Component A Metal Is Group Ia, Iia Or Iiia And Component B Metal Is Group Ivb To Viib Or Viii (i.e., Alkali Metal, Alkaline Earth Metal, Be, Mg, Al, Ga, In Or Tl And Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, Iron Group Or Platinum Group) (e.g., Ziegler Catalyst, Etc.) Patents (Class 502/103)
  • Patent number: 7511183
    Abstract: The invention describes a process for tetramerisation of olefins wherein the product stream of the process contains more than 30% of the tetramer olefin. The process includes the step of contacting an olefinic feedstream with a catalyst system containing a transition metal compound and a heteroatomic ligand.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: March 31, 2009
    Assignee: Sasol Technology (PTY) Limited
    Inventors: Kevin Blann, Annette Bollmann, John Thomas Dixon, Arno Neveling, David Hedley Morgan, Hulisani Maumela, Esna Killian, Fiona Millicent Hess, Stefanus Otto, Lana Pepler, Hamdani Ahmed Mahomed, Matthew James Overett
  • Patent number: 7507688
    Abstract: Monocyclopentadienyl complexes in which the cyclopentadienyl system bears at least one unsubstituted, substituted or fused, 5-membered heteroaromatic ring system bound via a specific bridge, a catalyst system comprising at least one of the monocyclopentadienyl complexes, the use of the catalyst system for the polymerization or copolymerization of olefins and a process for preparing polyolefins by polymerization or copolymerization of olefins in the presence of the catalyst system and polymers obtainable in this way.
    Type: Grant
    Filed: December 5, 2003
    Date of Patent: March 24, 2009
    Assignee: Basell Polyolefine GmbH
    Inventors: Shahram Mihan, Ilya Nifant'ev, Cristina Nicoara, Markus Enders
  • Patent number: 7507782
    Abstract: Transition metal complexes with tridentate, nitrogen-containing, uncharged ligand systems, a catalyst system comprising at least one of the transition metal complexes, the use of the catalyst system for the polymerization or copolymerization of olefins and a process for preparing polyolefins by polymerization or copolymerization of olefins in the presence of the catalyst system.
    Type: Grant
    Filed: May 19, 2004
    Date of Patent: March 24, 2009
    Assignee: Basell Polyolefine GmbH
    Inventors: Shahram Mihan, Markus Enders, Olaf Fritz
  • Patent number: 7504463
    Abstract: The present invention is directed to the use of aluminum alkyl activators and co-catalysts to improve the performance of chromium-based catalysts. The aluminum alkyls allow for the variable control of polymer molecular weight, control of side branching while possessing desirable productivities, and may be applied to the catalyst directly or separately to the reactor. Adding the alkyl aluminum compound directly to the reactor (in-situ) eliminates induction times.
    Type: Grant
    Filed: August 11, 2005
    Date of Patent: March 17, 2009
    Assignee: Univation Technologies, LLC
    Inventors: Kevin J Cann, Minghui Zhang, Jose Fernando Cevallos-Candau, John Moorhouse, Mark Gregory Goode, Daniel Paul Zilker, Jr., Maria Apecetche
  • Patent number: 7504354
    Abstract: The present invention relates to organometallic transition metal compounds of the formula (I), a catalyst composition comprising at least one of the organometallic transition metal compound and an olefin polymerization process in the presence of one of the catalyst composition.
    Type: Grant
    Filed: November 2, 2004
    Date of Patent: March 17, 2009
    Assignee: Basell Polyolefine GmbH
    Inventors: Michael J. Elder, Robert L. Jones, John A. Ewen
  • Publication number: 20090056320
    Abstract: A catalyst is disclosed. The catalyst contains a ternary nitride and at least one of gold, osmium, iridium, palladium, rhodium, rhenium, ruthenium, or cesium. The catalyst may be used for a particulate filter in an engine exhaust treatment system.
    Type: Application
    Filed: August 31, 2007
    Publication date: March 5, 2009
    Inventors: Herbert Florey Martins DaCosta, Thomas Edward Paulson, Svetlana Mikhailovna Zemskova, James Joshua Driscoll, Wade James Robel
  • Patent number: 7498390
    Abstract: A composition having the formula I where R1 and R2 are independently hydrogen, C1 to C12 linear and branched alkyl, C3 to C12 cycloalkyl, aryl, C1 to C12 alkoxy, F, Cl, SO3, C1 to C12 perfluoroalkyl, and N(CH3)2, R3 is independently selected from the group consisting of hydrogen, C1 to C12 linear and branched alkyl, C3 to C12 cycloalkyl, aryl, and 2,2,2-trifluoroethyl, A is —C(R4)—, —(CH2)x—, —(CH2)xNH(CH2)x—, or —CY2CY2—, ps where R4 is a hydrocarbyl, halosubstituted hydrocarbyl, or alkoxy group of from 1 to 12 carbon atoms, x is an integer from 1 to 12, and Y is halogen, and X is halogen, triflate, acetate, trifluoroacetate, hydride, or tetrafluoroborate. When combined with an activating co-catalyst is useful in polymerizing olefinic monomers.
    Type: Grant
    Filed: September 25, 2007
    Date of Patent: March 3, 2009
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Smita Kacker, Enock Berluche, Robert T. Stibrany, Joseph A. Sissano, Lisa S. Baugh
  • Patent number: 7498287
    Abstract: A composition having the formula I where R1 and R2 are independently hydrogen, C1 to C12 linear and branched alkyl, C3 to C12 cycloalkyl, aryl, C1 to C12 alkoxy, F, Cl, SO3, C1 to C12 perfluoroalkyl, and N(CH3)2, R3 is independently selected from the group consisting of hydrogen, C1 to C12 linear and branched alkyl, C3 to C12 cycloalkyl, aryl, and 2,2,2-trifluoroethyl, A is —C(R4)—, —(CH2)x—, —(CH2)xNH(CH2)x—, or —CY2CY2—, where R4 is a hydrocarbyl, halosubstituted hydrocarbyl, or alkoxy group of from 1 to 12 carbon atoms, x is an integer from 1 to 12, and Y is halogen, and X is halogen, triflate, acetate, trifluoroacetate, hydride, or tetrafluoroborate. When combined with an activating co-catalyst is useful polymerizing olefinic monomers.
    Type: Grant
    Filed: September 25, 2007
    Date of Patent: March 3, 2009
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Smita Kacker, Enock Berluche, Robert T. Stibrany, Joseph A. Sissano, Lisa S. Baugh
  • Publication number: 20090054607
    Abstract: The present invention relates to a transition metal complex represented by the formula (I): wherein M represents a Group 4 transition metal; —Y— represents (a): —C(R1)(R20)-A-, (b): —C(R1)(R20)-A1(R30)—, (c): —C(R1)=A1-, or (d): —C(R1)=A1-A2-R30; A represents a Group 16 element and A1 and A2 each represents a Group 15 element; R1 to R9, R20, and R30 are the same or different and each represents an optionally substituted hydrocarbon group, etc.; and X1 and X2 are the same or different and each represents a hydrogen atom, a halogen atom, an optionally substituted C1-10 alkyl group, etc., and an intermediate product thereof, and a catalyst for olefin polymerization which comprises said transition metal complex as a component.
    Type: Application
    Filed: September 12, 2008
    Publication date: February 26, 2009
    Inventors: Hidenori Hanaoka, Eiji Yoshikawa, Yuka Imamoto
  • Publication number: 20090043061
    Abstract: A complex compound comprising the skeletal unit (A), wherein the ring C(R1)-A1-A2-(A3)x-C(R2)—C— has delocalised unsaturation and is optionally substituted via one or more of A1, A2 and A3 by hydrogen, alkyl, aryl, halogen, or heterocyclic groups containing at least one N, S or O in a carbon ring; A1, A2 and A3 are carbon, nitrogen and, oxygen, R1 and R2 are hydrocarbyl, chlorine, bromine and iodine at least one of R1 and R2 being chlorine, bromine or iodine; x is zero or 1, 0 is oxygen, E is nitrogen, phosphorus or arsenic, Q is a divalent bridging group comprising one or more Group 14 atoms; X is a monovalent atom or group covalently or ionically bonded to M; L is a mono- or bidentate molecule datively bound to M, y satisfies the valency of M and z is from 0 to 5. The complex can be used to polymerise olefins optionally with organo-A1 or -B compounds as activator.
    Type: Application
    Filed: September 15, 2006
    Publication date: February 12, 2009
    Inventors: Vernon Charles Gibson, Daniel Charles Howard Oakes
  • Publication number: 20090030166
    Abstract: The present invention relates to a process for preparing a catalyst solid for olefin polymerization, comprising a finely divided support, an aluminoxane and a metallocene compound, which comprises: a) firstly combining the finely divided support with the aluminoxane and subsequently b) adding the reaction product of a metallocene compound with at least one organometallic compound to the modified support, catalyst solids obtainable by this process, catalyst systems comprising these catalyst solids, their use for the polymerization of olefins and a process for the polymerization of olefins.
    Type: Application
    Filed: September 24, 2008
    Publication date: January 29, 2009
    Applicant: Basell Polyolefine GmbH
    Inventors: Heike Gregorius, Volker Fraaije, Manfred Lutringshauser
  • Patent number: 7482414
    Abstract: The invention provides a transition metal complex of formula (3) below: wherein R1, R2, R3, R4, R5, R6, R7 and R8 are the same or different and each independently represents a hydrogen atom, a halogen atom or a substituted or unsubstituted alkyl group having 1 to 10 carbon atom(s); R5 represents a hydrogen atom, a fluorine atom or a substituted or unsubstituted alkyl group having 1 to 10 carbon atom(s); X1 represents a hydrogen atom, a halogen atom or a substituted or unsubstituted alkyl group having 1 to 10 carbon atom(s); L represents a balancing counter ion or neutral ligand similar to X1 that is bonding or coordinating to metal M; and q represents an integer of 0 or 1, and G20 represents any one of G21 to G26 below: where A1 represents an element of Group 15 of the periodic table, wherein A1 in G23 represents an anion of an element of Group 15 of the periodic table, and A1 in G21 represents a nitrogen atom; R9, R14, R12, R13, R19, R20, R10, R11, R15, R16, R17, R18, R19, R20, R21 and R22 ea
    Type: Grant
    Filed: October 27, 2004
    Date of Patent: January 27, 2009
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Yuka Otomaru, Hidenori Hanaoka
  • Patent number: 7482413
    Abstract: The present invention relates to MgCl2.(EtOH),m(ROH)n(H2O)p adduct in which R is a C1-C15 hydrocarbon group different from ethyl, n and m are indexes, higher than 0, satisfying the equations (n+m)?0.7 and 0.05?n/(n+m)?0.95 and p is a number ranging from 0 to 0.7 with the proviso that when R is methyl and (n+m) is in the range of 0.7 to 1, the value of n/(n+m) ranges from 0.05 to 0.45. The catalyst components obtained from the adducts of the present invention are capable to give catalysts for the polymerization of olefins characterized by enhanced activity with respect to the catalysts prepared from the adducts of the prior art.
    Type: Grant
    Filed: March 9, 2004
    Date of Patent: January 27, 2009
    Assignee: Basell Poliolefine Italia s.r.l.
    Inventors: Giampiero Morini, Giulio Balbontin, Fabrizio Piemontesi, Maria Fusto, Gianni Vitale, Giansiro Prini
  • Patent number: 7482301
    Abstract: New compositions, titanium-ligand complexes and arrays with pyridyl-amine ligands are disclosed that catalyze the polymerization of monomers into polymers. These catalysts with titanium metal centers have high performance characteristics, including high styrene incorporation into ethylene/styrene copolymers.
    Type: Grant
    Filed: December 19, 2006
    Date of Patent: January 27, 2009
    Inventors: Thomas R. Boussie, Gary M. Diamond, Christopher Goh, Anne M. LaPointe, Margarete K. Leclerc, Cheryl Lund
  • Publication number: 20090023875
    Abstract: Disclosed is a process for making a Ziegler-Natta catalyst having controlled particle size and distribution. It comprises altering the precipitation of a catalyst component from a catalyst synthesis solution including a soluble magnesium containing catalyst precursor by controlling the concentration of either the soluble magnesium containing catalyst precursor, wherein the average particle size of the catalyst component is increased, and the particle size distribution increased, with a decreased concentration of the soluble magnesium containing catalyst precursor; or of the precipitating agent, wherein the average particle size of the catalyst component is increased, and the particle size distribution increased with an increased concentration of the precipitating agent. Use of the invention enables improved catalyst consistency regardless of production scale and customizing of catalyst morphology to desired polymer morphology.
    Type: Application
    Filed: July 16, 2007
    Publication date: January 22, 2009
    Applicant: FINA TECHNOLOGY, INC.
    Inventors: Kayo Vizzini, Henry Enriquez, Steven D. Gray, Tim J. Coffy, David W. Knoeppel
  • Patent number: 7473664
    Abstract: Methods of forming polyolefins and catalysts are described herein. Such methods generally include forming Ziegler-Natta catalyst compounds in the absence of one or more blended compounds typically used to form such catalyst.
    Type: Grant
    Filed: June 23, 2006
    Date of Patent: January 6, 2009
    Assignee: Fina Technology, Inc.
    Inventors: Kayo Vizzini, David Knoeppel, Steven Gray, David Rauscher, Tim Coffy, Henry Enriquez
  • Publication number: 20090005525
    Abstract: The present invention relates to a catalyst composition comprising a novel structure of a Group 4 transition metal compound, to a method for preparing the same, and to a method for preparing a polyolefin using the catalyst composition. The method for preparing a polyolefin according to the present invention can be used for preparing a polyolefin having a high molecular weight and high copolymerizability with a high activity even at a high polymerization temperature and for preparing a polyolefin having a double composition distribution.
    Type: Application
    Filed: December 29, 2006
    Publication date: January 1, 2009
    Applicant: LG Chem , LTD.
    Inventors: Choong-Hoon Lee, Eun-Jung Lee, Seung-Whan Jung, Jung-A Lee, Bo-Ram Lee, Bun-Yeoul Lee
  • Patent number: 7470759
    Abstract: A method of producing a polymer comprising contacting in a reaction zone under conditions suitable for polymerization of an alpha-olefin monomer with a metallocene catalyst having at least three asymmetric centers, and recovering an alpha-olefin polymer from the reaction zone. A method of polymerizing propylene comprising contacting in a reaction zone propylene, a cocatalyst, and a metallocene catalyst having the formula including stereoisomers: and recovering polypropylene from the reaction zone. A polypropylene composition having a tensile modulus from 40,000 psi to 300,000 psi, a tensile strength at yield from 2,000 psi to 6,000 psi, a tensile strength at break from 1,000 psi to 3,500 psi, a tensile strength from 1,000 psi to 5,000 Kpsi, an elongation at yield of greater than or equal to 10%, and an elongation at break from 50% to 500%.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: December 30, 2008
    Assignee: Fina Technology, Inc.
    Inventors: Vladimir Marin, Abbas Razavi
  • Patent number: 7470758
    Abstract: This invention relates to catalyst compositions, methods, and polymers encompassing a Group 4 metallocene with bridging ?5-cyclopentadienyl-type ligands, in combination with a cocatalyst and an activator-support. The compositions and methods disclosed herein provide ethylene polymers with low levels of long chain branching.
    Type: Grant
    Filed: December 1, 2006
    Date of Patent: December 30, 2008
    Assignee: Chevron Phillips Chemical Company, LP
    Inventors: Michael D. Jensen, Joel L. Martin, Max P. McDaniel, David C. Rolfing, Qing Yang, Matthew G. Thorn, Ashish M. Sukhadia, Youlu Yu, Jerry T. Lanier
  • Publication number: 20080319234
    Abstract: A promoter can have utility in selective heterogeneous oxidation of arylalkyl hydrocarbons such as, for example, cyclohexyl benzene and/or sec-butyl benzene to form hydroperoxides. The promoter can include the product of contacting a solid support comprising a metal oxide surface and an iron compound. The solid support can include, for example, titanium dioxide and/or an iron oxide such as magnetite and can have magnetic susceptibility. A method for the oxidation of arylalkyl hydrocarbons to form hydroperoxides can include contacting 16 an arylalkyl hydrocarbon with oxygen in the presence of the promoter under catalytic oxidation conditions to form arylalkyl hydroperoxide, which can then be converted to phenol via cleavage 26. The method can include recovery 22 of the promoter from the arylalkyl hydroperoxide and can further include recycling the recovered promoter to the contacting 16. Where the solid support has magnetic susceptibility, the recovery 22 can include magnetic separation of the promoter.
    Type: Application
    Filed: June 21, 2007
    Publication date: December 25, 2008
    Inventors: Matthew W. Holtcamp, Renuka N. Ganesh, Tan-Jen Chen, Jihad M. Dakka
  • Publication number: 20080318766
    Abstract: The present invention reports a lanthanum-doped nickel/alumina catalyst for the hydrogenation of oils resulting in very low saturated fats, high polyunsaturated fats requiring specific particle size, surface area and porosity of the catalyst; the invented catalyst produces less pressure drop during processing and provides an easily filterable system resulting in a economically practical solution to hydrogenate oils for use by humans and animals.
    Type: Application
    Filed: June 21, 2007
    Publication date: December 25, 2008
    Applicant: Quaid-e-Azam University
    Inventors: Syed Tjammul Hussain, Mohammed Mazhar, Muhammad Hasib-ur-Rehman
  • Patent number: 7468416
    Abstract: A process for the preparation of a catalyst system includes the steps of combining a Lewis base, an organic compound having at least one functional group containing active hydrogen, and an organometallic component with a particulate support material to provide an intermediate composition, and then combining the intermediate composition with one or more metallocene compound. The catalyst system is advantageously used for olefin polymerization.
    Type: Grant
    Filed: May 16, 2007
    Date of Patent: December 23, 2008
    Assignee: Lummus Technology Inc.
    Inventors: Thorsten Sell, Joerg Schottek, Nicola Stefanie Paczkowski, Andreas Winter
  • Patent number: 7468452
    Abstract: The present invention is directed to a method of making a ligand which can be used to form an ansa-metallocene. Further, the present invention is directed to a method of making the ansa-metallocene. In both methods the process steps employed to form the ligand are conducted in the presence of tetrahydrofuran, a substituted tetrahydrofuran, tetrahydropyran, a substituted tetrahydropyran or ethylene glycol dimethyl ether.
    Type: Grant
    Filed: December 12, 2007
    Date of Patent: December 23, 2008
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Joel L. Martin, Albert P. Masino, Qing Yang
  • Patent number: 7468339
    Abstract: An olefin polymerization catalyst may be prepared using a process including contacting a metal compound of the formula M(OR1)2 with a diketone to form a catalyst precursor having the general formula: wherein M is a Group IIA metal; O is oxygen; n=1 or 2; R1, R2, R3, and R4 are the same or different; and are a hydrogen or a substituted or unsubstituted alkyl or aryl moiety having from about 1 to about 20 carbons atoms.
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: December 23, 2008
    Assignee: Fina Technology, Inc.
    Inventors: Tim J. Coffy, Steven D. Gray
  • Patent number: 7465818
    Abstract: A process for the racemoselective preparation of ansa-metallocene complexes of the formula (I), where R1, R1?, R2, R2? are identical or different and are each hydrogen or an organic radical having from 1 to 40 carbon atoms, R3, R3? are identical or different and are each an organic radical having from 1 to 40 carbon atoms, T, T? are identical or different and are each a divalent organic group which has from 1 to 40 carbon atoms, A is a divalent atom or a divalent group, Z is a divalent atom or a divalent group, E is P, As or Sb, M1 is an element of group 4 of the Periodic Table of the Elements, M2 is an alkali metal, an alkaline earth metal or a magnesium monohalide fragment, p is 1 or 2.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: December 16, 2008
    Assignee: Basell Polyolefine GmbH
    Inventor: Lars Kölling
  • Publication number: 20080306226
    Abstract: The present invention discloses active oligomerisation and polymerisation catalyst systems based on monooxime ligands.
    Type: Application
    Filed: July 17, 2006
    Publication date: December 11, 2008
    Applicant: Fina Technology, Inc.
    Inventors: Loise Boulanger, Olivier Lavastre, Sabine Sirol, Abbas Razavi
  • Publication number: 20080293562
    Abstract: Disclosed is a method of preparing an ultra-high molecular weight, linear low density polyethylene with a catalyst system that comprises a bridged indenoindolyl transition metal complex, a non-bridged indenoindolyl transition metal complex, an alumoxane activator and a boron-containing activator. The ultra-high molecular weight, linear low density polyethylene has a weight average molecular weight greater than 1,000,000 and a density less than 0.940 g/cm3.
    Type: Application
    Filed: July 29, 2008
    Publication date: November 27, 2008
    Inventor: Shaotian Wang
  • Patent number: 7456126
    Abstract: The present invention relates to a Ziegler-Natta catalyst for olefin polymerization and a method for polymerization of olefin using the same. Specifically, the invention relates to a Zeigler-Natta catalyst for olefin polymerization, which is produced by a method comprising the step of reacting a transition metal compound in which the transition metal having an oxidation number of 4 or more is selected from Groups IV, V or VI of the Periodic table and two or more aryloxy ligands are bound to the transition metal, with an organomagnesium compound, to reduce said transition metal compound to a reduced form in which the transition metal has an oxidation number of 3, and a method for polymerization of olefin using said catalyst.
    Type: Grant
    Filed: August 24, 2004
    Date of Patent: November 25, 2008
    Assignee: Samsung Total Petrochemicals Co., Ltd.
    Inventors: Eun-il Kim, Ho-Sik Chang
  • Patent number: 7452947
    Abstract: A process for the preparation of a silicon containing transition metal compound that includes the steps of (a) non-hydrolytic sol-gel condensation of a silane of formula LxSiQn wherein L is a ?-bonded ligand, Q is an anionic ligand, and x+n=4 with a halogenated silane (or siloxane) and an alkoxysilane, (b) optionally alkylation, (c) deprotonation and (d) addition of a transition metal compound. The process allows for the preparation of transition metal compounds which may suitably be used with cocatalysts for the polymerization of olefins, in particular for such processes carried out in the gas phase.
    Type: Grant
    Filed: August 14, 2003
    Date of Patent: November 18, 2008
    Assignee: BP Chemicals Limited
    Inventors: Henri Cramail, Alain Deffieux, Cedric Dever, Sergio Mastroianni
  • Publication number: 20080281059
    Abstract: A magnesium compound represented by the formula (I): Mg(OC2H5)2?n(OR1)n ??(I) where R1 is CmH2m+1 (where m is an integer of from 3 to 10), and n is a numerical value satisfying 0<n<0.35; a solid catalyst component for olefin polymer using the magnesium compound; a catalyst for olefin polymer; and methods of producing olefin copolymers such as a propylene-based random copolymer and propylene-based block copolymer by using the catalyst for olefin polymer.
    Type: Application
    Filed: April 19, 2005
    Publication date: November 13, 2008
    Applicant: Idemitsu Kosan Co., Ltd.
    Inventors: Shojiro Tanase, Nobuhiro Yabunouchi, Takehito Konakazawa, Takanori Sadashima, Kiyokazu Katayama, Kenji Tanaka, Hideaki Noda
  • Patent number: 7449528
    Abstract: The present invention relates to a supported catalyst containing titanium, its preparation and it use in the homo-, co-, and ter-polymerization of olefin-unsaturated compounds. The present invention also relates to a catalytic system comprising a supported catalyst based on titanium and a co-catalyst selected from organo-derivatives of aluminum. More specifically, the present invention relates to catalyst supported on silica, obtained by reacting a titanium halocarboxylate and a magnesium halocarboxylate with an aluminum chloroakylderivative, in the presence of a carrier consisting of high porosity silica. The above reaction essentially takes place in the pores of the silica itself.
    Type: Grant
    Filed: December 6, 2002
    Date of Patent: November 11, 2008
    Assignee: Polimeri Europa S.p.A.
    Inventors: Francesco Masi, Maria Rivellini, legal representative, Stefano Santi, legal representative, Laura Santi, legal representative, Anna Sommazzi, Antonio Proto, Mario Polesello, Andrea Vallieri, Roberto Santi
  • Patent number: 7446073
    Abstract: The present invention relates to a cyclic germanium bridged bulky ligand metallocene-type catalyst compound, a catalyst system thereof, and to its use in a process for polymerizing olefin(s) to produce enhanced processability polymers.
    Type: Grant
    Filed: October 19, 2004
    Date of Patent: November 4, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Donna J. Crowther, Phillip T. Matsunaga
  • Patent number: 7446216
    Abstract: A metallocene compound is represented by the formula (1): A2YyMXn-2 wherein: M is a transition metal atom having a coordination number of n selected from Group 3, 4, 5 or 6 of the Periodic Table of Elements, or a lanthanide metal atom, or actinide metal atom; each A is independently a substituted polycyclic arenyl ligand pi-bonded to M, each A ligand includes at least one halogen substituent directly bonded to an sp2 carbon at a bondable ring position and, when each A is a substituted indenyl ligand and y is equal to one and the ligand includes at least one chloro, bromo or iodo substituent at the 4, 5, or 6 position of the indenyl ligand, then A also includes at least one other substituent in the indenyl ligand selected from hydrocarbyl, substituted hydrocarbyl, halogen, halocarbyl, substituted halocarbyl, silylcarbyl, substituted silylcarbyl, germylcarbyl, substituted germylcarbyl, or other heteroatom substituents wherein the heteroatom is bonded directly to a ring carbon of the ring structure ligand an
    Type: Grant
    Filed: December 14, 2005
    Date of Patent: November 4, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Alexander Z. Voskoboynikov, Alexey N. Ryahov, Mikhail V. Nikulin, Alexander V. Lygin, Vyatcheslav V. Izmer, Andrey F. Asachenko, Catalina L. Coker, Jo Ann M. Canich
  • Publication number: 20080269439
    Abstract: A process for preparing 1-butene polymers, comprising polymerizing 1-butene or copolymerizing 1-butene with ethylene, propylene or an alpha-olefin of formula CHT2=CHT wherein T is a C3-C10 alkyl group, in the presence of a catalyst system obtainable by contacting: A) a metallocene compound belonging to formula (I): wherein M is zirconium titanium or hafnium; X, equal to or different from each other, is a hydrogen atom, a halogen atom, a hydrocarbon radical optionally containing heteroatoms; R4, R5, R6, R7, R8, R9, R10, R11, R12 and R13 are hydrogen atoms, or C1-C4O hydrocarbon radicals optionally containing heteroatoms; R1, R2 and R3, are linear or branched, C1-C2o-alkyl radicals, optionally containing heteroatoms: B) a Jumoxane or a compound capable of forming an alkyl metallocene cation; and optionally C) organo aluminum compound.
    Type: Application
    Filed: April 12, 2006
    Publication date: October 30, 2008
    Inventors: Luigi Resconi, Simona Guidotti, Iolanda Santoriello
  • Patent number: 7442232
    Abstract: Adsorbents and methods of use thereof are provided. One representative, among others, includes an adsorbent having an alkali metal promoted, mixed trivalent layered double hydroxide (LDH) composition. When the mixed trivalent layered double hydroxide (LDH) composition is heated to a temperature ranging from about 300° C. to 450° C., an the adsorbent having an adsorption capacity of at least 0.8 millimoles of CO2 adsorbed per gram of adsorbent is formed.
    Type: Grant
    Filed: June 19, 2003
    Date of Patent: October 28, 2008
    Assignee: Georgia Tech Research Corporation
    Inventors: Mark G. White, Alexei V Iretski, Scott Jeffrey Weigel, Robert Ling Chiang, Jeffrey Richard Brzozowski
  • Patent number: 7442667
    Abstract: The present invention relates to a process for preparing a supported cocatalyst for olefin polymerization, which comprises reacting A) a support bearing functional groups, B) triethylaluminum and C) a compound of the formula (I), (R1)x—A—OH)y??(I) where A is an atom of group 13 or 15 of the Periodic Table, R1 are identical or different and are each, independently of one another, hydrogen, halogen, C1-C20-alkyl, C1-C20-haloalkyl, C1-C10-alkoxy, C6-C20-aryl, C6-C20-haloaryl, C6-C20-aryloxy, C7-C40-arylalky, C7-C40-haloarylalkyl, C7-C40-alkylaryl, C7-C40-haloalkylaryl or an OSiR32 group, where R2 are identical or different and are each hydrogen, halogen, C1-C20-alkyl, C1-C20-haloalkyl, C1-C10-alkoxy, C6-C20-aryl, C6-C20-haloaryl, C6-C20-aryloxy, C7-C40-arylalkyl, C7-C40-haloarylalkyl, C7-C40-alkylaryl or C7-C40-haloalkylaryl, y is 1 or 2 and x is 3 minus y.
    Type: Grant
    Filed: December 22, 2004
    Date of Patent: October 28, 2008
    Assignee: Bosell Polyolefine GmbH
    Inventors: Naka Seidel, Bodo Richter, Roland Kratzer
  • Patent number: 7439313
    Abstract: A MgCl2.mEtOH.nH2O adducts, where 3.4<m?4.4, 0?n?0.7, characterized by an X-ray diffraction spectrum, taken under the condition set forth above, in which, in the range of 2? diffraction angles between 5° and 10°, at least two diffraction lines are present at diffraction angles 2? of 9.3±0.2°, and 9.9±0.2°, the most intense diffraction lines being the one at 2? of 9.3±0.2°, the intensity of the other diffraction line being less than 0.4 times the intensity of the most intense diffraction line. Catalyst components obtained from the adducts of the present invention are capable to give catalysts for the polymerization of olefins characterized by enhanced activity and/or porosity with respect to the catalysts prepared from the adducts of the prior art.
    Type: Grant
    Filed: February 13, 2006
    Date of Patent: October 21, 2008
    Assignee: Basell Poliolefine Italia S.p.A.
    Inventors: Daniele Evangelisti, Gianni Collina, Ofelia Fusco, Mario Sacchetti
  • Patent number: 7439378
    Abstract: The present invention relates to a novel fulvene compound and a preparation method thereof, and more particularly to a fulvene compound having substituted groups in the 2- and 5-positions, prepared from an unsaturated ketone having a substituted group in the ?-position and a halogen atom in the ?-position, and a preparation method thereof. The present invention also relates to a metallocene catalyst having a substituted group in the ?-position carbon of the bridge of the cyclopentadienyl group only by reaction of a fulvene compound and an anion group including the cyclopentadienyl group, and a preparation method of a polyolefin copolymer using the same.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: October 21, 2008
    Assignee: LG Chem, Ltd.
    Inventors: Young-Whan Park, Si-Geun Lee, Sung-Don Hong, Kwang-Ho Song, Boong-Goon Jeong, Dae-Woo Nam, Bun-Yeol Lee, Choong-Hoon Lee, Hyo-Sun Lee
  • Patent number: 7432220
    Abstract: The invention is directed to a process for producing a particulate support for an olefin polymerisation catalyst wherein a solution of a magnesium compound is contacted with a solution of an element of Group (13 or 14) of the Periodic Table (IUPAC) to obtain a solid reaction product. In the process of the invention the solid reaction product is formed by: i) contacting (a) a solution of a magnesium hydrocarbyloxy compound with (b) a solution of a halogen-containing compound of an element of Group (13 or 14) of the Periodic Table (IUPAC); and ii) recovering the solidified reaction product from the reaction mixture.
    Type: Grant
    Filed: December 18, 2002
    Date of Patent: October 7, 2008
    Assignee: Borealis Technology Oy
    Inventors: Thomas Garoff, Päivi Waldvogel, Kari Pesonen
  • Patent number: 7432336
    Abstract: The present invention relates to propylene based copolymers and to processes for producing propylene based copolymers, particularly propylene-ethylene copolymers. These unique copolymers are prepared using metallocene catalysts.
    Type: Grant
    Filed: March 18, 2004
    Date of Patent: October 7, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Patrick Brant
  • Patent number: 7427653
    Abstract: A catalyst component for olefin (co)polymerization, and in particular for the preparation of LLDPE, comprising Mg, Ti, halogen and an electron donor compound (ED) belonging to ethers, esters, amines, ketones, or nitriles, characterized in that the molar ratio Mg/Ti is higher than 5, and the molar ratio ED/Ti is higher than 3.5. The said catalyst components display a homogeneous distribution of the comonomer in and among the copolymer chains.
    Type: Grant
    Filed: November 25, 2003
    Date of Patent: September 23, 2008
    Assignee: Basell Poliolefine Italia S.p.A
    Inventors: Diego Brita, Gianni Collina, Giampiero Morini, Gianni Vitale
  • Patent number: 7425661
    Abstract: The present invention provides a method of producing oligomers of olefins, comprising reacting olefins with a catalyst under oligomerization conditions. The catalyst can be the product of the combination of a chromium compound and a pyridyl amine or a heteroaryl-amine compound. In particular embodiments, the catalyst compound can be used to trimerize or tetramerize ethylene to 1-hexene, 1-octene, or mixtures of 1-hexene and 1-octene.
    Type: Grant
    Filed: March 9, 2006
    Date of Patent: September 16, 2008
    Assignee: ExxonMobil Chemicals Patents Inc.
    Inventors: David H. McConville, Lily Ackerman, Robert T. Li, Xiaohong Bei, Matthew C. Kuchta, Tom Boussie, John F. Walzer, Jr., Gary Diamond, Francis C. Rix, Keith A. Hall, Anne LaPointe, James Longmire, Vince Murphy, Pu Sun, Dawn Verdugo, Susan Schofer, Eric Dias
  • Patent number: 7423101
    Abstract: The present invention is directed toward Group 4, 5, 6, 7, 8, 9, 10 or 11 transition metal compounds containing neutral, mono- or di-anionic tridentate nitrogen/oxygen based ligands that are useful, with or without activators, to polymerize olefins, particularly ?-olefins, or other unsaturated monomers. For the purposes of this disclosure, “?-olefins” includes ethylene. The present invention is also directed toward Group 4, 5, 6, 7, 8, 9, 10 or 11 transition metal compounds containing neutral, bidentate nitrogen/oxygen based ligands that are useful to polymerize olefins, particularly ?-olefins, or other unsaturated monomers.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: September 9, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Gregory A. Solan, Christopher J. Davies
  • Patent number: 7420021
    Abstract: A catalyst composition for the polymerization of propylene comprising one or more Ziegler-Natta procatalyst compositions comprising one or more transition metal compounds and one or more monoesters of aromatic carboxylic acid internal electron donors; one or more aluminum containing cocatalysts; and a mixture of two or more different selectivity control agents, said SCA mixture comprising from 98.0 to 99.9 mol percent of one or more esters of one or more aromatic monocarboxylic acids or substituted derivatives thereof, and from 2.0 to 0.1 mol percent of one or more alkoxysilane compounds.
    Type: Grant
    Filed: August 18, 2004
    Date of Patent: September 2, 2008
    Assignee: Union Carbide Chemicals & Plastics Technology LLC
    Inventor: Linfeng Chen
  • Patent number: 7420022
    Abstract: External donor systems, catalyst systems and olefin polymerization processes are described herein. The external donor systems generally include a first external donor represented by the general formula SiR2m(OR3)4-m, wherein each R2 is independently selected from alkyls, cycloalkyls, aryls and vinyls, each R3 is independently selected from alkyls and m is from 0 to 4. The external donor systems further include a second external donor represented by the general formula SiR4m(OR5)4-m, wherein each R4 is independently selected from alkyls, cycloalkyls, aryls and vinyls, each R5 is independently selected from alkyls, m is from 0 to 4 and at least one R4 is a C3 or greater alkyl.
    Type: Grant
    Filed: June 19, 2007
    Date of Patent: September 2, 2008
    Assignee: Fina Technology, Inc.
    Inventors: Kenneth P. Blackmon, Shabbir A. Malbari
  • Patent number: 7417098
    Abstract: Process for the emulsion polymerization of one or more olefins by reacting a quinoid compound with a metal compound and a phosphine compound which is substituted by at least one polar radical and subsequently using the reaction product for the polymerization or copolymerization of olefins in water or in a solvent mixture which contains at least 50% by weight of water and at least one emulsifier.
    Type: Grant
    Filed: November 6, 2004
    Date of Patent: August 26, 2008
    Assignee: BASF SE
    Inventors: Mubarik Mahmood Chowdhry, Xavier Sava, Monica Haag, Jacob Wildeson, Stefan Mecking, Ludmila Kolb
  • Patent number: 7417006
    Abstract: A salt of formula (I) [HEoR13]+[T1T2]? ??(I) wherein Eo is a nitrogen or phosphorous atom; R1 is hydrocarbon radical; T1 is a Lewis acid that forms a complex with T2, and T2 is a substituted pyrrolyl radical of formula (III) These salts can be used as cocatalyst in a process for the polymerization of alpha-olefins in conjunction with a transition metal organometallic compound.
    Type: Grant
    Filed: May 7, 2002
    Date of Patent: August 26, 2008
    Assignee: Basell Polyolefine GmbH
    Inventors: Luigi Resconi, Simona Guidotti
  • Patent number: 7414099
    Abstract: Embodiments of the present invention include a method of polymerizing olefins comprising contacting olefins with a catalyst composition made by the process of combining a hindered polyalicyclic alkyl catalyst precursor with a particulate inorganic oxide for a deposition time greater than 2 hours to form a catalyst composition. Embodiments of the present invention also include catalyst compositions comprising a hindered polyalicyclic alkyl catalyst precursor made by the process of combining the hindered polyalicyclic alkyl catalyst precursor with a particulate inorganic oxide for a deposition time greater than 2 hours to form the catalyst composition.
    Type: Grant
    Filed: October 13, 2005
    Date of Patent: August 19, 2008
    Assignee: Univation Technologies, LLC
    Inventors: Maria A. Apecetche, John Moorhouse, Mark G. Goode, Ronald S. Eisinger, Kevin J. Cann
  • Patent number: 7414006
    Abstract: The present invention provides a method of producing oligomers of olefins, comprising reacting olefins with a catalyst under oligomerization conditions. The catalyst can be the product of the combination of a chromium compound and a heteroaryl-amine compound. In particular embodiments, the catalyst compound can be used to trimerize or tetramerize ethylene to 1-hexene, 1-octene, or mixtures of 1-hexene and 1-octene.
    Type: Grant
    Filed: March 9, 2006
    Date of Patent: August 19, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: David H. McConville, Lily Ackerman, Robert T. Li, Xiaohong Bei, Matthew C. Kuchta, Tom Boussie, John F. Walzer, Jr., Gary Diamond, Francis C. Rix, Keith A. Hall, Anne LaPointe, James Longmire, Vince Murphy, Pu Sun, Dawn Verdugo, Susan Schofer, Eric Dias
  • Patent number: 7414005
    Abstract: The present invention relates to a process for preparing a catalyst composition for olefin polymerization, which comprises preparing a catalyst solid in a first step by bringing A) at least one support, B) at least one organic compound having at least one functional group containing active hydrogen, C) at least one organometallic compound and D) at least one organic transition metal compound into contact with one another, then bringing this catalyst solid into contact with E) at least one organoaluminum compound in a second step and then using this mixture for the polymerization without further work-up. In addition, the invention relates to catalyst system for the polymerization of olefins which comprise such catalyst compositions, to the use of the catalyst compositions or the catalyst systems for the polymerization of olefins and to a process of the polymerization of olefins.
    Type: Grant
    Filed: November 3, 2003
    Date of Patent: August 19, 2008
    Assignee: Basell Polyolefine GmbH
    Inventor: Roland Kratzer