Component A Metal Is Group Ia, Iia Or Iiia And Component B Metal Is Group Ivb To Viib Or Viii (i.e., Alkali Metal, Alkaline Earth Metal, Be, Mg, Al, Ga, In Or Tl And Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, Iron Group Or Platinum Group) (e.g., Ziegler Catalyst, Etc.) Patents (Class 502/103)
  • Patent number: 7605215
    Abstract: A process for producing an olefin copolymerization catalyst, comprising the step of contacting, with one another, (A) a solid catalyst component containing a titanium atom, a magnesium atom and a halogen atom, (B) an organoaluminum compound and/or organoaluminumoxy compound, and (C) a nitrogen-containing aromatic heterocyclic compound, whose one or more carbon atoms adjacent to its nitrogen atom are linked to an electron-donating group, or a group containing an electron-donating group; and a process for producing an olefin copolymer using the an olefin copolymerization catalyst.
    Type: Grant
    Filed: November 26, 2007
    Date of Patent: October 20, 2009
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Shinya Nakahara, Shin-ichi Kumamoto
  • Publication number: 20090253874
    Abstract: A solid catalyst component for polymerization of olefins, a catalyst for polymerization of olefins, and a method for producing an olefin polymer are provided. The solid catalyst component (A) is obtained by causing a solid component (a) containing magnesium, titanium, and a halogen atom to come in contact with an organosilicon compound (b) shown by the formula, [CH2=CH—(CH2)n]qSiR14-q. A catalyst for polymerization of olefins (B) is formed from an organoaluminum compound shown by the formula R2rAlQ3-r. A process for producing an olefin polymer comprises polymerizing olefins in the presence of the catalyst. By using the catalyst, a polymer which has high catalyst activity and stereoregularity and is excellent in maintaining activity can be obtained in a high yield.
    Type: Application
    Filed: August 28, 2006
    Publication date: October 8, 2009
    Inventors: Motoki Hosaka, Hiroyuki Kono
  • Patent number: 7598200
    Abstract: The present invention discloses a method for preparing an heterogeniseded catalyst component comprising the steps of: a) providing a halogenated precursor component of formula (I) —X—[—CH2]—CH3 b) reacting the halogenated precursor with an ionic liquid precursor in a solvent to prepare an ionic liquid; IL+X? c) optionally, reacting the intermediate IL+X? with a salt C+A?, wherein C+ is a cation that can be selected from K+, Na+, NH4+, and A? is an anion that can be selected from PF6?, SbF6?, BF4?, (CF3—SO2)2N?CIO4—, CF3SO3?, NO3— or CF3CO2?.
    Type: Grant
    Filed: March 1, 2005
    Date of Patent: October 6, 2009
    Assignee: Total Petrochemicals Research Feluy
    Inventors: Olivier Lavastre, Fabien Bonnette, Abbas Razavi
  • Patent number: 7598328
    Abstract: A supported catalyst composition and process for preparing high molecular weight polymers of one or more addition polymerizable monomers, especially propylene, said composition comprising: 1) a substrate comprising the reaction product of a solid, particulated, high surface area, metal oxide, metalloid oxide, or a mixture thereof and an organoaluminum compound, 2) a hafnium complex of a polyvalent, Lewis base ligand; and optionally, 3) an activating cocatalyst for the metal complex.
    Type: Grant
    Filed: June 22, 2006
    Date of Patent: October 6, 2009
    Assignee: Dow Global Technologies, Inc.
    Inventors: Joseph N. Coalter, III, Jan W. Van Egmond, Lewis J. Fouts, Jr., Roger B. Painter, Paul C. Vosejpka
  • Publication number: 20090247804
    Abstract: Methods are provided for converting methane to useful hydrocarbons. In the methods provided, a fluid comprising methane and hydrogen is combined with a catalyst composition derived from at least an aluminum compound, such as an aluminum halide, an aluminum alkyl, or a aluminum hydrate, and a second component such as a transition metal halide, a transition metal hydride, or a zero-valent metal, to produce heavier hydrocarbons.
    Type: Application
    Filed: September 14, 2007
    Publication date: October 1, 2009
    Applicant: Albemarle Corporation
    Inventors: Joe D. Sauer, Tyson J. Hall, George Wyndham Cook, Michael J. Krause, Paul F. Ranken
  • Patent number: 7595413
    Abstract: The invention relates to a phosphine-substituted vinyl containing metallocene catalyst, and also to the preparation process of the same as well as to the application of the catalyst. The catalyst has the general formula of Cp2(CR1?CR2(P(R3)2))MX, wherein Cp is a ligand containing cyclopentadiene having 1˜5 substitutions, of which two neighbors connecting to each other to form fused rings having more than two members; R1-R3 is selected from the groups consisting of hydrogen, C1˜C18 alkyl or perfluoro-alkyl, C6˜C24 aralkyl or alkaryl; M is selected from the groups consisting of metals of the IVB group; and X is selected from the groups consisting of halogens, C1˜C24 alkyl alkoxyl, silicone or alkaryl. With aluminoxane or modified aluminoxane, aluminum alkyl, halogenated aluminum alkyl or their mixture as the catalyst promoter the phosphine-substituted vinyl containing metallocene catalyst may be employed as the major catalyst for the polymerization or copolymerization of alpha-olefin.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: September 29, 2009
    Assignee: PetroChina Company Limited
    Inventors: Jianjun Yi, Wenhua Sun, Peng Hao, Shu Zhang
  • Publication number: 20090240010
    Abstract: The present invention provides activator-supports containing alumina-silica compounds with high levels of alumina, and polymerization catalyst compositions employing these activator-supports. Methods for making these activator-supports based on alumina-silica and for using such compounds in catalyst compositions for the polymerization and copolymerization of olefins are also provided.
    Type: Application
    Filed: March 20, 2008
    Publication date: September 24, 2009
    Inventors: Max P. McDaniel, Qing Yang, Randy S. Muninger, Elizabeth A. Benham, Kathy S. Collins
  • Patent number: 7592402
    Abstract: A process for producing a modified particle, which comprises the step of contacting a compound (a) defined by the formula, M1L13, a compound (b) defined by the formula, R1t-1TH, a compound (c) or (e) defined by the formula, R2m-uM2(OH)u or R24-nJ(OH)n, respectively, and a particle (d) with one another; a carrier comprising a modified particle produced by said process; a catalyst component (A) comprising a modified particle produced by said process; a process for producing a catalyst for addition polymerization, which comprises the step of contacting said catalyst component (A), a transition metal compound (B) and an optional organoaluminum compound (C) with one another; and a process for producing an addition polymer, which comprises the step of addition polymerizing an addition-polymerizable monomer in the presence of a catalyst for addition polymerization produced by said process.
    Type: Grant
    Filed: January 28, 2005
    Date of Patent: September 22, 2009
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Hideki Oshima, Makoto Satoh
  • Patent number: 7592286
    Abstract: A process for preparing a catalyst component, comprising a Mg compound a Ti compound and an electron donor compound (ED) selected from alcohol, glycols, esters, ketones, amines, amides, nitrites, alkoxysilanes and aliphatic ethers as essential compounds, comprising two or more steps of reaction involving the use of at least one of said essential compounds as fresh reactant alone or in a mixture in which it constitutes the main component, said process being characterized by the fact that in the last of said one or more reaction steps the essential compound used as a fresh reactant is the ED compound.
    Type: Grant
    Filed: May 7, 2004
    Date of Patent: September 22, 2009
    Assignee: Basell Poliolefine Italia s.r.l.
    Inventors: Giampiero Morini, Tiziano Dall'Occo, Fabrizio Piemontesi, Rosa Spoto, Paolo Vincenzi, Gianni Vitale
  • Patent number: 7589042
    Abstract: Disclosed is an arylphenoxy catalyst system for producing an ethylene homopolymer or copolymers of ethylene and ?-olefins, and a method of producing an ethylene homopolymer or copolymers of ethylene and ?-olefins having a high molecular weight under a high temperature solution polymerization condition using the same. The catalyst system includes a group 4 arylphenoxy-based transition metal catalyst and an aluminoxane cocatalyst or a boron compound cocatalyst. In the transition metal catalyst, a cyclopentadienyl derivative and arylphenoxide as fixed ligands are located around the group 4 transition metal, arylphenoxide is substituted with at least one aryl derivative and is located at the ortho position thereof, and the ligands are not crosslinked to each other. The catalyst includes non-toxic raw materials, synthesis of the catalyst is economical, and thermal stability of the catalyst is excellent.
    Type: Grant
    Filed: February 6, 2007
    Date of Patent: September 15, 2009
    Assignee: SK Corporation
    Inventors: Tae-Woo Woo, Myung-Ahn Ok, Jong-sok Hahn, Mal-Ou Lee, Sang-Ook Kang, Sung-bo Ko, Tae-Jin Kim, Sung Kun Kim
  • Patent number: 7589160
    Abstract: A process for obtaining 1-butene polymers comprising the step of contacting under polymerization conditions 1-butene and optionally ethylene, propylene or said alpha-olefin, in the presence of a catalyst system obtainable by contacting: a) a metallocene compound of formula (I): wherein: M is an atom of a transition metal belonging to group 3, 4, 5, 6 or to the lanthanide or actinide groups in the Periodic Table of the Elements; p is an integer from 0 to 3; X, is a hydrogen atom, a halogen atom, or a hydrocarbon group; R1 is a hydrocarbon group; R2, R3 and R6 are hydrogen atoms or hydrocarbon groups; R4 and R5 join to form a condensed saturated or unsaturaded 4–7 membered ring; and L is a divalent bridging group; and b) an alumoxane or a compound able to form an alkylmetallocene cation.
    Type: Grant
    Filed: November 3, 2003
    Date of Patent: September 15, 2009
    Assignee: Basell Polyolefine GmbH
    Inventors: Luigi Resconi, Antonio Cascio Ingurgio
  • Publication number: 20090227748
    Abstract: The present invention relates to a process for preparing olefin polymers by polymerization or copolymerization of at least one olefin of the formula Ra—CH?CH—Rb, where Ra and Rb are identical or different and are each a hydrogen atom or a hydrocarbon radical having from 1 to 20 carbon atoms, or Ra and Rb together with the atoms connecting them can form a ring, at a temperature of from ?60 to 200° C. and a pressure of from 0.
    Type: Application
    Filed: August 31, 2006
    Publication date: September 10, 2009
    Applicant: BASELL POLYOLEFINE GMBH
    Inventor: Robert Larry Jones
  • Patent number: 7585805
    Abstract: A catalyst composition that is the combination of or the reaction product of ingredients comprising (a) a nickel-containing compound, (b) an alkylating agent, (c) a fluorine-containing compound, and (d) a chlorine-containing compound.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: September 8, 2009
    Inventor: Steven Luo
  • Patent number: 7582712
    Abstract: Methods and apparatus to form a catalyst precursor, comprising combining in a reactor magnesium, an alkoxysilane compound, a halogenized silicon compound, a halogenized transition metal compound, a substituted aromatic furan compound having a structural formula, and an alkyl halide or aromatic halide compound to obtain a solid catalyst precursor, wherein the alkoxysilane compound and halogenized silicon compound are combined prior to either being exposed to the halogenized transition metal compound, and wherein the alkyl halide or aromatic halide compound is introduced to the reactor as the final step.
    Type: Grant
    Filed: May 9, 2008
    Date of Patent: September 1, 2009
    Assignee: Formosa Plastics Corporation, U.S.A.
    Inventors: Guangxue Xu, Honglan Lu
  • Patent number: 7582711
    Abstract: The present invention relates to catalyst systems for polyolefin production, and more particularly, to catalyst systems for polyolefins used in producing films.
    Type: Grant
    Filed: February 21, 2006
    Date of Patent: September 1, 2009
    Assignee: Univation Technologies, LLC
    Inventors: Chi-I Kuo, Steven K. Ackerman
  • Patent number: 7579417
    Abstract: A metallocene compound of formula (I) wherein: M is an atom of a transition metal; X, same or different, is a hydrogen atom, a halogen atom, or a R, OR, OSO2CF3, OCOR, SR, NR2 or PR2 group, wherein R is C1-C40 hydrocarbon group; L is a divalent bridging group; R1, is a C1-C40 hydrocarbon group; R3 is a C1-C40 hydrocarbon group; R2, R4, R5, R6, R7 and R8, equal to or different from each other, are hydrogen atoms or C1-C40 hydrocarbon groups.
    Type: Grant
    Filed: November 16, 2004
    Date of Patent: August 25, 2009
    Assignee: Basell Polyolefine GmbH
    Inventors: Ilya Nifant'ev, Pavel V. Ivchenko, Ilya V. Tajdakov, Luigi Resconi
  • Patent number: 7579416
    Abstract: The present invention relates to a catalyst system for olefin polymerization comprising an organic transition metal compound and, as cocatalyst, an ionic compound made up of anions of the formula (Ia), [Al(OR1)4]???(Ia) where the radicals R1 are identical or different and are each, independently of one another, a radical R2R3(CF3)2, R2 is a carbon or silicon atom and R3 is hydrogen, C1-C20-alkyl, C1-C20-fluoroalkyl, C6-C20-aryl, C6-C20-fluoroaryl, C7-C40-arylalkyl, C7-C40-fluoroarylalkyl, C7-C40-alkylaryl, C7-C40-fluoroalkylaryl or an SiR43 group, where R4 may be identical or different and is each C1-C20-alkyl, C1-C20-fluoroalkyl, C6-C20-aryl, C6-C20-fluoroaryl, C7-C40-arylalkyl, C7-C40-fluoroarylalkyl, C7-C40-alkylaryl or C7-C40-fluoroalkylaryl, and Lewis-acid cations or Brönsted acids as cations. In addition, the invention relates to the process for preparing such a catalyst system and to a process for the polymerization of olefins in which this catalyst system is used.
    Type: Grant
    Filed: December 22, 2004
    Date of Patent: August 25, 2009
    Assignee: Basell Polyolefine GmbH
    Inventor: Shahram Mihan
  • Publication number: 20090209714
    Abstract: Catalyst components for the(co)polymerization of ethylene comprising Ti, Mg, halogen, ORI groups, where RI is a C1-C12 hydrocarbon group optionally containing heteroatoms, having ORI/Ti molar ratio in the range 0.1-1.5, a Mg/Ti molar ratio of less than 8, an amount of titanium, with respect to the total weight of said solid catalyst component, higher than 4% by weight characterized by a specific SS-NMR pattern are particularly useful for preparing narrow MWD crystalline ethylene polymers.
    Type: Application
    Filed: March 15, 2006
    Publication date: August 20, 2009
    Applicant: Basell Poliolefine Italia s.r.l.
    Inventors: Giampiero Morini, Isabella Camurati, Tiziano Dall'Occo, Dario Liguori, Gianni Vitale
  • Patent number: 7576163
    Abstract: This invention relates to catalyst compositions, methods, and polymers encompassing at least one Group 4 metallocene compound comprising bridging ?5-cyclopentadienyl-type ligands, typically in combination with at least one cocatalyst, and at least one activator. The compositions and methods disclosed herein provide ethylene polymers with low levels of long chain branching.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: August 18, 2009
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: Qing Yang, Max P. McDaniel, Michael D. Jensen, Matthew G. Thorn, Joel L. Martin, Youlu Yu, David C. Rohlfing
  • Publication number: 20090203857
    Abstract: A magnesium compound obtainable by reacting metal magnesium, ethanol, an alcohol having from 3 to 10 carbon atoms and a halogen and/or a halogen-containing compound containing at least 0.0001 gram atom of a halogen atom relative to one gram atom of the metal magnesium at 0 to 70° C., which comprises composition represented by the formula (I), and which has a particle diameter D50 corresponding to 50% of cumulative weight fraction of from 4 to 20 ?m and a particle size distribution index (P) of P<4.0: Mg(OC2H5)2?n(OR1)n??(I) where n is a numerical value satisfying 0<n<0.35, R1 is CmH2m+1, and m is an integer of from 3 to 10.
    Type: Application
    Filed: April 11, 2006
    Publication date: August 13, 2009
    Applicant: IDEMITSU KOSAN CO., LTD.
    Inventors: Shojiro Tanase, Hideaki Noda, Kiyokazu Katayama, Takehito Konakazawa
  • Patent number: 7569713
    Abstract: The invention discloses a method for making a hydrogenated metallocene catalyst component comprising the steps of: 1. Providing a compound comprising at least one aromatic group; 2. Hydrogenating the at least one aromatic group in the presence of hydrogen and a hydrogenation catalyst to form a hydrogenated compound; and 3. Forming a metallocene catalyst component from the hydrogenated compound from step 2.
    Type: Grant
    Filed: March 2, 2004
    Date of Patent: August 4, 2009
    Assignee: Total Petrochemicals Research Feluy
    Inventor: Abbas Razavi
  • Patent number: 7566676
    Abstract: The present invention relates to a preparation method of solid titanium catalyst for olefin polymerization comprising the steps of: (1) preparing a magnesium compound solution by dissolving a magnesium halide compound into a mixed solvent of a cyclic ether and one or more of alcohol; (2) preparing a carrier by adding firstly a titanium halide compound to the magnesium compound solution at low temperature, elevating the temperature of the resulted solution or aging it, and then thereto adding secondly the titanium halide compound additionally; (3) preparing a titanium catalyst by reacting the carrier with a titanium compound and an electron donor; and (4) washing the titanium catalyst with hydrocarbon solvent at high temperature.
    Type: Grant
    Filed: October 15, 2004
    Date of Patent: July 28, 2009
    Assignee: Samsung Total Petrochemicals Co., Ltd.
    Inventors: Chun-Byung Yang, Ho-Sik Chang, Ki-Hwa Lee
  • Patent number: 7566677
    Abstract: A method for preparing a spray dried catalyst and a low viscosity, low foam spray dried catalyst system for olefin polymerization are provided. In one aspect, the method includes preparing a catalyst system including one or more components selected from metallocenes, non-metallocenes, and activators, adding mineral oil to the catalyst system to form a slurry, and adding one or more liquid alkanes having three or more carbon atoms to the slurry in an amount sufficient to reduce foaming and viscosity of the slurry. In one aspect, the catalyst system includes one or more catalysts selected from metallocenes, non-metallocenes, and a combination thereof, wherein the catalyst system is spray dried. The system further includes mineral oil to form a slurry including a catalyst system, and one or more liquid alkanes having three or more carbon atoms in an amount sufficient to reduce foaming and viscosity of the slurry.
    Type: Grant
    Filed: April 10, 2007
    Date of Patent: July 28, 2009
    Assignee: Univation Technologies, LLC
    Inventors: Natarajan Muruganandam, Kersten Anne Terry, Michael D. Awe, John H. Oskam
  • Patent number: 7566679
    Abstract: The invention relates to a homogeneous catalyst for the production of linear alpha-olefins by oligomerisation of ethylene, consisting of a zirconium salt of organic acids and a cocatalyst which consists of alkylaluminiums and/or aluminium chloride. The activity of the catalyst, system may sometimes be raised substantially by adjusting the molar ratio of chlorine to aluminium in the cocatalyst within the range between 1.0 and 1.5. The economic viability of the production process and product purity are improved.
    Type: Grant
    Filed: July 7, 2005
    Date of Patent: July 28, 2009
    Assignees: Saudi Basic Industries Corporation, Linde AG
    Inventors: Heinz Bölt, Peter Fritz, Holger Hackner, Atieh Abu-Raqabah, Mohammed Zahoor, Fuad Mosa
  • Patent number: 7560521
    Abstract: A catalyst component for the polymerization of olefins comprising a titanium compound, a Mg-dihalide, a difunctional electron donor compound (ED) selected from diesters, diketones, diamines or diethers, and a monofunctional electron donor compound (MD) selected from ethers, esters, amines or ketones, wherein a molar ratio ED/MD is higher than 10.
    Type: Grant
    Filed: August 5, 2005
    Date of Patent: July 14, 2009
    Assignee: Basell Poliolefine Italia S.p.A.
    Inventors: Gianni Collina, Ofelia Fusco, Diego Brita
  • Publication number: 20090176948
    Abstract: Disclosed are a transition metal complex having a high catalytic activity for the preparation of an ethylene homopolymer or a copolymer of ethylene and ?-olefin and a catalyst composition comprising the same. More specifically, there are provided a transition metal complex having, around a group IV transition metal, a cyclopentadiene derivative and at least one aryl oxide ligand with a heterocyclic aryl derivative substituted at the ortho-position thereof, with no crosslinkage between the ligands, a catalyst composition comprising the transition metal complex and an organoaluminum compound or boron compound as cocatalyst, and a method for the preparation of high molecular weight ethylene homopolymers or copolymers of ethylene and ?-olefin using the same.
    Type: Application
    Filed: January 6, 2009
    Publication date: July 9, 2009
    Inventors: Dong-Cheol Shin, Ho-Seong Lee, Myung-Ahn Ok, Jong-Sok Hahn
  • Publication number: 20090176949
    Abstract: The present invention relates to a transition metal complex and a transition metal catalyst composition comprising the same for the preparation of an ethylene homopolymer or a copolymer of ethylene and ?-olefin. More particularly, it relates to a group IV transition metal catalyst having a cyclopentadiene derivative and at least one aryl oxide ligand in which an oxygen-containing heterocycle is fused at the ortho-position around a group IV transition metal, with no crosslinkage between the ligands, a catalyst composition comprising the transition metal catalyst and an aluminoxane cocatalyst or a boron compound cocatalyst, and a process for preparing an ethylene homopolymer or a copolymer of ethylene and ?-olefin using the same.
    Type: Application
    Filed: January 6, 2009
    Publication date: July 9, 2009
    Inventors: Dong-Cheol Shin, Ho-Seong Lee, Myung-Ahn Ok, Jong-Sok Hahn
  • Patent number: 7557171
    Abstract: A metallocene compound comprising a transition metal, a first substituted or unsubstituted indenyl or fluorenyl ligand pi—bonded to the transition metal, a second monoanionic ligand bonded to the transition metal, and a divalent bridging group bonded to the indenyl ligand and said second monoanionic ligand, wherein said bridging group is connected to the four, five, six or seven position of the indenyl ligand or to the one, two, three, four, five, six, seven or eight position of the fluorenyl ligand, and wherein at least one of one of the first and second ligands comprises at least one halogen substituent directly bonded to any sp2 carbon atom at a bondable ring position of the ligand.
    Type: Grant
    Filed: December 14, 2005
    Date of Patent: July 7, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Alexander Z. Voskoboynikov, Mikhail V. Nikulin, Vyatcheslav V. Izmer, Andrey F. Asachenko, Alexey N. Ryabov, Catalina L. Coker, Jo Ann M. Canich
  • Publication number: 20090166260
    Abstract: The present invention concerns a catalyst for hydrotreating and/or hydroconverting heavy metal-containing hydrocarbon feeds, said catalyst comprising a support in the form of mainly irregular and non-spherical alumina-based agglomerates the specific shape of which results from a crushing step, and containing at least one catalytic metal or a compound of a catalytic metal from group VIB and/or group VIII (groups 8, 9 and 10 of the new periodic table notation), optionally at least one doping element selected from the group constituted by phosphorus, boron and silicon (or silica which does not form part of that which may be contained in the selected support) and halogens, said catalyst essentially being constituted by a plurality of juxtaposed agglomerates each formed by a plurality of acicular platelets, the platelets of each agglomerate generally being oriented radially with respect to each other and with respect to the centre of the agglomerate.
    Type: Application
    Filed: December 14, 2006
    Publication date: July 2, 2009
    Inventors: Stephane Kressmann, Magalie Roy-Auberger, Jean Luc Le Loarer, Denis Guillaume, Jean Francois Chapat
  • Patent number: 7550544
    Abstract: A metallocene compound is represented by the formula (1): wherein: M is a Group 3, 4, 5 or 6 transition metal atom, or a lanthanide metal atom, or actinide metal atom, preferably a Group 4 transition metal atom selected from titanium, zirconium or hafnium; E is a substituted or unsubstituted monocyclic or polycyclic arenyl ligand pi-bonded to M; A is a substituted or unsubstituted polycyclic arenyl ligand that is pi-bonded to M and has a different ring structure than the E ligand; at least one of the A and E ligands includes at least one halogen substituent directly bonded to an sp2 carbon at a bondable ring position; Y is a bridging group containing at least one Group 13, 14, 15, or 16 element and any single position of the ring structure of A and to any single position of the ring structure of E; and y is zero or 1, indicating the absence (y=0) or presence (y=1) of Y; and each X is a univalent anionic ligand, or two X are joined and bound to the metal atom to form a metallocycle ring, or two X are joine
    Type: Grant
    Filed: December 14, 2005
    Date of Patent: June 23, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Alexander Z. Voskoboynikov, Alexey N. Ryabov, Mikhail V. Nikulin, Alexander V. Lygin, Catalina L. Coker, Jo Ann M. Canich
  • Patent number: 7550543
    Abstract: The invention relates to a method for producing carbon nanotubes in a dispersed state. The method comprises a stage whereby polymerization is carried out from at least one so-called monomer of interest, in the presence of a catalytic system. The catalytic system comprises a cocatalyst/catalyst catalytic couple that is supported by a catalyst carrier, which corresponds to said carbon nanotubes. The invention also relates to composite materials obtained by said method, and to a catalytic system for implementing said method. The invention further relates to the use of the inventive method and products in the field of polymers, especially that of nanotechnologies.
    Type: Grant
    Filed: August 5, 2004
    Date of Patent: June 23, 2009
    Assignee: S.A. Nanocyl
    Inventors: Philippe Dubois, Michael Alexandre, Daniel Bonduel, Michael Mainil
  • Publication number: 20090156391
    Abstract: A catalyst component for the polymerization of olefins CH2?CHR, wherein R is hydrogen or a hydrocarbon radical having 1-12 carbon atoms. In particular, the present invention relates to catalyst components comprising Mg, Ti, halogen and a compound selected from phosphorous derivatives, boron derivatives and aromatic heterocyclic nitrogen derivatives. Said catalyst components are particularly suitable for the preparation of homo and copolymers of ethylene with ?-olefins.
    Type: Application
    Filed: November 29, 2006
    Publication date: June 18, 2009
    Applicant: Basell Poliolefine Italia s.r.l.
    Inventors: Dario Liguori, Francesca Focante, Giampiero Morini, Luigi Resconi, Gianni Vitale
  • Patent number: 7547654
    Abstract: A catalytic system usable for the copolymerization of at least one conjugated diene and at least one monoolefin, a process for preparing this catalytic system, a process for preparing a copolymer of a conjugated diene and at least one monoolefin using said catalytic system, and said copolymer are described.
    Type: Grant
    Filed: February 10, 2006
    Date of Patent: June 16, 2009
    Assignees: Michelin Recherche et Technique S.A., Total Petrochemicals Research Feluy
    Inventors: Christophe Boisson, Vincent Monteil, Roger Spitz
  • Patent number: 7547357
    Abstract: A composition for forming a transparent film, comprising photocatalytic particles; zirconium ammonium carbonate; a cohydrolysis-polycondensation product of an aluminum alkoxide represented by the formula Al(OR)3 where R is an organic group and a titanium alkoxide represented by the formula Ti(OR?)4 where R? is an organic group; and water, and having a pH of 7 to 9.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: June 16, 2009
    Assignee: Showa Denko K.K.
    Inventors: Masayuki Sanbayashi, Jun Tanaka
  • Patent number: 7544762
    Abstract: A polyester having a good color tone (a high L value and a low b value) and a low acetaldehyde content is obtained by using a catalyst containing a reaction product of (A) a titanium compound (1) represented by the general formula (I) and/or a titanium compound (2) obtained by reacting the titanium compound (1) of the general formula (I) with an aromatic polyhydric carboxylic acid represented by the general formula (II) or an anhydride thereof, with (B) a phosphorus compound (3) represented by the general formula (III). [wherein R1, R2, R3, R4 and R5=a C2-C10 alkyl group, k=1 to 3, m=2 to 4, and R6=a substituted or non-substituted C6-C20 aryl group or a C6-C20 alkyl group].
    Type: Grant
    Filed: July 16, 2002
    Date of Patent: June 9, 2009
    Assignee: Teijin Limited
    Inventors: Tomoyoshi Yamamoto, Hiroki Nagano, Minoru Suzuki, Hiroshi Toyao, Tomoyuki Kishino, Nobuo Minobe, Ryoji Tsukamoto, Kenichi Ishihara
  • Patent number: 7538168
    Abstract: A metallocene compound comprises a transition metal and at least one substituted monocyclic or polycyclic arene ligand bonded to the transition metal, wherein said arene ligand comprises at least one halogen substituent directly bonded to an sp2 carbon atom at a bondable ring position of an aromatic five-membered ring of said arene ligand.
    Type: Grant
    Filed: December 14, 2005
    Date of Patent: May 26, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Alexander Z. Voskoboynikov, Alexey N. Ryabov, Mikhail V. Nikulin, Alexander V. Lygin, Vyatcheslav V. Izmer, Andrey F. Asachenko, Catalina L. Coker, Jo Ann M. Canich
  • Publication number: 20090131246
    Abstract: A catalyst and a method for selective hydrogenation of acetylene and dienes in light olefin feedstreams are provided. The catalyst retains higher activity and selectivity after regeneration than conventional selective hydrogenation catalysts. The catalyst contains a first component and a second component supported on an inorganic support. The inorganic support contains at least one salt or oxide of zirconium, a lanthanide, or an alkaline earth.
    Type: Application
    Filed: December 3, 2008
    Publication date: May 21, 2009
    Inventors: Yongqing Zhang, Stephen J. Golden
  • Patent number: 7534842
    Abstract: This invention relates to the field of olefin polymerization catalyst compositions, and methods for the polymerization and copolymerization of olefins, including polymerization methods using a catalyst composition. One aspect of this invention is the formation and use of a catalyst composition comprising a transition metal compound and an activator for olefin polymerization processes.
    Type: Grant
    Filed: November 16, 2005
    Date of Patent: May 19, 2009
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: Kumudini C. Jayaratne, Michael D. Jensen, Matthew G. Thorn, Max P. McDaniel, Qing Yang
  • Publication number: 20090124769
    Abstract: A process for producing a cycloolefin addition polymer comprising addition-polymerizing a cycloolefin in the presence of a catalyst comprising a combination of a specific transition metal compound of Group 4 of the Periodic Table, with an organoaluminum oxy compound, and/or a compound capable of reacting with the Group 4 transition metal compound to form an ion pair. The specific group 4 transition metal compound preferably has a structure such that the group 4 transition metal is bonded to a cyclopentadienyl ring in an ?1 mode. The above-mentioned catalyst exhibits high activity for both of addition homopolymerization of a cycloolefin and addition copolymerization of a cycloolefin with an ?-olefin.
    Type: Application
    Filed: March 7, 2008
    Publication date: May 14, 2009
    Applicant: ZEON CORPORATION
    Inventors: Kei Nishii, Sigetaka Hayano, Yasuo Tsunogae
  • Publication number: 20090124486
    Abstract: This invention relates to an activator, catalyst system, and the use thereof. In one aspect, the catalyst system includes one or more polymerization catalysts and at least one activator. The activator comprises one or more heterocyclic heteroatom containing ligands coordinated to an alumoxane, wherein the activator is a reaction product of one or more alumoxanes and one or more heterocyclic heteroatom containing compounds, the one or more heterocyclic heteroatom containing ligands represented by the formula: where Y is O, S, PH or NH; wherein each substituent X2, X3, X4, X5, X6, and X7 is independently selected from the group consisting of hydrogen, chlorine, fluorine, iodine, and bromine, provided at least one of X2, X3, X4, X5, X6 and X7 is not hydrogen when Y is NH; and wherein the ratio of the heterocyclic heteroatom containing ligand to aluminum is between about 0.01 and about 10 molar equivalents. The catalyst system may be supported or non-supported.
    Type: Application
    Filed: November 8, 2007
    Publication date: May 14, 2009
    Inventors: Matthew W. Holtcamp, Renuka N. Ganesh
  • Patent number: 7531608
    Abstract: Provided are a novel transition metal complex where a monocyclopentadienyl ligand to which an amine-based group is introduced is coordinated, a method of synthesizing the same, and olefin polymerization using the transition metal complex In the novel transition metal complex, an imino phenyl group is not cross-linked to a metal atom and directly introduced to a cyclopentadiene (Cp) ring. The catalyst composition including the transition metal compound is used to obtain a polyolefin copolymer having a very low density less than 0.910 g/cc.
    Type: Grant
    Filed: July 10, 2006
    Date of Patent: May 12, 2009
    Assignee: LG Chem, Ltd.
    Inventors: Choong Hoon Lee, Eun Jung Lee, Seungwhan Jung, Jong Joo Ha, Beomdoo Seo, Bun Yeoul Lee, Ui Gab Joung, Dae June Joe
  • Patent number: 7531478
    Abstract: The invention provides a process for producing an olefin polymerisation catalyst, comprising suspending a porous particulate support material in a liquid/liquid two phase system, which comprises a solution of one or more catalyst components and an inert solvent immiscible therewith, to impregnate said solution into the pores of said support material, wherein the active transition metal concentration in the support is from 0.001 to 10% by weight of the dry catalyst system.
    Type: Grant
    Filed: December 18, 2002
    Date of Patent: May 12, 2009
    Assignee: Borealis Technology OY
    Inventors: Peter Denifl, Erik Van Praet, Michael Bartke
  • Patent number: 7528091
    Abstract: Solid fine particles which contain a magnesium atom, an aluminum atom and a C1-20 alkoxy group simultaneously, are insoluble in a hydrocarbon solvent, and have an average particle diameter of 3 to 80 ?m, and an olefin polymerization catalyst containing the solid fine particles and a transition metal compound in the groups 3 to 11 in the periodic table, exhibit a very high olefin polymerization activity without combination with an expensive organoaluminum oxy compound or organoboron compound and maintains a high activity in polymerization for a long time, and an olefin polymer excellent in powdery properties can be produced by using the olefin polymerization catalyst. The transition metal compound in the groups 3 to 11 in the periodic table includes a transition metal compound having a ligand containing two or more atoms selected from a boron atom, a nitrogen atom, an oxygen atom, a phosphorus atom and a sulfur atom.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: May 5, 2009
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Yasushi Nakayama, Hideki Bando, Yoshiho Sonobe, Makoto Mitani, Terunori Fujita
  • Patent number: 7524789
    Abstract: A process for producing a modified particle, a carrier or a catalyst component for addition polymerization, which comprises the steps of (1) contacting a compound (a) represented by the defined formula M1L13 with a compound (b) represented by the defined formula R1t-1TH, thereby producing a contact product, and (2) contacting the contact product with a porous particle (d) and then with a compound (c) represented by the defined formula R2t-2TH2; a process for producing a pre-polymerized catalyst component or a catalyst for addition polymerization, which comprises the steps of (1) contacting the above modified particle with a transition metal compound and optionally an organoaluminum compound, thereby producing a primary catalyst, and (2) pre-polymerizing an olefin in the presence of the primary catalyst; a process for producing a catalyst for addition polymerization, which comprises the step of contacting the above catalyst component with a transition metal compound and optionally an organoaluminum compound; a
    Type: Grant
    Filed: September 7, 2004
    Date of Patent: April 28, 2009
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Hideki Oshima, Makoto Satoh
  • Patent number: 7524906
    Abstract: The invention relates to a process for the preparation of a metal-organic compound, comprising at least one imine ligand, characterized in that an imine ligand according to formula 1, or the HA adduct thereof, wherein HA represents an acid, of which H represents its proton and A its conjugate base, is contacted with a metal-organic reagent of formula 2 in the presence of at least 1, respectively 2 equivalents of an inorganic or metal-organic base, wherein Y?N-R (formula 1), Y is selected from a substituted carbon, nitrogen or phosphorous atom, R represents a proton, a protic or an aprotic substituent, and the metal organic compound is: MV(L1)k(L2)l(L3)m(L4)nX (formula 2) wherein: M represents a group 4 or group 5 metal ion, V represents the valency of the metal ion, being 3, 4 or 5, L1, L2, L3, and L4 represent ligands on M and may be equal or different, X represents a group 17 halogen atom, and k, 1, m, n=0, 1, 2, 3, 4 with k+l+m+n+l=V.
    Type: Grant
    Filed: August 3, 2004
    Date of Patent: April 28, 2009
    Assignee: DSM IP Assets B.V.
    Inventors: Edwin IJpeij, Henricus Arts, Gerardus van Doremaele, Felix Beijer
  • Patent number: 7525009
    Abstract: The invention describes a process for trimerisation olefins, which process includes the step of contacting an olefinic feedstream with a catalyst system which includes a transition metal compound and a heteroatomic ligand and wherein the trimer is an olefin and wherein the heteroatomic ligand is described by the following general formula (R)nA-B-C(R)m.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: April 28, 2009
    Assignee: Sasol Technology (Pty) Limited
    Inventors: Kevin Blann, Annette Bollmann, John Thomas Dixon, Arno Neveling, David Hedley Morgan, Hulisani Maumela, Esna Killian, Fiona Millicent Hess, Stefanus Otto, Matthew James Overett
  • Patent number: 7521512
    Abstract: A catalyst composition for the polymerization of olefins comprising the combination of one or more Ziegler-Natta procatalysts comprising one or more transition metal compounds; one or more aluminum containing cocatalysts; and a mixture comprising two or more selectivity control agents (SCA's), corresponding to the formula: (CH3O)nSi(OR)4-n, wherein R, independently each occurrence, is C2-12 alkyl, C3-12 cycloalkyl, C6-18 aryl or (poly)alkyl-substituted aryl, or C7-18 poly(aryl)-substituted alkyl, and n is an integer from zero to 4.
    Type: Grant
    Filed: May 27, 2004
    Date of Patent: April 21, 2009
    Assignee: Union Carbide Chemicals & Plastics Technology LLC
    Inventor: Stanley E. Wilson
  • Publication number: 20090099310
    Abstract: Disclosed is a novel transition metal compound which is used for forming a metallocene catalyst for olefin polymerization. Specifically disclosed is a novel transition metal compound represented by the general formula below which enables to form a metallocene catalyst that has a balanced reactivity with ethylene and a comonomer selected from ?-olefins having 3-20 carbon atoms and enables to produce an ?-olefin polymer having a high molecular weight. Also specifically disclosed are a catalyst for olefin polymerization containing such a transition metal compound, and a method for producing a propylene/ethylene-?-olefin block copolymer wherein such a catalyst is used.
    Type: Application
    Filed: April 17, 2007
    Publication date: April 16, 2009
    Applicant: JAPAN POLYPROPYLENE CORPORATION
    Inventors: Hisashi Ohtaki, Naoshi Iwama, Masami Kashimoto, Tomohiro Kato, Tsutomu Ushioda
  • Patent number: 7517940
    Abstract: Provided is catalyst composition including a transition metal complex precatalyst represented by Formula 1; a first cocatalyst represented by Formula 2 which is an alkylaluminum compound; and a second cocatalyst represented by Formula 3 which is a salt compound comprising a Bronsted acid cation and a noncoordinating, compatible anion. Here, R1, R2, R3, R4, E, Q1, Q2 and M are defined in the specification. Al(R6)3??Formula 2 Here, R6 is defined in the specification. [L-H]+[ZA4]???Formula 3 Here, L, [L-H]+, Z and A are defined in the specification. A catalyst composition including binuclear transition metal complexes, an alkylaluminum compound, and a salt compound including a Bronsted acid cation, and a noncoordinating, compatible anion, and a method of preparing the catalyst composition are provided.
    Type: Grant
    Filed: February 1, 2007
    Date of Patent: April 14, 2009
    Assignee: LG Chem, Ltd.
    Inventors: Eunjung Lee, Choong Hoon Lee, Seungwhan Jung, Jung A Lee, Boram Lee
  • Patent number: 7514387
    Abstract: A reformer comprises a housing; a substrate disposed in the housing, wherein the substrate comprises a stabilized aluminate and a stabilized zirconate; and a catalyst disposed on the substrate.
    Type: Grant
    Filed: February 15, 2005
    Date of Patent: April 7, 2009
    Assignee: Umicore AG & Co. KG
    Inventor: William J. LaBarge