2014
    Assignee: International Business Machines Corporation
    Inventors: William F. Clark, Jr., Robert J. Gauthier, Jr., Junjun Li
  • Patent number: 8692368
    Abstract: A stacked integrated circuit (IC) device includes a semiconductor IC having an active face, and an interconnect structure. The active face receives a regulated voltage from a voltage regulator (MEG). An active portion of the VREG, which supplies the regulated voltage to the semiconductor IC is coupled to the interconnect structure. A packaging substrate includes one or more inductors including a first set of through vias. The first set of through vias are coupled to the interconnect structure and cooperate with the active portion to provide the regulated voltage for the semiconductor IC. The IC also includes a printed circuit board (PCB) coupled to the packaging substrate. The PCB includes a second set of through vias coupled to the first set of through vias. The IC also includes one or more conducting paths on the PCB. The conducting path(s) couple together at least two through vias of the second set of through vias.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: April 8, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Yuancheng Christopher Pan, Lew G. Chua-Eoan, Zhi Zhu, Junmou Zhang
  • Patent number: 8692306
    Abstract: A semiconductor substrate has at least two active regions, each having at least one active device that includes a gate electrode layer, and a shallow trench isolation (STI) region between the active regions. A decoupling capacitor comprises first and second dummy conductive patterns formed in the same gate electrode layer over the STI region. The first and second dummy conductive regions are unconnected to any of the at least one active device. The first dummy conductive pattern is connected to a source of a first potential. The second dummy conductive pattern is connected to a source of a second potential. A dielectric material is provided between the first and second dummy conductive patterns.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: April 8, 2014
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Chung-Hui Chen
  • Patent number: 8692222
    Abstract: A nonvolatile memory element according to the present disclosure includes: a variable resistance element including a first electrode layer, a second electrode layer, and a variable resistance layer which is located between the first electrode layer and the second electrode layer and has a resistance value that reversibly changes based on an electrical signal applied between the first electrode layer and the second electrode layer; and a fixed resistance layer having a predetermined resistance value and stacked together with the variable resistance element. The variable resistance layer includes (i) a first transition metal oxide layer which is oxygen deficient and (ii) a second transition metal oxide layer which has a higher oxygen content atomic percentage than the first transition metal oxide layer. The predetermined resistance value ranges from 70? to 1000? inclusive.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: April 8, 2014
    Assignee: Panasonic Corporation
    Inventors: Shinichi Yoneda, Takumi Mikawa
  • Patent number: 8687405
    Abstract: A phase change memory includes an insulating layer on a substrate, an electrode layer having one pole and an electrode layer having another pole within the insulating layer, an opening portion whose lower portion on an upper portion of the insulating layer is substantially square or substantially rectangular, a phase change portion formed substantially parallel to a surface of the substrate along the respective sides of the lower portion of the opening portion, and two connection electrodes having a pole and connected to the phase change portion at two opposing corners of the lower portion of the opening portion connecting a diode portion connected to the electrode layer having one pole and the phase change portion, and two connection electrodes having another pole and connected to the phase change portion at the other two opposing corners connecting the phase change portion and the electrode layer having another pole.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: April 1, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Hajime Nakabayashi, Kenichi Oyama, Yoshihiro Hirota
  • Patent number: 8685819
    Abstract: A method for making a crossbar array of crossed conductive or semi-conductive access lines on a substrate, the crossbar array including on a crossbar array insulator, in a plane parallel to the substrate, a first level of lines including a plurality of first lines parallel with each other made of a conductive or semi-conductive material; on the first level of lines, a second level of lines including a plurality of second lines parallel with each other made of a conductive or semi-conductive material, the second lines being substantially perpendicular to the first lines. The method includes forming, on the substrate, a first cavity of substantially rectangular shape; forming a second cavity of substantially rectangular shape superimposed to the first cavity, the first and second cavities intersecting each other perpendicularly so as to form a resultant cavity.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: April 1, 2014
    Assignees: Commissariat a l'Energie Atomique, Centre National de la Recherche Scientifique, Universite Joseph Fourier
    Inventors: Julien Buckley, Karim Aissou, Thierry Baron, Gabriel Molas
  • Patent number: 8685829
    Abstract: A method of processing a substrate is provided. The method includes forming a first oxide layer on the substrate and patterning the first oxide layer utilizing a lithography process, the patterning defining a plurality of active areas on the substrate. The method includes forming a second oxide layer in each active area and forming a plurality of metal electrodes over the second oxide layer through a shadow mask technique, wherein the shadow mask technique is performed without alignment to an active area.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: April 1, 2014
    Assignee: Intermolecular, Inc.
    Inventor: Amol Joshi
  • Patent number: 8685826
    Abstract: A method for forming a nanocrystalline silicon structure for the manufacture of integrated circuit devices, e.g., memory, dynamic random access memory, flash memory, read only memory, microprocessors, digital signal processors, application specific integrated circuits. The method includes providing a semiconductor substrate including a surface region. The method forms an insulating layer (e.g., silicon dioxide, silicon nitride, silicon oxynitride) overlying the surface region. In a specific embodiment, the method includes forming an amorphous silicon material of a determined thickness of less than twenty nanometers overlying the insulating layer using a chloro-silane species. The method includes subjecting the amorphous silicon material to a thermal treatment process to cause formation of a plurality of nanocrystalline silicon structures derived from the thickness of amorphous silicon material less than twenty nanometers.
    Type: Grant
    Filed: September 16, 2010
    Date of Patent: April 1, 2014
    Assignees: Semiconductor Manufacturing International (Shanghai) Corporation, Semiconductor Manufacturing International (Beijing) Corporation
    Inventor: Mieno Fumitake
  • Publication number: 20140084414
    Abstract: Vertical meander inductors for small core voltage regulators and approaches to fabricating vertical meander inductors for small core voltage regulators are described. For example, a semiconductor die includes a substrate. An integrated circuit is disposed on an active surface of the substrate. An inductor is coupled to the integrated circuit. The inductor is disposed conformal with an insulating layer disposed on an essentially planar surface of the substrate. The insulating layer has an undulating topography.
    Type: Application
    Filed: September 27, 2012
    Publication date: March 27, 2014
    Inventors: Christopher J. Jezewski, Kevin P. O'Brien
  • Publication number: 20140084412
    Abstract: A metal-oxide-semiconductor field-effect transistor (MOSFET) with integrated passive structures and methods of manufacturing the same is disclosed. The method includes forming a stacked structure in an active region and at least one shallow trench isolation (STI) structure adjacent to the stacked structure. The method further includes forming a semiconductor layer directly in contact with the at least one STI structure and the stacked structure. The method further includes patterning the semiconductor layer and the stacked structure to form an active device in the active region and a passive structure of the semiconductor layer directly on the at least one STI structure.
    Type: Application
    Filed: September 26, 2012
    Publication date: March 27, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Anthony I. Chou, Arvind Kumar, Renee T. Mo, Shreesh Narasimha
  • Publication number: 20140084415
    Abstract: A semiconductor device has a first semiconductor die. A first inductor is formed over the first semiconductor die. A second inductor is formed over the first inductor and aligned with the first inductor. An insulating layer is formed over the first semiconductor die and the first and second inductors. A conductive bridge is formed over the insulating layer and electrically connected between the second inductor and the first semiconductor die. In one embodiment, the semiconductor device has a second semiconductor die and a conductive layer is formed between the first and second semiconductor die. In another embodiment, a capacitor is formed over the first semiconductor die. In another embodiment, the insulating layer has a first thickness over a footprint of the first semiconductor die and a second thickness less than the first thickness outside the footprint of the first semiconductor die.
    Type: Application
    Filed: November 27, 2013
    Publication date: March 27, 2014
    Applicant: STATS ChipPAC, Ltd.
    Inventors: Yaojian Lin, Kai Liu, Kang Chen
  • Patent number: 8679934
    Abstract: A PCRAM cell has a gradated or layered resistivity bottom electrode with higher resistivity closer to a phase change material, to provide partial heating near the interface between the cell and the bottom electrode, preventing separation of the amorphous GST region from the bottom electrode, and reducing the programming current requirements. The bottom electrode can also be tapered to have a smaller cross-sectional area at the top of the bottom electrode than at the bottom of the bottom electrode.
    Type: Grant
    Filed: August 18, 2011
    Date of Patent: March 25, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Jun Liu
  • Patent number: 8679933
    Abstract: Methods for fabricating semiconductor devices, such as complementary metal-oxide-semiconductor (CMOS) imagers, include fabricating transistors and other low-elevation features on an active surface of a fabrication substrate, and fabricating contact plugs, conductive lines, external contacts, and other higher-elevation features on the back side of the fabrication substrate. Semiconductor devices with transistors on the active surface and contact plugs that extend through the substrate are also disclosed, as are electronic devices including such semiconductor devices.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: March 25, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Kyle K. Kirby, Steve Oliver
  • Patent number: 8679935
    Abstract: The present disclosure describes methods of fabricating a semiconductor device. An exemplary method includes forming a metal pattern on a substrate and etching the metal pattern using an etchant including at least an alkaline solution and an oxidant to form a metal electrode, where at least a portion of the surface of the metal electrode is uneven.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: March 25, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Mongsup Lee, Inseak Hwang, Byoung-Yong Gwak, Sukhun Choi, Sang-Jun Lee
  • Patent number: 8680647
    Abstract: A device includes a substrate, a metal pad over the substrate, and a passivation layer having a portion over the metal pad. A Post-Passivation Interconnect (PPI) line is disposed over the passivation layer and electrically coupled to the metal pad. An Under-Bump Metallurgy (UBM) is disposed over and electrically coupled to the PPI line. A passive device includes a portion at a same level as the UBM. The portion of the passive device is formed of a same material as the UBM.
    Type: Grant
    Filed: May 4, 2012
    Date of Patent: March 25, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Shang-Yun Hou, Der-Chyang Yeh, Shuo-Mao Chen, Chiung-Han Yeh, Yi-Jou Lin
  • Patent number: 8673727
    Abstract: A manufacturing method for manufacturing a flexible non-volatile memory is provided. The manufacturing method comprises the steps outlined below. A flexible substrate is provided. A planarization layer is formed on the flexible substrate. A metal bottom electrode layer is deposited on the planarization layer. A mask is formed to define a plurality of patterns. An AZTO layer having a plurality of electrically independent AZTO cells is deposited on the metal bottom electrode layer corresponding to the patterns. A top electrode layer is deposited on the AZTO layer corresponding to the AZTO cells to form a plurality of non-volatile memory cells.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: March 18, 2014
    Assignee: National Chiao Tung University
    Inventors: Po-Tsun Liu, Yang-Shun Fan
  • Publication number: 20140070363
    Abstract: An electronic anti-fuse structure, the structure including an Mx level comprising a first Mx metal and a second Mx metal, a dielectric layer located above the Mx level, an Mx+1 level located above the dielectric layer; and a metallic element in the dielectric layer and positioned between the first Mx metal and the second Mx metal, wherein the metallic element is insulated from both the first Mx metal and the second Mx metal.
    Type: Application
    Filed: September 10, 2012
    Publication date: March 13, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Junjing Bao, Griselda Bonilla, Samuel S. Choi, Ronald G. Filippi, Naftali Eliahu Lustig, Andrew H. Simon
  • Publication number: 20140070367
    Abstract: According to one embodiment, the semiconductor device according to the embodiment of the present disclosure is provided with a first semiconductor layer, a second semiconductor layer, a ninth semiconductor layer formed on the second semiconductor layer, a third semiconductor layer, a first region enclosed with the third semiconductor layer, a fourth semiconductor layer, a second region on the second semiconductor layer, a fifth semiconductor layer, a sixth semiconductor layer, a first terminal connected to the first semiconductor layer, and a second terminal connected to the fifth semiconductor layer and the sixth semiconductor layer.
    Type: Application
    Filed: June 17, 2013
    Publication date: March 13, 2014
    Inventors: Minoru KAWASE, Hideaki SAI, Shigehiro HOSOI
  • Patent number: 8669637
    Abstract: An integrated passive device system is disclosed including forming a first dielectric layer over a semiconductor substrate, depositing a metal capacitor layer on the first dielectric layer, forming a second dielectric layer over the metal capacitor layer, and depositing a metal layer over the second dielectric layer for forming the integrated capacitor, an integrated resistor, an integrated inductor, or a combination thereof.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: March 11, 2014
    Assignee: Stats ChipPac Ltd.
    Inventors: Yaojian Lin, Haijing Cao, Robert Charles Frye, Pandi Chelvam Marimuthu
  • Patent number: 8669150
    Abstract: A semiconductor device including a capacitor and a proximate high-voltage gate having a boron-barrier layer that ideally serves as part of both the capacitor dielectric and the (high voltage) HV gate oxide. The boron-barrier layer is preferably formed over a poly oxide layer that is in turn deposited on a substrate infused to create a neighboring wells, and N-well over which the capacitor will be formed, and P-well to be overlaid by the HV gate. The boron-barrier helps to reduce or eliminate the harmful effects of boron diffusion from the P-well during TEOS deposition of the gate oxide material.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: March 11, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chyi-Chyuan Huang, Shyh-An Lin, Chen-Fu Hsu
  • Patent number: 8669164
    Abstract: Microelectronic structures and devices, and method of fabricating a three-dimensional microelectronic structure is provided, comprising passing a first precursor material for a selected three-dimensional microelectronic structure into a reaction chamber at temperatures sufficient to maintain said precursor material in a predominantly gaseous state; maintaining said reaction chamber under sufficient pressures to enhance formation of a first portion of said three-dimensional microelectronic structure; applying an electric field between an electrode and said microelectronic structure at a desired point under conditions whereat said first portion of a selected three-dimensional microelectronic structure is formed from said first precursor material; positionally adjusting either said formed three-dimensional microelectronic structure or said electrode whereby further controlled growth of said three-dimensional microelectronic structure occurs; passing a second precursor material for a selected three-dimensional mi
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: March 11, 2014
    Assignee: Los Alamos National Security, LLC
    Inventors: James L. Maxwell, Chris R. Rose, Marcie R. Black, Robert W. Springer
  • Patent number: 8669638
    Abstract: A high power semiconductor device for operation at powers greater than 5 watts for wireless applications comprises a semiconductor substrate including an active area of the high power semiconductor device, contact regions formed on the semiconductor substrate providing contacts to the active area of the high power semiconductor device, a dielectric layer formed over a part of the semiconductor substrate, a lead for providing an external connection to the high power semiconductor device and an impedance matching network formed on the semiconductor substrate between the active area of the high power semiconductor device and the lead. The impedance matching network includes conductor lines formed on the dielectric layer. The conductor lines are coupled to the contact regions for providing high power connections to the contact regions of the active area, and have a predetermined inductance for impedance matching.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: March 11, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Jean Marie Boulay, Ayad Ghannam
  • Patent number: 8669165
    Abstract: A method of fabricating a semiconductor device is disclosed, the method generally including the steps of: forming a gate dielectric layer on a semiconductor substrate; forming a gate electrode on the gate dielectric layer; forming an etch stop layer on the gate electrode; forming a capacitor on the semiconductor substrate adjacent to the gate electrode; after forming the capacitor, forming a contact hole passing through the etch stop layer on the gate electrode; and, diffusing deuterium into the gate dielectric layer through the contact hole.
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: March 11, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seung-Uk Han, Nam-Ho Jeon, Satoru Yamada, Young-Jin Choi
  • Publication number: 20140061853
    Abstract: Semiconductor integrated magnetic devices such as inductors, transformers, etc., having laminated magnetic-insulator stack structures are provided, wherein the laminated magnetic-insulator stack structures are formed using electroplating techniques. For example, an integrated laminated magnetic device includes a multilayer stack structure having alternating magnetic and insulating layers formed on a substrate, wherein each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by an insulating layer, and a local shorting structure to electrically connect each magnetic layer in the multilayer stack structure to an underlying magnetic layer in the multilayer stack structure to facilitate electroplating of the magnetic layers using an underlying conductive layer (magnetic or seed layer) in the stack as an electrical cathode/anode for each electroplated magnetic layer in the stack structure.
    Type: Application
    Filed: August 29, 2012
    Publication date: March 6, 2014
    Applicant: International Business Machines Corporation
    Inventor: Bucknell C. Webb
  • Publication number: 20140065786
    Abstract: An integrated circuit device and methods of manufacturing the same are disclosed. In an example, integrated circuit device includes a capacitor having a doped region disposed in a semiconductor substrate, a dielectric layer disposed over the doped region, and an electrode disposed over the dielectric layer. At least one post feature embedded in the electrode.
    Type: Application
    Filed: November 19, 2013
    Publication date: March 6, 2014
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Harry-Hak-Lay Chuang, Ming Zhu
  • Publication number: 20140065784
    Abstract: A method of fabricating a semiconductor device with capacitors may include forming a mold structure on a lower structure, patterning the mold structure to form a plurality of holes exposing the lower structure, forming a protection layer on sidewalls of the mold structure exposed by the holes, forming lower electrodes in the holes provided with the protection layer, removing the mold structure to expose the protection layer, removing the protection layer to expose sidewalls of the lower electrodes, and sequentially forming a dielectric film and an upper electrode on the lower electrodes.
    Type: Application
    Filed: July 26, 2013
    Publication date: March 6, 2014
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Junho Yoon, Dongchan Kim, Gyungjin Min, Jaehong Park, Yongmoon Jang, Je-Woo Han
  • Publication number: 20140065785
    Abstract: Semiconductor devices are provided. Each of the semiconductor devices may include a plurality of electrodes. Moreover, each of the semiconductor devices may include a supporting pattern connected to sidewalls of the plurality of electrodes. Related methods of forming semiconductor devices are also provided. For example, the methods may include forming the supporting pattern before forming the plurality of electrodes.
    Type: Application
    Filed: August 14, 2013
    Publication date: March 6, 2014
    Inventors: Junho Yoon, Gyungjin Min, Jaehong Park, Yongmoon Jang, Je-Woo Han
  • Publication number: 20140061744
    Abstract: A capacitor includes a semiconductor substrate. The capacitor also includes a first terminal having a fin disposed on a surface of the semiconductor substrate. The capacitor further includes a dielectric layer disposed onto the fin. The capacitor still further includes a second terminal having a FinFET compatible high-K metal gate disposed proximate and adjacent to the fin.
    Type: Application
    Filed: September 4, 2012
    Publication date: March 6, 2014
    Applicant: QUALCOMM Incorporated
    Inventors: Ron Zhang, Lew G. Chua-Eoan, Shiqun Gu
  • Publication number: 20140061741
    Abstract: A semiconductor device comprises a bit line formed over a semiconductor substrate. The bit line has an upper portion and a lower portion, and the upper portion is narrower than the lower portion. An barrier film is formed over sidewalls of the bit line, and a storage node contact plug is obtained by filling a space between the bit lines so that an upper portion of the storage node contact is wider than a lower portion of the storage node contact. As a result, the process can be simplified and a short between the storage node contact plug and the bit line can be prevented.
    Type: Application
    Filed: December 17, 2012
    Publication date: March 6, 2014
    Applicant: SK HYNIX INC.
    Inventor: Hyung Jin PARK
  • Publication number: 20140061856
    Abstract: A semiconductor device has a silicon substrate, a shield which is disposed on the silicon substrate and comprises a conductive material, a capacitor electrode disposed on the shield, and at least one pillar member which is provided between the shield and the silicon substrate and comprises a conductive material. The pillar member may be disposed at a location other than a location of the through-hole.
    Type: Application
    Filed: August 29, 2013
    Publication date: March 6, 2014
    Inventors: Shusuke KAWAI, Toshiya MITOMO, Shigehito SAIGUSA, Tetsuro ITAKURA
  • Publication number: 20140054745
    Abstract: Memory cell support lattices and methods of forming the same are described herein. As an example, a method of forming a memory cell support lattice includes forming a mask on a number of capacitor elements in an array, such that a space between vertically and horizontally adjacent capacitor elements is fully covered and a space between diagonally adjacent capacitor elements is partially covered and forming a support lattice in a support material by etching the support material to remove portions of the support material below the openings in the mask.
    Type: Application
    Filed: August 21, 2012
    Publication date: February 27, 2014
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Zhimin Song, Che-Chi Lee, Brett Busch
  • Publication number: 20140054533
    Abstract: A PCRAM device and a method of manufacturing the same are provided. The PCRAM device includes a semiconductor substrate, and a PN diode formed on the semiconductor substrate and including a layer interposed therein to suppress thermal diffusion of ions.
    Type: Application
    Filed: December 14, 2012
    Publication date: February 27, 2014
    Applicant: SK hynix Inc.
    Inventors: Jin Ku LEE, Min Yong LEE, Jong Chul LEE
  • Patent number: 8658476
    Abstract: A method of forming a non-volatile memory device. The method includes providing a substrate having a surface region and forming a first dielectric material overlying the surface region of the substrate. A first electrode structure is formed overlying the first dielectric material and a p+ polycrystalline silicon germanium material is formed overlying the first electrode structure. A p+ polycrystalline silicon material is formed overlying the first electrode structure using the polycrystalline silicon germanium material as a seed layer at a deposition temperature ranging from about 430 Degree Celsius to about 475 Degree Celsius without further anneal. The method forms a resistive switching material overlying the polycrystalline silicon material, and a second electrode structure including an active metal material overlying the resistive switching material.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: February 25, 2014
    Assignee: Crossbar, Inc.
    Inventors: Xin Sun, Sung Hyun Jo, Tanmay Kumar
  • Patent number: 8658512
    Abstract: A method for fabricating an out-of-plane variable overlap MEMS capacitor comprises: providing a substrate (40) comprising a first layer (41), a second layer (42), and a third layer (43) stacked on top of one another; and etching a plurality of first trenches (70) through the third layer (43), through the second layer (42), and into the first layer (41) using a single etching mask. Etching the plurality of first trenches (70) defines a plurality of first fingers (51) in the third layer (43) and a plurality of second fingers (52) in the first layer (41). By using a single mask, the process is self-aligned. The method further comprises removing the second layer (42) in a first region where the plurality of first trenches (70) are provided, thereby forming a spacing or gap between the plurality of first fingers (51) and the plurality of second fingers (52).
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: February 25, 2014
    Assignees: IMEC, Stichting IMEC Nederland, Katholieke Universiteit Leuven, KU Leuven R&D
    Inventors: Tom Sterken, Geert Altena, Martijn Goedbloed, Robert Puers
  • Patent number: 8658463
    Abstract: A method of making a memristor having an embedded switching layer include exposing a surface portion of a first electrode material within a via to a reactive species to form the switching layer embedded within and at surface of the via. The via is in contact with a first conductor trace. The method further includes depositing a layer of a second electrode material adjacent to the via surface and patterning the layer into a column aligned with the via. The method further includes depositing an interlayer dielectric material to surround the column and providing a second conductor trace in electrical contact with the second electrode material of the column.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: February 25, 2014
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Janice H. Nickel, Matthew D. Pickett
  • Patent number: 8652926
    Abstract: A method of forming capacitors includes providing first capacitor electrodes within support material. The first capacitor electrodes contain TiN and the support material contains polysilicon. The polysilicon-containing support material is dry isotropically etched selectively relative to the TiN-containing first capacitor electrodes using a sulfur and fluorine-containing etching chemistry. A capacitor dielectric is formed over sidewalls of the first capacitor electrodes and a second capacitor electrode is formed over the capacitor dielectric. Additional methods are disclosed.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: February 18, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Gurpreet Lugani, Kevin J. Torek