Of Group Viii (i.e., Iron Or Platinum Group) Patents (Class 502/325)
  • Patent number: 8765628
    Abstract: Exemplary embodiments of the present invention relate to the processing of hydrocarbon-containing feedstreams in the presence of an active catalyst component comprising a surface, and a metal oxide film coated on the surface of the active catalyst component. The catalysts and processes of the present invention can improve overall hydrogenation, product conversion, as well as improved resistance to catalytic deactivation due to sulfur and nitrogen compounds present in the hydrocarbon feedstreams.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: July 1, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Chuansheng Bai, Adrienne J. Thornburg, Heather A. Elsen, William G. Borghard, Cody R. Cole
  • Patent number: 8765624
    Abstract: A coating suspension for coating catalyst substrates comprises at least two different particulate metal and/or semi-metal oxides with a sedimentation mass (MS), characterized in that the sedimentation mass (MS) of the particulate metal and/or semi-metal oxide with the smallest sedimentation mass is between 70% and 100% of the sedimentation mass of the particulate metal and/or semi-metal oxide with the largest sedimentation mass. Further, a method for producing a coating suspension, the use of the coating suspension to coat a catalyst substrate, as well as a catalyst produced using the coating suspension are disclosed.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: July 1, 2014
    Assignee: Sued-Chemie IP GmbH & Co. KG
    Inventors: Ulrich Meyer, Olaf Helmer, Sascha Podehl
  • Patent number: 8765085
    Abstract: Aspects of the invention relate to a base metal catalyst composition effective to catalyze the abatement of hydrocarbons, carbon monoxide and nitrogen oxides under both rich and lean engine operating conditions comprising a support including at least 10% by weight of reducible ceria doped with up to about 60% by weight of one or more of oxides selected from the group Al, Pr, Sm, Zr, Y, Si, Ti and La; and a base metal oxide on the reducible ceria support, the base metal selected from one or more of Ni, Fe, Mn, Cu, Co, Ba, Mg, Ga, Ca, Sr, V, W, Bi and Mo, the base metal catalyst composition effective to promote a steam reforming reaction of hydrocarbons and a water gas shift reaction to provide H2 as a reductant to abate NOx. Other aspects of the invention relate to methods of using and making such catalysts.
    Type: Grant
    Filed: April 22, 2013
    Date of Patent: July 1, 2014
    Assignee: Basf Corporation
    Inventors: Pascaline Harrison Tran, Xinsheng Liu, Ye Liu, Michael P. Galligan, Qinglin Zhang
  • Publication number: 20140178262
    Abstract: Hollow porous metal oxide microspheres are provided. The microspheres may be used as a support for a catalyst, particularly an exhaust treatment catalyst for an internal combustion engine. Also provided are methods of making the microspheres, methods of using the microspheres as catalyst supports, and methods of exhaust treatment using catalyst articles comprising the microspheres.
    Type: Application
    Filed: December 20, 2012
    Publication date: June 26, 2014
    Applicant: BASF Corporation
    Inventors: Pascaline Harrison Tran, Michael P. Galligan, Ye Liu, Xiaolin David Yang, Qingyuan Hu, Doan Lieu
  • Patent number: 8759244
    Abstract: A process for handling an active catalyst includes introducing a mixture of active catalyst particles and a molten organic substance, which is at a temperature Ti, and which sets at a lower temperature T2 so that T2<T1, into a mould. The mould is submerged in a cooling liquid, so as to cool the organic substance down to a temperature T3, where T3?T2. In this fashion, a casting comprising an organic substance matrix in which the active catalyst particles are dispersed, is obtained.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: June 24, 2014
    Assignees: Sasol Technology (Proprietary) Limited, BASF Nederland B.V.
    Inventor: Zofia Anna Brodziak
  • Publication number: 20140171297
    Abstract: The present invention is directed to hollow catalyst particles comprising a layered shell structure and to a method of their manufacture. The catalyst particles have the general formula Hcore/PMinner shell/IL/PMouter shell in which Hcore is the hollow core, PMinner shell is a precious metal forming the innermost layer of the shell, IL is an intermediate layer comprising a base metal/precious metal alloy, and PMouter shell is a precious metal forming the outermost layer of the shell. The precious metal is selected from Pt, Ir and Pd and mixtures or alloys thereof, and IL is an intermediate layer comprising a base metal/precious metal alloy wherein the concentration of the base metal changes from the periphery of the hollow core to the outer surface of the intermediate layer. The base metal is selected from Co, Ni, and Cu and mixtures thereof.
    Type: Application
    Filed: December 18, 2012
    Publication date: June 19, 2014
    Applicant: UMICORE AG & CO. KG
    Inventors: Dan V. GOIA, Igor V. SEVONKAEV, Daniel HEREIN
  • Publication number: 20140171299
    Abstract: A hydroprocessing co-catalyst composition may comprise in an embodiment a first component comprising co-catalyst particles and a liquid carrier, and a second component comprising a dispersant and a dispersant diluent. The co-catalyst particles may be in the micron size range, and the dispersant may promote dispersion of the co-catalyst particles in materials such as the liquid carrier, the dispersant diluent, and combinations thereof. Methods of introducing a hydroprocessing co-catalyst composition into a hydroprocessing system are also disclosed.
    Type: Application
    Filed: December 14, 2012
    Publication date: June 19, 2014
    Inventors: Julie Chabot, Bo Kou, Alexander Kuperman
  • Patent number: 8753596
    Abstract: The invention relates to a catalyst for removal of nitrogen oxides from the exhaust gas of diesel engines, and to a process for reducing the level of nitrogen oxides in the exhaust gas of diesel engines. The catalyst consists of a support body of length L and of a catalytically active coating which in turn may be formed from one or more material zones. The material zones comprise a copper-containing zeolite or a zeolite-like compound. The materials used include chabazite, SAPO-34, ALPO-34 and zeolite ?. In addition, the material zones comprise at least one compound selected from the group consisting of barium oxide, barium hydroxide, barium carbonate, strontium oxide, strontium hydroxide, strontium carbonate, praseodymium oxide, lanthanum oxide, magnesium oxide, magnesium/aluminum mixed oxide, alkali metal oxide, alkali metal hydroxide, alkali metal carbonate and mixtures thereof. Noble metal may optionally also be present in the catalyst.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: June 17, 2014
    Assignee: Umicore AG & Co. KG
    Inventors: Paul Spurk, Nicola Soeger, Elena Mueller, Stephan Malmberg
  • Publication number: 20140162871
    Abstract: The present invention provides a method for producing a hydroprocessing catalyst including a supporting step of allowing a catalyst support having a content of a carbonaceous substance containing carbon atoms of 0.5% by mass or less in terms of carbon atoms to support an active metal component containing at least one active metal element selected from metals belonging to Group 6, Group 8, Group 9 and Group 10 in the periodic table, to obtain a catalyst precursor, and a calcining step of calcining the catalyst precursor obtained in the supporting step to obtain the hydroprocessing catalyst.
    Type: Application
    Filed: March 26, 2012
    Publication date: June 12, 2014
    Applicants: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD., JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., JX NIPPON OIL & ENERGY CORPORATION
    Inventor: Marie Iwama
  • Publication number: 20140162870
    Abstract: Methods, structures, devices and systems are disclosed for fabrication of microtube engines using membrane template electrodeposition. Such nanomotors operate based on bubble-induced propulsion in biological fluids and salt-rich environments. In one aspect, fabricating microengines includes depositing a polymer layer on a membrane template, depositing a conductive metal layer on the polymer layer, and dissolving the membrane template to release the multilayer microtubes.
    Type: Application
    Filed: June 4, 2012
    Publication date: June 12, 2014
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Joseph Wang, Wei Gao, Sirilak Sattayasamitsathit
  • Patent number: 8748337
    Abstract: The present invention relates to a method for preparing a multi-metals/activated carbon composite, more particularly to a method for preparing a multi-metals/activated carbon composite, which is prepared by electrochemical electroplating of an alloy plate comprising at least two metals and activated carbons fixed on a conductive support under a predetermined condition. The multi-metals/activated carbon composite prepared in accordance with the present invention has improved adhesion force and specific surface area than those of a conventional composite obtained by continuously plating activated carbons, in which metal salts are impregnated, or metals and good reactivity due to the introduction of pure metals. Since the composition and content of metals can be controlled accurately, the multi-metals/activated carbon composite is useful as an active material for filters for removing gaseous or liquid pollutants, secondary cells, fuel cells, capacitors, hydrogen storage electrodes, etc.
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: June 10, 2014
    Assignee: INHA—Industry Partnership Institute
    Inventors: Soo-Jin Park, Byung-Joo Kim
  • Patent number: 8748330
    Abstract: This disclosure provides methods of making an enhanced activity nanostructured thin film catalyst by radiation annealing, typically laser annealing, typically under inert atmosphere. Typically the inert gas has a residual oxygen level of 100 ppm. Typically the irradiation has an incident energy fluence of at least 30 mJ/mm2. In some embodiments, the radiation annealing is accomplished by laser annealing. In some embodiments, the nanostructured thin film catalyst is provided on a continuous web.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: June 10, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: Mark K. Debe, Robert L. W. Smithson, Charles J. Studiner, IV, Susan M. Hendricks, Michael J. Kurkowski, Andrew J. L. Steinbach
  • Publication number: 20140155251
    Abstract: Provided is a substrate for carbon nanotube growth in which no metal particles as a catalyst aggregates and a method for manufacturing the substrate. A substrate for carbon nanotube growth 1 includes a base plate 2, a catalyst 3, a form-defining material layer 4 which allows the catalyst 3 to be dispersed and arranged, and a covering layer 5 which has a metal oxide to cover the catalyst. A method for manufacturing a substrate for carbon nanotube growth 1 includes a step of sputtering on a base plate 2 a metal which forms a catalyst 3 and oxidizing the surface of the metal, a step of sputtering a form-defining material on the base plate 2, and a step of further sputtering on the form-defining material a metal which forms a catalyst 3 and oxidizing the surface of the metal.
    Type: Application
    Filed: December 3, 2013
    Publication date: June 5, 2014
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Toshiyuki Ohashi, Toshio Tokune, Masahiro Ohta, Ryogo Kato, Toshiyuki Shima
  • Publication number: 20140155501
    Abstract: A process for preparing a cobalt-containing hydrocarbon synthesis catalyst includes calcining an initial catalyst precursor comprising a catalyst support supporting a cobalt compound, by heat treating the initial catalyst precursor under non-reducing conditions in order to decompose the cobalt compound and/or to cause the cobalt compound to react with oxygen, thereby to obtain a calcined initial catalyst precursor. A cobalt compound is introduced onto and/or into the calcined initial catalyst precursor so that the calcined initial catalyst precursor supports this cobalt compound thereby obtaining a subsequent catalyst precursor. The subsequent catalyst precursor is directly subjected to reduction conditions to activate the subsequent catalyst precursor, thereby to obtain a cobalt-containing hydrocarbon synthesis catalyst.
    Type: Application
    Filed: August 31, 2012
    Publication date: June 5, 2014
    Inventor: Hendrik Van Rensburg
  • Patent number: 8741799
    Abstract: An exhaust gas-purifying catalyst includes a substrate, and a catalytic layer facing the substrate and including a precious metal, alumina, an oxygen storage material, and a sulfate of an alkaline-earth metal having an average particle diameter falling within a range of 0.01 to 0.70 ?m, the average particle diameter being obtained by observation using a scanning electron microscope. Another exhaust gas-purifying catalyst includes a substrate, and a catalytic layer formed on the substrate using slurry containing a precious metal, alumina, an oxygen storage material, and a sulfate of an alkaline-earth metal having an average particle diameter falling within a range of 0.01 to 0.70 ?m, the average particle diameter being obtained by observation using a scanning electron microscope.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: June 3, 2014
    Assignee: Cataler Corporation
    Inventors: Satoshi Matsueda, Akimasa Hirai, Kenichi Taki, Yuji Yabuzaki
  • Patent number: 8741504
    Abstract: A solid catalyst having a close-packed structure has basic structural units present in the surface of the solid catalyst, the basic structural units including (i) a triangular lattice constituted of atoms of platinum, ruthenium, and at least one additional element which are disposed at the vertexes in the triangular lattice so that each atom of one of the elements adjoins atoms of the other elements or (ii) a rhombic lattice constituted of atoms of platinum, ruthenium, and at least one additional element which are disposed at the vertexes in the rhombic lattice in an atomic ratio of 1:2:1 so that each ruthenium atom directly adjoins a platinum atom and an atom of the additional element; and a fuel cell includes either of the solid catalyst as an anode-side electrode catalyst.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: June 3, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takashi Yoshida, Fumihiko Aiga, Satoshi Itoh, Yoshiko Hiraoka, Reiko Yoshimura, Tsukasa Tada
  • Publication number: 20140140904
    Abstract: The present invention provides methods and designs of enclosed-channel reactor system for manufacturing catalysts or supports. Both of the configuration designs force the gaseous precursors and purge gas flow through the channel surface of reactor. The precursors will transform to thin film or particle catalysts or supports under adequate reaction temperature, working pressure and gas concentration. The reactor body is either sealed or enclosed for isolation from atmosphere. Another method using super ALD cycles is also proposed to grow alloy catalysts or supports with controllable concentration. The catalysts prepared by the method and system in the present invention are noble metals, such as platinum, palladium, rhodium, ruthenium, iridium and osmium, or transition metals such as iron, silver, cobalt, nickel and tin, while supports are silicon oxide, aluminum oxide, zirconium oxide, cerium oxide or magnesium oxide, or refractory metals, which can be chromium, molybdenum, tungsten or tantalum.
    Type: Application
    Filed: July 23, 2013
    Publication date: May 22, 2014
    Applicant: National Applied Research Laboratories
    Inventors: Chi-Chung Kei, Bo-Heng Liu, Chien-Pao Lin, Chien-Nan Hsiao, Yang-Chih Hsueh, Tsong-Pyng Perng
  • Publication number: 20140141966
    Abstract: Disclosed is an exhaust gas purifying catalyst in which grain growth of a noble metal particle supported on a support is suppressed. Also disclosed is a production process for producing an exhaust gas purifying catalyst. The exhaust gas purifying catalyst comprises a crystalline metal oxide support and a noble metal particle supported on the support, wherein the noble metal particle is epitaxially grown on the support, and wherein the noble metal particle is dispersed and supported on the outer and inner surfaces of the support. The process for producing an exhaust gas purifying catalyst comprises masking, in a solution, at least a part of the surface of a crystalline metal oxide support by a masking agent, introducing the support into a noble metal-containing solution containing a noble metal, and drying and firing the support and the noble metal-containing solution to support the noble metal on the support.
    Type: Application
    Filed: December 12, 2013
    Publication date: May 22, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Masao Watanabe, Oji Kuno, Nobusuke Kabashima, Keisuke Kishita, Noboru Otake, Hiromochi Tanaka
  • Publication number: 20140140909
    Abstract: The present disclosure relates to a substrate comprising nanomaterials for treatment of gases, washcoats for use in preparing such a substrate, and methods of preparation of the nanomaterials and the substrate comprising the nanomaterials. More specifically, the present disclosure relates to a substrate comprising nanomaterial for three-way catalytic converters for treatment of exhaust gases.
    Type: Application
    Filed: March 13, 2013
    Publication date: May 22, 2014
    Applicant: SDCMATERIALS, INC.
    Inventor: SDCmaterials, Inc.
  • Publication number: 20140134060
    Abstract: A natural gas reforming catalyst includes a metal core and rhodium deposited on the metal core. A natural gas reformer includes a hydrocarbon inlet, a reforming catalyst for generating hydrogen from a hydrocarbon and water and a hydrogen outlet. The reforming catalyst includes a metal core and a rhodium layer deposited on the metal core. A method for preparing a natural gas reforming catalyst includes adding a rhodium compound and a metal core to a reaction vessel and depositing the rhodium compound on the metal core.
    Type: Application
    Filed: May 10, 2011
    Publication date: May 15, 2014
    Applicant: ClearEdge Power Corporation
    Inventor: Minhua Shao
  • Patent number: 8722569
    Abstract: A catalytically active component is provided which comprises particles containing a metal oxide such as silica, metal or metalloid ions such as ions that include boron, and a catalyst. When introduced into the membrane electrode assembly of a fuel cell, the particles increase peroxide radical resistance in a membrane electrode.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: May 13, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventors: Junaid Ahmed Siddiqui, Kimberly Gheysen Raiford
  • Patent number: 8722608
    Abstract: The present invention concerns bleaching of substrates with an aqueous solution of a water soluble salt of a preformed transition metal catalyst together with hydrogen peroxide.
    Type: Grant
    Filed: May 29, 2013
    Date of Patent: May 13, 2014
    Assignee: Conopco, Inc.
    Inventors: Ronald Hage, Jean Hypolites Koek, Marinus Maria Cornelis Gerardus Warmoeskerken
  • Patent number: 8716165
    Abstract: A method for providing a catalyst on a substrate is disclosed comprising providing a first washcoat comprising a soluble washcoat salt species, a polar organic solvent, and an insoluble particulate material, contacting the first washcoat with a substrate to form a coated substrate, and then contacting the coated substrate with a second washcoat comprising an oxide or an oxide-supported catalyst to physisorb, chemisorb, bond, or otherwise adhere the oxide or the oxide-supported catalyst to the coated substrate. Also disclosed is a catalyst on a substrate comprising: a substrate; an anchor layer comprising a soluble washcoat salt species, a polar organic solvent, and an insoluble particulate material; and a second layer comprises an oxide or an oxide-supported catalyst. The catalyst on a substrate can be in either green or fired form.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: May 6, 2014
    Assignee: Corning Incorporated
    Inventor: William Peter Addiego
  • Publication number: 20140121097
    Abstract: A catalyst structure comprising dispersed metal catalyst on support, wherein the support but not the metal catalyst can be observed using x-ray diffraction, and wherein the metal catalyst can be chemically detected.
    Type: Application
    Filed: September 24, 2013
    Publication date: May 1, 2014
    Applicant: The Materials Foundry, LLC
    Inventors: Jonathan Phillips, Brian James Scanlan
  • Patent number: 8709968
    Abstract: A catalyst composition that is especially useful in the hydroconversion of pitch, micro carbon residue and sulfur contents of a heavy hydrocarbon feedstock without the excessive formation of sediment. The catalyst composition is a reasonably high surface area composition containing alumina and a low molybdenum content with a high ratio of nickel-to-molybdenum. The catalyst composition further has a unique pore distribution that in combination with the special metals loading provide for good conversion of pitch and micro carbon residue without an excessive yield of sediment.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: April 29, 2014
    Assignee: Shell Oil Company
    Inventors: Josiane Maria-Rose Ginestra, John George Kester, David Andrew Komar, David Edward Sherwood
  • Patent number: 8703637
    Abstract: An improved process to make a slurry catalyst for the upgrade of heavy oil feedstock is provided. In the process, at least a metal precursor feedstock is portioned and fed in any of the stages: the promotion stage; the sulfidation stage; or the transformation stage of a water-based catalyst precursor to a slurry catalyst. In one embodiment, the promoter metal precursor feedstock is split into portions, the first portion is for the sulfiding step, the second portion is for the promotion step; and optionally the third portion is to be added to the transformation step in the mixing of the sulfided promoted catalyst precursor with a hydrocarbon diluent to form the slurry catalyst. In another embodiment, the Primary metal precursor feedstock is split into portions.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: April 22, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventors: Shuwu Yang, Julie Chabot, Ling Jiao, Joseph V. Nguyen, Bruce Edward Reynolds
  • Patent number: 8703640
    Abstract: The invention discloses a preparation method of nano-scale platinum (Pt) using an open-loop reduction system. The preparation method comprises the steps of: utilizing carbon nanotubes (CNTs) as a catalyst support; mixing platinum salt with a reducing agent and deionized water to form a precursor solution in a flask; heating the precursor solution in the flask at a predetermined temperature range to reduce nano-scale platinum nanoparticles on the carbon nanotubes by the process of water evaporation; allowing the water vapor to flow through a connection tube to a condenser; filling a cooling substance into the condenser via the first opening and draining the cooling substance from the condenser via the second opening to lower the temperature of the water vapor in the inner tube by the cooling substance and condense the water vapor into liquid water, which is collected with a beaker placed under the condenser.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: April 22, 2014
    Inventors: Fan-Gang Tseng, Yi-Shiuan Wu, Shin-Mei Gong, Chun-Hsien Wang
  • Patent number: 8703642
    Abstract: A method of forming a supported oxidation catalyst includes providing a support comprising a metal oxide or a metal salt, and depositing first palladium compound particles and second precious metal group (PMG) metal particles on the support while in a liquid phase including at least one solvent to form mixed metal comprising particles on the support. The PMG metal is not palladium. The mixed metal particles on the support are separated from the liquid phase to provide the supported oxidation catalyst.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: April 22, 2014
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventor: Nahid Mohajeri
  • Patent number: 8697597
    Abstract: A method and system for the reduction of pollutant NOx gases from automobile exhaust, as well as a method of reforming hydrocarbons, using a self-sustaining catalyst comprising an ion conductive support, a dispersed cathodic phase, a dispersed anodic phase, and a dispersed sacrificial phase, and a method of forming the self-sustaining catalyst.
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: April 15, 2014
    Assignee: University of Miami
    Inventor: Xiangyang Zhou
  • Patent number: 8697594
    Abstract: A single metal slurry catalyst for the upgrade of heavy oil feedstock is provided. The slurry catalyst is prepared by sulfiding a Primary metal precursor, then mixing the sulfided metal precursor with a hydrocarbon diluent to form the slurry catalyst. The single-metal slurry catalyst has the formula (Mt)a(Sv)d(Cw)e(Hx)f(Oy)g(Nz)h, wherein M is at least one of a non-noble Group VIII metal, a Group VIB metal, a Group IVB metal, and a Group IIB metal; 0.5a<=d<=4a; 0<=e<=11a; 0<=f<=18a; 0<=g<=2a; 0<=h<=3a; t, v, w, x, y, z, each representing total charge for each of: M, S, C, H, O, and N; and ta+vd+we+xf+yg+zh=0. The slurry catalyst has a particle size ranging from 1 to 300 ?m.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: April 15, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventors: Joseph V. Nguyen, Axel Brait, Oleg Mironov, Alexander E. Kuperman
  • Patent number: 8691716
    Abstract: The invention describes the preparation of electrocatalysts, both anodic (aimed at the oxidation of the fuel) and cathodic (aimed at the reduction of the oxygen), based on mono- and plurimetallic carbon nitrides to be used in PEFC (Polymer electrolyte membrane fuel cells), DMFC (Direct methanol fuel cells) and H2 electrogenerators. The target of the invention is to obtain materials featuring a controlled metal composition based on carbon nitride clusters or on carbon nitride clusters supported on oxide-based ceramic materials. The preparation protocol consists of three steps. In the first the precursor is obtained through reactions of the type: a) sol-gel; b) gel-plastic; c) coagulation-flocculation-precipitation.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: April 8, 2014
    Assignee: Breton S.p.A.
    Inventors: Vito Di Noto, Enrico Negro, Sandra Lavina, Giuseppe Pace
  • Patent number: 8691721
    Abstract: A rhodium-loading solution characterized by comprising rhodium atoms and an organic base in a molar ratio of 1:0.5-35.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: April 8, 2014
    Assignee: Cataler Corporation
    Inventors: Akiya Chiba, Motoya Abe, Isao Naito
  • Patent number: 8685354
    Abstract: The present invention concerns the selective removal of nitrogen oxides (NOx) from gases. In particular, the invention concerns a process, a highly alkali metal resistant heteropoly acid promoted catalyst and the use of said catalyst for removal of NOx from exhaust or flue gases, said gases comprising alkali or earth alkali metals. Such gases comprise for example flue gases arising from the burning of biomass, combined biomass and fossil fuel, and from waste incineration units. The process comprises the selective catalytic reduction (SCR) of NOx, such as nitrogen dioxide (NO2) and nitrogen oxide (NO) with ammonia (NH3) or a nitrogen containing compound selected from ammonium salts, urea or a urea derivative or a solution thereof as reductant.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: April 1, 2014
    Assignee: Danmarks Tekniske Universitet
    Inventors: Siva Sankar Reddy Putluru, Anders Riisager, Rasmus Fehrmann
  • Publication number: 20140083904
    Abstract: A process for preparing a cobalt-containing hydrocarbon synthesis catalyst precursor includes calcining a loaded catalyst support comprising a catalyst support supporting a cobalt compound. The calcination includes heating the loaded catalyst support over a heating temperature range of 90° C. to 220° C. using (i) one or more high heating rate periods during the heating over the heating temperature range wherein heating of the loaded catalyst support takes place at a heating rate of at least 10° C./minute, and wherein a gas velocity of at least 5 m3n/kg cobalt compound/hour is effected over the loaded catalyst support, and (ii) one or more low heating rate periods during the heating over the heating temperature range wherein heating of the loaded catalyst support takes place at a heating rate of less than 6° C./minute. The cobalt compound is thereby calcined, with a cobalt-containing hydrocarbon synthesis catalyst precursor being produced.
    Type: Application
    Filed: April 25, 2012
    Publication date: March 27, 2014
    Applicant: SASOL TECHNOLOGY (PROPRIETARY) LIMITED
    Inventors: Sean Barradas, Cornelia Carolina Eloff, Jacobus Lucas Visagie
  • Publication number: 20140087937
    Abstract: A catalytic article for decomposition of a volatile organic compound includes a porous support body, a plurality of active centers formed on the support body and adapted for catalytic decomposition of the volatile organic compound, and a plurality of capture centers bound to the support body. Each of the active centers is composed of one of a noble metal, a transition metal oxide, and the combination thereof. Each of the capture centers includes at least one functional group that is adapted for attracting or binding the volatile organic compound. A method for preparing the catalytic article is also disclosed.
    Type: Application
    Filed: September 25, 2013
    Publication date: March 27, 2014
    Applicant: National Yunlin University of Science & Technology
    Inventors: Bo-Tau Liu, Cheng-Hsien Hsieh, De-Hua Wang
  • Publication number: 20140088206
    Abstract: The invention relates to improvements in the design of Fischer-Tropsch catalysts comprising a support and cobalt on the support. A first aspect is the modification of the silica support with at least 11 wt % titania to prevent the formation of cobalt silicates, thereby limiting the deactivation resulting from the silicate formation. A second aspect is the provision of C03O4 particles highly dispersed on the catalyst support with an average particle diameter of the cobalt oxide particle of less than 12 nm in order to improve catalytic activity and selectivity.
    Type: Application
    Filed: February 7, 2012
    Publication date: March 27, 2014
    Applicant: OXFORD CATALYSTS LIMITED
    Inventors: Frank Daly, Laura Richard, Sreekala Rugmini
  • Patent number: 8680004
    Abstract: Provided is an exhaust gas-purifying catalyst excelling in an exhaust gas-purifying performance. The exhaust gas-purifying catalyst contains a substrate, and a catalyst layer formed on the substrate and containing a precious metal and praseodymium.
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: March 25, 2014
    Assignee: Cataler Corporation
    Inventors: Ichiro Kitamura, Akimasa Hirai, Kenichi Taki
  • Patent number: 8679433
    Abstract: Disclosed are, inter alia, methods of forming coated substrates for use in catalytic converters, as well as washcoat compositions and methods suitable for using in preparation of the coated substrates, and the coated substrates formed thereby. The catalytic material is prepared by a plasma-based method, yielding catalytic material with a lower tendency to migrate on support at high temperatures, and thus less prone to catalyst aging after prolonged use. Also disclosed are catalytic converters using the coated substrates, which have favorable properties as compared to catalytic converters using catalysts deposited on substrates using solution chemistry. Also disclosed are exhaust treatment systems, and vehicles, such as diesel vehicles, particularly light-duty diesel vehicles, using catalytic converters and exhaust treatment systems using the coated substrates.
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: March 25, 2014
    Assignee: SDCmaterials, Inc.
    Inventors: Qinghua Yin, Xiwang Qi, Maximilian A. Biberger, Jayashir Sarkar
  • Publication number: 20140080929
    Abstract: A process for preparing a cobalt-containing hydrocarbon synthesis catalyst precursor includes calcining a loaded catalyst support comprising a catalyst support supporting a cobalt compound. The calcination includes subjecting the loaded catalyst support to heat treatment by heating the loaded catalyst support to a temperature, T, of at least 220° C. at a heating rate below 10° C./minute, and effecting gas flow at a space velocity of at least 9 m3n/kg cobalt compound/hour over the loaded catalyst support during at least part of the heating. The cobalt-containing hydrocarbon synthesis catalyst precursor is thereby produced.
    Type: Application
    Filed: April 25, 2012
    Publication date: March 20, 2014
    Applicant: SASOL TECHNOLOGY (PROPRIETARY) LIMITED
    Inventors: Cornelia Carolina Eloff, Jan Van De Loosdrecht, Jacobus Lucas Visagie, Hendrik Van Rensburg
  • Patent number: 8668891
    Abstract: An exhaust system 10 for a vehicular lean-burn internal combustion engine comprises: (a) a first substrate monolith 6 comprising a SCR catalyst; (b) at least one second substrate monolith 4 comprising a catalytic washcoat coating comprising at least one platinum group metal (PGM) disposed upstream of the first substrate monolith; and (c) a third substrate monolith 2 disposed between the first substrate monolith and the or each second substrate monolith, wherein at least one PGM on the or each second substrate monolith 4 is liable to volatilise when the or each second substrate monolith 4 is exposed to relatively extreme conditions including relatively high temperatures, and wherein the third substrate monolith 2 comprises a washcoat coating comprising at least one metal oxide for trapping volatilised PGM.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: March 11, 2014
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Philip Gerald Blakeman, Sougato Chatterjee, Andrew Francis Chiffey, Jane Gast, Paul Richard Phillips, Raj Rao Rajaram, Andrew Peter Walker
  • Patent number: 8667785
    Abstract: A catalysed substrate monolith 12 for use in treating exhaust gas emitted from a lean-burn internal combustion engine, which catalysed substrate monolith 12 comprising a first washcoat coating 16 and a second washcoat coating 18, wherein the first washcoat coating comprises a catalyst composition comprising at least one platinum group metal (PGM) and at least one support material for the at least one PGM, wherein at least one PGM in the first washcoat coating is liable to volatilize when the first washcoat coating is exposed to relatively extreme conditions including relatively high temperatures, wherein the second washcoat coating comprises at least one metal oxide for trapping volatilized PGM and wherein the second washcoat coating is oriented to contact exhaust gas that has contacted the first washcoat coating.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: March 11, 2014
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Philip Gerald Blakeman, Gavin Michael Brown, Sougato Chatterjee, Andrew Francis Chiffey, Jane Gast, Paul Richard Phillips, Raj Rao Rajaram, Glen Spreitzer, Andrew Peter Walker
  • Patent number: 8669400
    Abstract: A process for the selective production of ethanol by vapor phase reaction of acetic acid over a hydrogenating catalyst composition to form ethanol is disclosed and claimed. In an embodiment of this invention reaction of acetic acid and hydrogen over a platinum and tin supported on silica, graphite, calcium silicate or silica-alumina selectively produces ethanol in a vapor phase at a temperature of about 250° C.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: March 11, 2014
    Assignee: Celanese International Corporation
    Inventors: Victor J. Johnston, Laiyuan Chen, Barbara F. Kimmich, Josefina T. Chapman, James H. Zink
  • Patent number: 8668894
    Abstract: The present invention relates to a method for processing a sulfur-containing gas and a hydrogenation catalyst used therefor. The method comprises introducing the sulfur-containing gas into the tail gas hydrogenation unit of a sulfur recovery device, processing it with the hydrogenation catalyst of the present invention, and absorbing the hydrogenated tail gas with a solvent. The hydrogenation catalyst comprises from 0.5 to 3 wt. % of an active component nickel oxide, from 1 to 4 wt. % of an active component cobalt oxide, from 8 to 20 wt. % of an active component molybdenum oxide or tungsten oxide, from 1 to 5 wt. % of a deoxidation auxiliary agent, from 10 to 40 wt. % of TiO2, the balance being ?-Al2O3, based on the weight of the catalyst.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: March 11, 2014
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Aihua Liu, Yiling Zhang, Xingzhong Xu, Jianli Liu, Weidong Tao, Jinshan Xu
  • Patent number: 8658559
    Abstract: A metal oxide-supported nickel catalyst includes a matrix containing a metal oxide and catalytic sites distributed throughout the matrix and having an intricate interface with the matrix, in which the catalytic sites are selected from the group consisting of nano-nickel(0) domains and nano-nickel(0)-A(0) alloy domains. Also disclosed are a method for preparing this catalyst and a method for using it to produce carbon monoxide and hydrogen by partial oxidation of a C1-C5 hydrocarbon.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: February 25, 2014
    Assignee: National University of Singapore
    Inventors: Liang Hong, Xiong Yin
  • Patent number: 8658554
    Abstract: A catalyst support which may be used to support various catalysts for use in reactions for hydrogenation of carbon dioxide including a catalyst support material and an active material capable of catalyzing a reverse water-gas shift (RWGS) reaction associated with the catalyst support material. A catalyst for hydrogenation of carbon dioxide may be supported on the catalyst support. A method for making a catalyst for use in hydrogenation of carbon dioxide including application of an active material capable of catalyzing a reverse water-gas shift (RWGS) reaction to a catalyst support material, the coated catalyst support material is optionally calcined, and a catalyst for the hydrogenation of carbon dioxide is deposited on the coated catalyst support material. A process for hydrogenation of carbon dioxide and for making syngas comprising a hydrocarbon, esp. methane, reforming step and a RWGS step which employs the catalyst composition of the present invention and products thereof.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: February 25, 2014
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Robert W. Dorner, Heather D. Willauer, Dennis R Hardy
  • Patent number: 8652993
    Abstract: A supported oxidation catalyst includes a support having a metal oxide or metal salt, and mixed metal particles thereon. The mixed metal particles include first particles including a palladium compound, and second particles including a precious metal group (PMG) metal or PMG metal compound, wherein the PMG metal is not palladium. The oxidation catalyst may also be used as a gas sensor.
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: February 18, 2014
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventor: Nahid Mohajeri
  • Patent number: 8652994
    Abstract: A process for preparing supported noble metal catalyst in situ is provided by mixing and crystallizing hexamethylenetetramine, soluble divalent metal salts solution, Al2O3 carriers and soluble noble metal salts solution wherein the hexamethylenetetramine is used as a precipitating agent for preparing hydrotalcite and a reducing agent of noble metal precursor. During the growth process of hydrotalcite, Al3+ on the Al2O3 carrier's surface is directly used as the trivalent metal ions in the laminate structure and the hydrotalcite is obtained on the surface of the Al2O3 carriers by in-situ growth. A supported catalyst Me-LDHs-Al2O3 containing an elementary noble metal is produced wherein the noble metal element particle in the catalyst has a particle size of 10 to 60 nm, and is evenly and stably dispersed on or between slabs of the hydrotalcite.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: February 18, 2014
    Assignee: Beijing University of Chemical Technology
    Inventors: Dianqing Li, Junting Feng, Xiaoyan Ma
  • Patent number: 8652992
    Abstract: A nanoparticle comprises a nano-active material and a nano-support. In some embodiments, the nano-active material is platinum and the nano-support is alumina. Pinning and affixing the nano-active material to the nano-support is achieved by using a high temperature condensation technology. In some embodiments, the high temperature condensation technology is plasma. Typically, a quantity of platinum and a quantity of alumina are loaded into a plasma gun. When the nano-active material bonds with the nano-support, an interface between the nano-active material and the nano-support forms. The interface is a platinum alumina metallic compound, which dramatically changes an ability for the nano-active material to move around on the surface of the nano-support, providing a better bond than that of a wet catalyst. Alternatively, a quantity of carbon is also loaded into the plasma gun.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: February 18, 2014
    Assignee: SDCmaterials, Inc.
    Inventors: Qinghua Yin, Xiwang Qi, Eliseo Ruiz
  • Patent number: 8652429
    Abstract: The invention provides an exhaust gas cleaning oxidation catalyst and in particular to an oxidation catalyst for cleaning the exhaust gas discharged from internal combustion engines of compression ignition type (particularly diesel engines). The invention further relates to a catalysed substrate monolith comprising an oxidizing catalyst on a substrate monolith for use in treating exhaust gas emitted from a lean-burn internal combustion engine. In particular, the invention relates to a catalysed substrate monolith comprising a first washcoat coating and a second washcoat coating, wherein the second washcoat coating is disposed in a layer above the first washcoat coating.
    Type: Grant
    Filed: October 5, 2012
    Date of Patent: February 18, 2014
    Assignees: Johnson Matthey Public Limited Company, Johnson Matthey Japan Godo Kaisha
    Inventors: Satoshi Sumiya, Lifeng Wang, Hanako Oyamada, Philip Gerald Blakeman, Michael Gavin Brown, Sougato Chatterjee, Andrew Francis Chiffey, Jane Gast, Paul Richard Phillips, Raj Rao Rajaram, Andrew Peter Walker
  • Patent number: 8648006
    Abstract: Novel methods of electroless plating are described. Catalyst coatings can be applied within microchannel apparatus. Various reactions, including combustion and steam reforming, can be conducted over electroless catalyst coatings.
    Type: Grant
    Filed: October 13, 2006
    Date of Patent: February 11, 2014
    Assignee: Velocys, Inc.
    Inventors: Francis P. Daly, Richard Long, Junko Ida, Rachid Taha, Terry Mazanec, Barry L. Yang