Making Passive Device (e.g., Resistor, Capacitor, Etc.) Patents (Class 438/381)
  • Patent number: 8836009
    Abstract: A MONOS Charge-Trapping flash (CTF), with record thinnest 3.6 nm ENT trapping layer, has a large 3.1 V 10-year extrapolated retention window at 125° C. and excellent 106 endurance at a fast 100 ?s and ±16 V program/erase. This is achieved using As+-implanted higher ? trapping layer with deep 5.1 eV work-function of As. In contrast, the un-implanted device only has a small 10-year retention window of 1.9 V at 125° C. A MoN—[SiO2—LaAlO3]—[Ge—HfON]—[LaAlO3—SiO2]—Si CTF device is also provided with record-thinnest 2.5-nm Equivalent-Si3N4-Thickness (ENT) trapping layer, large 4.4 V initial memory window, 3.2 V 10-year extrapolated retention window at 125° C., and 3.6 V endurance window at 106 cycles, under very fast 100 ?s and low ±16 V program/erase. These were achieved using Ge reaction with HfON trapping layer for better charge-trapping and retention.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: September 16, 2014
    Assignee: National Chiao Tung University
    Inventors: Albert Chin, Chun-Yang Tsai
  • Patent number: 8835273
    Abstract: A first electrode layer for a Metal-Insulator-Metal (MIM) DRAM capacitor is formed wherein the first electrode layer contains a conductive metal oxide formed using a high temperature, low pressure ALD process. The high temperature ALD process results in a layer with enhanced crystallinity, higher density, reduced shrinkage, and lower carbon contamination. The high temperature ALD process can be used for either or both the bottom electrode and the top electrode layers.
    Type: Grant
    Filed: September 19, 2012
    Date of Patent: September 16, 2014
    Assignees: Intermolecular, Inc., Elpida Memory, Inc.
    Inventors: Hanhong Chen, Edward L Haywood, Sandra G Malhotra, Hiroyuki Ode
  • Publication number: 20140252542
    Abstract: The present disclosure provides a semiconductor device. The semiconductor device includes an inductor formed on a substrate and configured to be operable with a current of a frequency; and dummy metal features configured between the inductor and the substrate, the dummy metal features having a first width less than 2 times of a skin depth associated with the frequency.
    Type: Application
    Filed: March 11, 2013
    Publication date: September 11, 2014
    Inventors: Hsiao-Chun Lee, Victor Chiang Liang, Chi-Feng Huang
  • Publication number: 20140252535
    Abstract: Disclosed is a structure for improved electrical signal isolation in a semiconductor substrate between integrated passive devices (IPDs) and an associated method for the structure's fabrication. The structure includes an amorphized region in the semiconductor substrate, a dielectric layer formed over the amorphized region, and IPDs formed over the dielectric layer. The amorphized region is not recrystallized and may be formed by utilizing an inert implant that does not charge-dope the amorphized region, while forming a plurality of charge carrier traps at an interface between the amorphized region and the dielectric layer to prevent a parasitic conduction layer from forming at the interface. The inert implant may include one of Argon, Xenon and Germanium. In many implementations, the structure does not include an active device.
    Type: Application
    Filed: January 28, 2014
    Publication date: September 11, 2014
    Applicant: Newport Fab, LLC dba Jazz Semiconductor
    Inventor: Paul D. Hurwitz
  • Patent number: 8828836
    Abstract: A method for fabricating a dynamic random access memory (DRAM) capacitor stack is disclosed wherein the stack includes a first electrode, a dielectric layer, and a second electrode. The first electrode is formed from a conductive binary metal. A dielectric layer is formed over the first electrode. The dielectric layer is subjected to a milliseconds anneal process that serves to crystallize the dielectric material and decrease the concentration of oxygen vacancies.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: September 9, 2014
    Assignees: Intermolecular, Inc., Elpida Memory, Inc.
    Inventors: Karthik Ramani, Hiroyuki Ode, Sandra Malhotra
  • Publication number: 20140247654
    Abstract: Clamp elements, memories, apparatuses, and methods for forming the same are disclosed herein. An example memory may include an array of memory cells and a plurality of clamp elements. A clamp element of the plurality of clamp elements may include a cell structure formed non-orthogonally relative to at least one of a bit line or a word line of the array of memory cells and may be configured to control a voltage of a respective bit line.
    Type: Application
    Filed: March 4, 2013
    Publication date: September 4, 2014
    Applicant: Micron Technology, Inc.
    Inventors: Antonino Rigano, Fabio Pellizzer
  • Publication number: 20140246711
    Abstract: A semiconductor device includes: a gate electrode and a wiring; a first insulating film covering the gate electrode and the wiring; a semiconductor film opposed to the gate electrode with the first insulating film in between; a first concave section located in a position adjacent to the semiconductor film; a connection hole, the connection hole being provided in the first insulating film, and the connection hole reaching the wiring, and a first electrically-conductive film, the first electrically-conductive film being electrically connected to the wiring through the connection hole, and the first electrically-conductive film being buried in the first concave section.
    Type: Application
    Filed: February 21, 2014
    Publication date: September 4, 2014
    Applicant: Sony Corporation
    Inventor: Koichi AMARI
  • Patent number: 8822235
    Abstract: An electronic component is provided on a substrate. A thin-film capacitor is attached to the substrate, the thin-film capacitor includes a pyrochlore or perovskite dielectric layer between a plurality of electrode layers, the electrode layers being formed from a conductive thin-film material. A reactive barrier layer is deposited over the thin-film capacitor. The reactive barrier layer includes an oxide having an element with more than one valence state, wherein the element with more than one valence state has a molar ratio of the molar amount of the element that is in its highest valence state to its total molar amount in the barrier of 50% to 100%. Optionally layers of other materials may intervene between the capacitor and reactive barrier layer. The reactive barrier layer may be paraelectric and the electronic component may be a tunable capacitor.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: September 2, 2014
    Assignee: BlackBerry Limited
    Inventors: Marina Zelner, Mircea Capanu, Paul Bun Cheuk Woo, Susan C. Nagy
  • Patent number: 8822301
    Abstract: The present invention relates to electrically active devices (e.g., capacitors, transistors, diodes, floating gate memory cells, etc.) having dielectric, conductor, and/or semiconductor layers with smooth and/or dome-shaped profiles and methods of forming such devices by depositing or printing (e.g., inkjet printing) an ink composition that includes a semiconductor, metal, or dielectric precursor. The smooth and/or dome-shaped cross-sectional profile allows for smooth topological transitions without sharp steps, preventing feature discontinuities during deposition and allowing for more complete step coverage of subsequently deposited structures. The inventive profile allows for both the uniform growth of oxide layers by thermal oxidation, and substantially uniform etching rates of the structures. Such oxide layers may have a uniform thickness and provide substantially complete coverage of the underlying electrically active feature.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: September 2, 2014
    Assignee: Thin Film Electronics ASA
    Inventors: Arvind Kamath, Erik Scher, Patrick Smith, Aditi Chandra, Steven Molesa
  • Patent number: 8822270
    Abstract: A wafer of passive components is diced to leave a flat passive chip. The flat passive chip has bond pads for passive components on a same side of the flat passive chip. The flat passive chip is stacked onto an active chip. The passive components are wirebonded together to connect the passive components in series or parallel, resulting in the flat passive chip having an overall passive characteristic equal to a target characteristic.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: September 2, 2014
    Assignee: Atmel Corporation
    Inventor: Julius Andrew Kovats
  • Patent number: 8822968
    Abstract: According to one embodiment, a nonvolatile memory device includes a first wiring layer. The device includes a second wiring layer intersecting with the first wiring layer. And the device includes a first memory layer provided at a position where the first wiring layer and the second wiring layer intersect. And the first memory layer contacts with the first wiring layer, and the first wiring layer is a layer which is capable of supplying a metal ion to the first memory layer.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: September 2, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hideki Inokuma
  • Patent number: 8823137
    Abstract: A semiconductor device includes first and second wells formed side by side as impurity diffusion regions of a first conductive type in a semiconductor substrate, below an intermediate dielectric film that covers a major surface of the substrate. A conductive layer formed above the intermediate dielectric film is held at a potential. A first resistive layer is formed on the intermediate dielectric film and is electrically connected to the first well. A second resistive layer is formed on the intermediate dielectric film and is electrically connected to the second well. The first resistive layer and first well form a first resistance element. The second resistive layer and second well form a second resistance element.
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: September 2, 2014
    Assignee: LAPIS Semiconductor Co., Ltd.
    Inventors: Hidekazu Kikuchi, Hisao Ohtake, Danya Sugai
  • Publication number: 20140242773
    Abstract: A semiconductor memory device and a fabrication method thereof capable of improving electric contact characteristic between an access device and a lower electrode are provided. The semiconductor memory device includes an access device formed in a pillar shape on a semiconductor substrate, a first conductive layer formed over the access device, a protection layer formed on an edge of the first conductive layer to a predetermined thickness, and a lower electrode connected to the first conductive layer.
    Type: Application
    Filed: May 2, 2014
    Publication date: August 28, 2014
    Applicant: SK hynix Inc.
    Inventors: Su Jin CHAE, Jin Hyock KIM, Young Seok KWON
  • Publication number: 20140239245
    Abstract: Apparatuses and methods of manufacture are disclosed for phase change memory cell electrodes having a conductive barrier material. In one example, an apparatus includes a first chalcogenide structure and a second chalcogenide structure stacked together with the first chalcogenide structure. A first electrode portion is coupled to the first chalcogenide structure, and a second electrode portion is coupled to the second chalcogenide structure. An electrically conductive barrier material is disposed between the first and second electrode portions.
    Type: Application
    Filed: February 25, 2013
    Publication date: August 28, 2014
    Applicant: Micron Technology, Inc.
    Inventors: Swapnil A. Lengade, John M. Meldrim, Andrea Gotti
  • Publication number: 20140242772
    Abstract: A semiconductor device includes a dielectric layer in which zirconium, hafnium, and a IV group element are mixed. A method for fabricating a capacitor includes forming a bottom electrode, forming the dielectric layer and forming a top electrode over the dielectric layer.
    Type: Application
    Filed: May 2, 2014
    Publication date: August 28, 2014
    Applicant: SK hynix Inc.
    Inventors: Kee-Jeung LEE, Kwon HONG, Kyung-Woong PARK, Ji-Hoon AHN
  • Patent number: 8815695
    Abstract: A first electrode layer for a Metal-Insulator-Metal (MIM) DRAM capacitor is formed wherein the first electrode layer contains a conductive base layer and conductive metal oxide layer. A second electrode layer for a Metal-Insulator-Metal (MIM) DRAM capacitor is formed wherein the second electrode layer contains a conductive base layer and conductive metal oxide layer. In some embodiments, both the first electrode layer and the second electrode layer contain a conductive base layer and conductive metal oxide layer.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: August 26, 2014
    Assignees: Intermolecular, Inc., Elpida Memory, Inc.
    Inventors: Xiangxin Rui, Mitsuhiro Horikawa, Hiroyuki Ode, Karthik Ramani
  • Patent number: 8815654
    Abstract: A Silicon on Insulator (SOI) Integrated Circuit (IC) chip with devices such as a vertical Silicon Controlled Rectifier (SCR), vertical bipolar transistors, a vertical capacitor, a resistor and/or a vertical pinch resistor and method of making the device(s). The devices are formed in a seed hole through the SOI surface layer and insulator layer to the substrate. A buried diffusion, e.g., N-type, is formed through the seed hole in the substrate. A doped epitaxial layer is formed on the buried diffusion and may include multiple doped layers, e.g., a P-type layer and an N-type layer. Polysilicon, e.g., P-type, may be formed on the doped epitaxial layer. Contacts to the buried diffusion are formed in a contact liner.
    Type: Grant
    Filed: June 14, 2007
    Date of Patent: August 26, 2014
    Assignee: International Business Machines Corporation
    Inventors: Robert J. Gauthier, Jr., Junjun Li, Souvick Mitra, Mahmoud A Mousa, Christopher S. Putnam
  • Publication number: 20140231959
    Abstract: A semiconductor device includes a first storage electrode, a second storage electrode that is arranged above the first storage electrode, a first landing pad that is arranged between a top surface of the first storage electrode and a bottom surface of the second storage electrode, the first landing pad connecting the first storage electrode and the second storage electrode, the first landing pad having a first landing surface, the first landing surface being larger than the bottom surface of the second storage electrode, and the second storage electrode being placed on the first landing surface, a capacitive insulating film that is laminated on the first and second storage electrodes and on an outer circumferential surface of the first landing pad, and a plate electrode that contacts the capacitive insulating film.
    Type: Application
    Filed: April 29, 2014
    Publication date: August 21, 2014
    Applicant: Elpida Memory, Inc.
    Inventor: Takashi MIYAJIMA
  • Publication number: 20140235027
    Abstract: A silicon carrier space transformer assembly includes one or more silicon structures, which provide space transformer scaling to permit interconnection for fine pitch input/output interconnections with a semiconductor die or wafer, and fine pitch test probe tips connected to the one or more silicon structures.
    Type: Application
    Filed: August 8, 2012
    Publication date: August 21, 2014
    Applicant: International Business Machines Corporation
    Inventors: Harvey Hamel, John Ulrich Knickerbocker, Samuel McKnight, Chirag S. Patel
  • Publication number: 20140231811
    Abstract: A semiconductor device structure is provided. The semiconductor device structure may include a substrate, a semiconductor layer, a first conductive layer, a second conductive layer, a first dielectric layer and a second dielectric layer. The first dielectric layer is disposed on the substrate. The second dielectric layer is disposed on the first dielectric layer. The semiconductor layer is adjacent to the first dielectric layer or the second dielectric layer. The semiconductor layer is disposed on the first dielectric layer or the second dielectric layer. The first conductive layer is adjacent to the first dielectric layer or the second dielectric layer. The second conductive layer is disposed on the first dielectric layer or the second dielectric layer. The effective Young's modulus of the second dielectric layer may be smaller than the Young's modulus of the first dielectric layer.
    Type: Application
    Filed: February 19, 2014
    Publication date: August 21, 2014
    Applicant: Industrial Technology Research Institute
    Inventors: Jing-Yi YAN, Chih-Chieh HSU, Liang-Hsiang CHEN, Chen-Wei LIN
  • Publication number: 20140231955
    Abstract: The present disclosure relates to an integrated chip (IC) having an ultra-thick metal layer formed in a metal layer trench having a rounded shape that reduces stress between an inter-level dielectric (ILD) layer and an adjacent metal layer, and a related method of formation. In some embodiments, the IC has an inter-level dielectric layer disposed above a semiconductor substrate. The ILD layer has a cavity with a sidewall having a plurality of sections, wherein respective sections have different slopes that cause the cavity to have a rounded shape. A metal layer is disposed within the cavity. The rounded shape of the cavity reduces stress between the ILD layer and the metal layer to prevent cracks from forming along an interface between the ILD layer and the metal layer.
    Type: Application
    Filed: February 18, 2013
    Publication date: August 21, 2014
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chih-Hung Hsueh, Wei-Te Wang, Shao-Yu Chen, Chun-Liang Fan, Kuan-Chi Tsai
  • Publication number: 20140231956
    Abstract: An inductive device is formed in a circuit structure that includes alternating conductive and insulating layers. The device includes, in a plurality of the conductive layers, traces forming a respective pair of interleaved loops and at least one interconnect segment in each of the plurality of the conductive layers. In each layer among the plurality of the conductive layers, at least one loop in the respective pair is closed by jumpers to an interconnect segment formed in another layer above or below the layer.
    Type: Application
    Filed: February 5, 2014
    Publication date: August 21, 2014
    Applicant: Mellanox Technologies Ltd.
    Inventors: Yossi Smeloy, Eyal Frost
  • Publication number: 20140231957
    Abstract: A complementary back end of line (BEOL) capacitor (CBC) structure includes a metal oxide metal (MOM) capacitor structure. The MOM capacitor structure is coupled to a first upper interconnect layer of an interconnect stack of an integrated circuit (IC) device. The MOM capacitor structure includes at least one lower interconnect layer of the interconnect stack. The CBC structure may also include a second upper interconnect layer of the interconnect stack coupled to the MOM capacitor structure. The CBC structure also includes at least one metal insulator metal (MIM) capacitor layer between the first upper interconnect layer and the second upper interconnect layer. In addition, CBC structure may also include a MIM capacitor structure coupled to the MOM capacitor structure. The MIM capacitor structure includes a first capacitor plate having at least a portion of the first upper interconnect layer, and a second capacitor plate having at least a portion of the MIM capacitor layer(s).
    Type: Application
    Filed: February 19, 2013
    Publication date: August 21, 2014
    Applicant: QUALCOMM INCORPORATED
    Inventors: John J. Zhu, Bin Yang, PR Chidambaram, Lixin Ge, Jihong Choi
  • Publication number: 20140231954
    Abstract: A memory device includes an array of NAND strings of memory cells. The device includes a plurality of stacks of conductive strips separated by insulating material, including at least a bottom plane of conductive strips, a plurality of intermediate planes of conductive strips, and a top plane of conductive strips. The device includes charge storage structures in interface regions at cross-points between side surfaces of the conductive strips in the plurality of intermediate planes in the stacks and inter-stack semiconductor body elements of a plurality of bit line structures. At least one reference line structure is arranged orthogonally over the stacks, including vertical conductive elements between the stacks in electrical communication with a reference conductor between the bottom plane of conductive strips and a substrate, and linking elements over the stacks connecting the vertical conductive elements. The vertical conductive elements have a higher conductivity than the semiconductor body elements.
    Type: Application
    Filed: February 20, 2013
    Publication date: August 21, 2014
    Inventor: Hang-Ting Lue
  • Patent number: 8809108
    Abstract: Some embodiments include methods of forming memory cells. Such methods can include forming a first electrode, a second electrode, and a memory element directly contacting the first and second electrodes. Forming the memory element can include forming a programmable portion of the memory element isolated from the first electrode by a first portion of the memory element and isolated from the second electrode by a second portion of the memory element. Other embodiments are described.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: August 19, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Jun Liu, Michael P. Violette
  • Patent number: 8809956
    Abstract: The present disclosure involves a semiconductor device. The semiconductor device includes a substrate; a capacitor disposed over the substrate; an inductor disposed over the substrate and having a coil feature surrounding the capacitor; and a shielding structure over the substrate and configured around the coil feature.
    Type: Grant
    Filed: October 13, 2011
    Date of Patent: August 19, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Hsiu-Ying Cho
  • Patent number: 8809157
    Abstract: A method of forming a memory cell includes forming one of multivalent metal oxide material or oxygen-containing dielectric material over a first conductive structure. An outer surface of the multivalent metal oxide material or the oxygen-containing dielectric material is treated with an organic base. The other of the multivalent metal oxide material or oxygen-containing dielectric material is formed over the treated outer surface. A second conductive structure is formed over the other of the multivalent metal oxide material or oxygen-containing dielectric material.
    Type: Grant
    Filed: December 13, 2013
    Date of Patent: August 19, 2014
    Assignee: Micron Technology, Inc.
    Inventors: D. V. Nirmal Ramaswamy, Beth R. Cook, Lei Bi, Wayne Huang, Ian C. Laboriante
  • Patent number: 8808800
    Abstract: Electrochemical fabrication processes and apparatus for producing single layer or multi-layer structures where each layer includes the deposition of at least two materials and wherein the formation of at least some layers includes operations for reducing stress and/or curvature distortion when the structure is released from a sacrificial material which surrounded it during formation and possibly when released from a substrate on which it was formed. Six primary groups of embodiments are presented which are divide into eleven primary embodiments. Some embodiments attempt to remove stress to minimize distortion while others attempt to balance stress to minimize distortion.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: August 19, 2014
    Assignee: Microfabrica Inc.
    Inventors: Ananda H. Kumar, Jorge Sotelo Albarran, Adam L. Cohen, Kieun Kim, Michael S. Lockard, Uri Frodis, Dennis R. Smalley
  • Publication number: 20140227851
    Abstract: A semiconductor device and a method for manufacturing the same are disclosed. An additional spacer is formed at a lateral surface of an upper part of the bit line so that the distance of insulation films between a storage node and a neighboring storage node contact plug is increased. Accordingly, the distance between the storage node and the neighboring storage node contact is guaranteed and a bridge failure is prevented.
    Type: Application
    Filed: April 15, 2014
    Publication date: August 14, 2014
    Applicant: SK HYNIX INC.
    Inventor: Un Hee LEE
  • Publication number: 20140227852
    Abstract: A capacitor forming method includes forming an electrically conductive support material over a substrate, forming an opening through at least the support material to the substrate, and, after forming the opening, forming a capacitor structure contacting the substrate and the support material in the opening. The support material contains at least 25 at % carbon. Another capacitor forming method includes forming a support material over a substrate, forming an opening through at least the support material to the substrate, and, after forming the opening, forming a capacitor structure contacting the substrate and the support material in the opening. The support material contains at least 20 at % carbon. The support material has a thickness and the opening has an aspect ratio 20:1 or greater within the thickness of the support material.
    Type: Application
    Filed: April 17, 2014
    Publication date: August 14, 2014
    Applicant: Micron Technology, Inc.
    Inventor: Mark Kiehlbauch
  • Patent number: 8802532
    Abstract: Disclosed are example bipolar transistors capable of reducing the area of a collector, reducing the distance between a base and a collector, and/or reducing the number of ion implantation processes. A bipolar transistor may includes a trench formed by etching a portion of a semiconductor substrate. A first collector may be formed on the inner wall of the trench. A second collector may be formed inside the semiconductor substrate in the inner wall of the trench. A first isolation film may be formed on the sidewall of the first collector. An intrinsic base may be connected to the third collector. An extrinsic base may be formed on the intrinsic base and inside the first isolation film. A second isolation film may be formed on the inner wall of the extrinsic base. An emitter may be formed by burying a conductive material inside the second isolation film.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: August 12, 2014
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Nam Joo Kim
  • Patent number: 8803283
    Abstract: Vertical meander inductors for small core voltage regulators and approaches to fabricating vertical meander inductors for small core voltage regulators are described. For example, a semiconductor die includes a substrate. An integrated circuit is disposed on an active surface of the substrate. An inductor is coupled to the integrated circuit. The inductor is disposed conformal with an insulating layer disposed on an essentially planar surface of the substrate. The insulating layer has an undulating topography.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: August 12, 2014
    Assignee: Intel Corporation
    Inventors: Christopher J. Jezewski, Kevin P. O'Brien
  • Patent number: 8803122
    Abstract: Phase-change memory structures are formed with ultra-thin heater liners and ultra-thin phase-change layers, thereby increasing heating capacities and lowering reset currents. Embodiments include forming a first interlayer dielectric (ILD) over a bottom electrode, removing a portion of the first ILD, forming a cell area, forming a u-shaped heater liner within the cell area, forming an interlayer dielectric structure within the u-shaped heater liner, the interlayer dielectric structure including a protruding portion extending above a top surface of the first ILD, forming a phase-change layer on side surfaces of the protruding portion and/or on the first ILD surrounding the protruding portion, and forming a dielectric spacer surrounding the protruding portion.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: August 12, 2014
    Assignee: GlobalFoundries Singapore Pte. Ltd.
    Inventors: Shyue Seng (Jason) Tan, Eng Huat Toh
  • Publication number: 20140217546
    Abstract: The present disclosure relates to a multi-level integrated inductor that provides for a good inductance and Q-factor. In some embodiments, the integrated inductor has a first inductive structure with a first metal layer disposed in a first spiral pattern onto a first IC die and a second inductive structure with a second metal layer disposed in a second spiral pattern onto a second IC die. The first IC die is vertically stacked onto the second IC die. A conductive interconnect structure is located vertically between the first and second IC die and electrically connects the first metal layer to the second metal layer. The conductive interconnect structure provides for a relatively large distance between the first and second inductive structures that provides for an inductance having a high Q-factor over a large range of frequencies.
    Type: Application
    Filed: February 6, 2013
    Publication date: August 7, 2014
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsiao-Tsung Yen, Cheng-Wei Luo, Chin-Wei Kuo, Min-Chie Jeng
  • Publication number: 20140217548
    Abstract: A semiconductor device includes a substrate, a metal film on a portion of the substrate, a first dielectric film having a first portion on the metal film and a second portion on the substrate, the second portion being integral with the first portion, a lower electrode on the first portion, a second dielectric film having a first portion on the lower electrode and a second portion on the first dielectric film, the second portion of the second dielectric film being integral with the first portion of said second dielectric film, an upper electrode on a portion of the second dielectric film, and a reinforcing film disposed on the second dielectric film and in contact with a side of the upper electrode.
    Type: Application
    Filed: September 25, 2013
    Publication date: August 7, 2014
    Applicant: Mitsubishi Electric Corporation
    Inventor: Masahiro Totsuka
  • Publication number: 20140209846
    Abstract: According to one embodiment, there are provided a memory cell forming region, a first wiring hookup region in which first wirings extending in a first direction are formed by being drawn outside of the memory cell forming region, a second wiring hookup region which is disposed in a layer above the first wirings and in which second wirings extending in a second direction are formed by being drawn outside of the memory cell forming region, and a first dummy wiring connected to each of the second wirings. The first dummy wiring is disposed so that a sum of the area of the second wiring and the area of the first dummy wiring becomes the same in the respective second wirings.
    Type: Application
    Filed: July 19, 2013
    Publication date: July 31, 2014
    Applicant: Kabushiki Kaisha Toshiba
    Inventor: Mutsumi OKAJIMA
  • Publication number: 20140209851
    Abstract: Some embodiments include methods for fabricating memory cell constructions. A memory cell may be formed to have a programmable material directly against a material having a different coefficient of expansion than the programmable material. A retaining shell may be formed adjacent the programmable material. The memory cell may be thermally processed to increase a temperature of the memory cell to at least about 300° C., causing thermally-induced stress within the memory cell. The retaining shell may provide a stress which substantially balances the thermally-induced stress. Some embodiments include memory cell constructions. The constructions may include programmable material directly against silicon nitride that has an internal stress of less than or equal to about 200 megapascals. The constructions may also include a retaining shell silicon nitride that has an internal stress of at least about 500 megapascals.
    Type: Application
    Filed: April 2, 2014
    Publication date: July 31, 2014
    Applicant: Micron Technology, Inc.
    Inventors: Jun Liu, Jian Li
  • Patent number: 8790986
    Abstract: A method of manufacturing a semiconductor device, the method including: preparing a semiconductor substrate including a mold layer and a support layer disposed on the mold layer; forming multiple holes that pass through the mold layer and the support layer; forming multiple bottom electrodes in the holes; exposing at least a portion of the bottom electrodes by removing at least a portion of the mold layer; removing a portion of the bottom electrodes from an exposed surface of the bottom electrodes; and sequentially forming a dielectric layer and a top electrode layer on the bottom electrodes.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: July 29, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae Hyoung Choi, Ki Yeon Park, Joon Kim, Cha Young Yoo, Youn Soo Kim, Ho Jun Kwon, Sang Yeol Kang
  • Patent number: 8790987
    Abstract: Some embodiments include methods of forming electrical components. First and second exposed surface configurations are formed over a first structure, and material is then formed across the surface configurations. The material is sub-divided amongst two or more domains, with a first of the domains being induced by the first surface configuration, and with a second of the domains being induced by the second surface configuration. A second structure is then formed over the material. The first domains of the material are incorporated into electrical components. The second domains may be replaced with dielectric material to provide isolation between adjacent electrical components, or may be utilized as intervening regions between adjacent electrical components.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: July 29, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Scott E. Sills, Roy E. Meade
  • Patent number: 8791006
    Abstract: A semiconductor device has a first insulating layer formed over a first surface of a polymer matrix composite substrate. A first conductive layer is formed over the first insulating layer. A second insulating layer is formed over the first insulating layer and first conductive layer. A second conductive layer is formed over the second insulating layer and first conductive layer. The second conductive layer is wound to exhibit inductive properties. A third conductive layer is formed between the first conductive layer and second conductive layer. A third insulating layer is formed over the second insulating layer and second conductive layer. A bump is formed over the second conductive layer. A fourth insulating layer can be formed over a second surface of the polymer matrix composite substrate. Alternatively, the fourth insulating layer can be formed over the first insulating layer prior to forming the first conductive layer.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: July 29, 2014
    Assignee: STATS ChipPAC, Ltd.
    Inventor: Yaojian Lin
  • Patent number: 8790985
    Abstract: The disclosed invention provides a structure and method for providing a high lateral voltage resistance between the electrical networks, sharing a lateral plane, of conductive elements (e.g., having different high voltage potentials) comprising a coupler. In one embodiment, an integrated coupler providing a high lateral voltage resistance comprises a primary conductive element and a secondary conductive element. An isolating material is laterally configured between the electrical network of the primary conductive element and an electrical network of the secondary conductive element. The isolating material may comprise a low-k dielectric layer and prevents any lateral barrier layers (e.g., etch stop layers, diffusion barrier layers, etc.) from extending between the first conductive element and the electrical network of the second conductive element. The structure therefore provides a galvanically isolated integrated coupler which avoids electrical shorting between circuits (e.g.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: July 29, 2014
    Assignee: Infineon Technologies Austria AG
    Inventors: Uwe Wahl, Markus Hammer, Jens-Peer Stengl
  • Publication number: 20140203397
    Abstract: Methods and apparatus for forming a semiconductor device package with inductors and transformers using a micro-bump layer are disclosed. The micro-bump layer may comprise micro-bumps and micro-bump lines, formed between a top die and a bottom die, or between a die and an interposer. An inductor can be formed by a redistribution layer within a bottom device and a micro-bump line above the bottom device connected to the RDL. The inductor may be a symmetric inductor, a spiral inductor, a helical inductor which is a vertical structure, or a meander inductor. A pair of inductors with micro-bump lines can form a transformer.
    Type: Application
    Filed: January 23, 2013
    Publication date: July 24, 2014
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hsiao-Tsung Yen, Yu-Ling Lin, Chung-Yu Lu, Chin-Wei Kuo, Tzuan-Horng Liu, Hsien-Pin Hu, Min-Chie Jeng
  • Publication number: 20140203394
    Abstract: The present invention provides a method of forming a chip with TSV electrode. A substrate with a first surface and a second surface is provided. A thinning process is performed from a side of the second surface so the second surface becomes a third surface. Next, a penetration via which penetrates through the first surface and the third surface is formed in the substrate. A patterned material layer is formed on the substrate, wherein the patterned material layer has an opening exposes the penetration via. A conductive layer is formed on the third surface thereby simultaneously forming a TSV electrode in the penetration via and a surface conductive layer in the opening.
    Type: Application
    Filed: January 23, 2013
    Publication date: July 24, 2014
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Ming-Tse Lin, Chu-Fu Lin, Chien-Li Kuo, Yung-Chang Lin
  • Patent number: 8785899
    Abstract: According to example embodiments, a nonvolatile memory cell includes a first electrode and a second electrode, a resistance change film between the first electrode and the second electrode, and a first barrier film contacting the second electrode. The resist change film contains oxygen ions and contacts the first electrode. The first barrier film is configured to reduce (and/or block) the outflow of the oxygen ions from the resistance change film.
    Type: Grant
    Filed: August 16, 2012
    Date of Patent: July 22, 2014
    Assignee: Samsung Electronics Co., Ltd
    Inventors: Hyun-Su Ju, Min-Kyu Yang, Eun-Mi Kim, Seong-Geon Park
  • Patent number: 8785271
    Abstract: A capacitor is formed in nano channels in a conductive body. Embodiments include forming a source contact through a first inter layer dielectric (ILD), forming a conductive body on the first ILD, forming a second ILD on the conductive body, forming drain and gate contacts through the second ILD, conductive body, and first ILD, forming nano channels in the conductive body, forming an insulating layer in the channels, and metalizing the channels. An embodiment includes forming the nano channels by forming a mask on the second ILD, the mask having features with a pitch of 50 nanometers (nm) to 100 nm, etching the second ILD through the mask, etching the conductive body through the mask to a depth of 80% to 90% of the thickness of the conductive body, and removing the mask.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: July 22, 2014
    Assignee: GLOBALFOUNDRIES, Inc.
    Inventors: Dmytro Chumakov, Wolfgang Buchholtz, Petra Hetzer
  • Publication number: 20140198565
    Abstract: Embodiments disclosed herein may relate to forming a storage component comprising a phase change material and a shunt relative to amorphous portions of the phase change material.
    Type: Application
    Filed: January 11, 2013
    Publication date: July 17, 2014
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Fabio Pellizzer, Innocenzo Tortorelli, Andrea Ghetti
  • Publication number: 20140199819
    Abstract: A method of fabricating a capacitor structure includes the following steps. Firstly, a substrate is provided. A first conductive layer, a first insulation layer, a second conductive layer and a second insulation layer are sequentially formed over the substrate. A hard mask material layer is formed on the second insulation layer. Then, the hard mask material layer is defined with a photo resist pattern, so that a hard mask is formed. After the photo resist pattern is removed, the second conductive layer is defined with the hard mask, so that a first electrode of the capacitor structure is formed.
    Type: Application
    Filed: January 16, 2013
    Publication date: July 17, 2014
    Applicant: UNITED MICROELECTRONICS CORPORATION
    Inventor: Pao-Chu CHANG
  • Patent number: 8778728
    Abstract: Methods of manufacturing non-volatile memory devices may include separating first phase-change material groups and second phase-change material groups, which have different sizes, from a target including phase-change materials and faulting a phase-change material layer on an object by using the first phase-change material groups and the second phase-change material groups.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: July 15, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Byoung-deog Choi, Dong-ho Ahn, Man-sug Kang, Young-kuk Kim, Jin-ho Oh
  • Patent number: 8778769
    Abstract: The present invention relates to a semiconductor package and a method for making the same. The semiconductor package includes a substrate, a first capacitor, a first protective layer, a first metal layer and a second protective layer. The substrate has at least one via structure. The first capacitor is disposed on a first surface of the substrate. The first protective layer encapsulates the first capacitor. The first metal layer is disposed on the first protective layer, and includes a first inductor. The second protective layer encapsulates the first inductor. Whereby, the first inductor, the first capacitor and the via structure are integrated into the semiconductor package, so that the size of the product is reduced.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: July 15, 2014
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventors: Chien-Hua Chen, Teck-Chong Lee
  • Publication number: 20140191365
    Abstract: Methods include forming a dielectric layer from a first material above a substrate. The dielectric layer is formed such that a preferred crystal direction for at least one electrical property of the first material is parallel to a surface of the dielectric layer. Next, forming a first and second trench within the dielectric layer wherein the first and second trenches have at least one curved portion. Forming a second material within the first trench and a third material within the second trench wherein the first material is different from the second and third materials. The first and second trenches are separated by a distance between 3-20 nm.
    Type: Application
    Filed: January 10, 2013
    Publication date: July 10, 2014
    Applicant: Intermolecular, Inc.
    Inventors: Sergey Barabash, Dipankar Pramanik