Of Group Viii (i.e., Iron Or Platinum Group) Patents (Class 502/325)
  • Patent number: 8647431
    Abstract: A catalyst composition for pozzolan compositions, includes: a) one or more chlorides, selected from the group consisting of: sodium chloride, potassium chloride, magnesium chloride, calcium chloride, strontium chloride, barium chloride and/or ammonium chloride, preferably ammonium chloride; b) aluminum chloride, and c) one or more metal oxides, preferably selected from the group consisting of: oxides from metals from Group II of the Periodic Table, oxides from metals from Group VIII B of the Periodic Table (e.g. iron oxide), more preferably oxides from metals from Group II of the Periodic Table, even more preferably magnesium oxide or calcium oxide, most preferably magnesium oxide. The use of the catalytic composition for addition to cement for oil well cementing, and for lowering the pH of cement, a method for obtaining a composition for reinforcing cement, a binder composition and a construction composition are also described.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: February 11, 2014
    Assignee: MEGA-TECH Holding B.V.
    Inventor: Robin De La Roij
  • Publication number: 20140038816
    Abstract: Disclosed are methods for producing carbon, metal and/or metal oxide porous materials that have precisely controlled structures on the nanometer and micrometer scales. The methods involve the single or repeated infiltration of porous templates with metal salts at controlled temperatures, the controlled drying and decomposition of the metal salts under reducing conditions, and optionally the removal of the template. The carbon porous materials are involve the infiltration of a carbon precursor into a porous template, followed by polymerization and pyrolysis. These porous materials have utility in separations, catalysis, among others.
    Type: Application
    Filed: October 4, 2013
    Publication date: February 6, 2014
    Applicant: Board of Trustees of the University of Alabama
    Inventors: Martin Bakker, Franchessa Maddox Sayler, Amy Grano, Jan-Henrik Smått
  • Patent number: 8641993
    Abstract: A NOx absorber catalyst comprising an extruded solid body comprises either: (A) 10-95% by weight of at least one binder/matrix component; and 5-90% by weight of a zeolitic molecular sieve, a non-zeolitic molecular sieve or a mixture of any two or more thereof, which catalyst comprising at least one metal comprising (a) at least one precious metal; and (b) at least one alkali metal or at least one alkaline earth metal, wherein (a) and (b) are carried in one or more coating layer(s) on a surface of the extruded solid body; or (B) 10-95% by weight of at least one binder/matrix component; and 5-80% by weight optionally stabilized ceria, which catalyst comprising at least one metal comprising (a) at least one precious metal; and (b) at least one alkali metal or at least one alkaline earth metal.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: February 4, 2014
    Assignee: Johnson Matthey Public Limited Co.
    Inventors: Ralf Dotzel, Rainer Leppelt, Elizabeth Hazel Mountstevens, Jörg Werner Münch, Paul Richard Phillips, Hubert Schedel, Daniel Swallow
  • Publication number: 20140031546
    Abstract: A hydrodeoxygenation catalyst comprises a metal catalyst, an acid promoter, and a support. The metal catalyst is selected from platinum, palladium, ruthenium, rhenium rhodium, osmium, iridium, nickel, cobalt, molybdenum, copper, tin, or mixtures thereof. The support is a promoted-zirconium material including texture promoters and acid promoters. The hydrodeoxygenation catalyst may be used for hydrodeoxygenation (HDO) of sugar or sugar alcohol in an aqueous solution. In one embodiment the HDO catalyst may be used for HDO of fatty acids such as fatty acid methyl esters (FAME), triglycerols (in plant oil and animal fat), pyrolysis oil, or lignin. The hydrodeoxygenation catalyst for fatty acid process does not require the use of an acid promoter, it is optional.
    Type: Application
    Filed: July 25, 2012
    Publication date: January 30, 2014
    Inventors: Wenqin Shen, Alguo Liu, Wayne Turbeville
  • Patent number: 8637422
    Abstract: A method for supporting a catalytic metal on the surface of a carrier by bringing an aqueous catalytic metal salt solution into contact a porous carrier. The method includes the steps of: impregnating the carrier with a liquid hydrophobic organic compound before bringing the aqueous catalytic metal salt solution into contact with the carrier, and drying the impregnated carrier to volatilize the hydrophobic organic compound on the surface of the carrier, followed by bringing the carrier into contact with the aqueous catalytic metal salt solution; and then bringing a reducing agent into contact with the catalytic metal salt on the surface of the carrier to reduce the catalytic metal salt to undergo insolubilization treatment. The catalytic component is supported in a region from the surface of the carrier to a depth of 50 ?m or more and 500 ?m or less.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: January 28, 2014
    Assignee: Tanaka Kikinzoku Kogyo K.K.
    Inventors: Hitoshi Kubo, Yuusuke Ohshima, Tomoko Ishikawa, Junichi Taniuchi
  • Patent number: 8637424
    Abstract: Exemplary embodiments of the present invention relate to the processing of hydrocarbon-containing feedstreams in the presence of an interstitial metal hydride comprising a surface, with a metal oxide integrally synthesized and providing a coating on the surface of the interstitial metal hydride. The catalysts and processes of the present invention can improve overall hydrogenation, product conversion, as well as sulfur and nitrogen reduction in hydrocarbon feedstreams.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: January 28, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventor: Heather A. Elsen
  • Patent number: 8633131
    Abstract: A mesoporous oxide-catalyst complex including: a mesoporous metal oxide; and a catalyst metal supported on the mesoporous metal oxide, wherein the catalyst on the mesoporous metal oxide has a degree of dispersion of about 30 to about 90 percent.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: January 21, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Doo-hwan Lee, Hyun-chul Lee, Sang-min Ji, Kyo-sung Park, Seung-jae Lee, Seon-ah Jin
  • Patent number: 8628742
    Abstract: A method of using a hybrid oxidation catalyst system for remediating a lean emission from a vehicle includes the step of oxidizing the hydrocarbons and carbon monoxide in an engine emission comprising hydrocarbons, carbon monoxide, NOx including NO and NO2, and oxygen with a first catalyst. The first catalyst includes noble metal particles supported in a first ceramic layer. The method further includes oxidizing the NO with a second catalyst having base metal oxide particles supported in a second ceramic layer to form NO2. The first catalyst is disposed upstream of the second catalyst and the system is capable of converting at least 10% of the amount of NO to NO2 at a temperature ranging from 75° C. to 225° C.
    Type: Grant
    Filed: November 1, 2012
    Date of Patent: January 14, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Andrew Robert Drews, Robert J. Kudla
  • Patent number: 8624075
    Abstract: Process for isomerizing linear alpha-olefins having from 10 to 25 carbon atoms over a heterogeneous catalyst.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: January 7, 2014
    Assignee: BASF SE
    Inventors: Lucia Königsmann, Ekkehard Schwab, Thilo Hahn, Germain Kons
  • Patent number: 8623491
    Abstract: A nanostructure includes a plurality of metal nanoblades positioned with one edge on a substrate. Each of the plurality of metal nanoblades has a large surface area to mass ratio and a width smaller than a length. A method of storing hydrogen includes coating a plurality of magnesium nanoblades with a hydrogen storage catalyst and storing hydrogen by chemically forming magnesium hydride with the plurality of magnesium nanoblades.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: January 7, 2014
    Assignee: Rensselaer Polytechnic Institute
    Inventors: Toh-Ming Lu, Gwo-Ching Wang, Fu Tang, Thomas Parker
  • Publication number: 20140001407
    Abstract: The invention relates to a catalytic high-pressure process for the CO2 reforming of hydrocarbons, preferably methane, in the presence of iridium-comprising active compositions and also a preferred active composition in which Ir is present in finely dispersed form on zirconium dioxide-comprising support material. The predominant proportion of the zirconium dioxide preferably has a cubic and/or tetragonal structure and the zirconium dioxide is more preferably stabilized by means of at least one doping element. In the process of the invention, reforming gas is brought into contact at a pressure of greater than 5 bar, preferably greater than 10 bar and more preferably greater than 20 bar, and a temperature which is in the range from 600 to 1200° C., preferably in the range from 850 to 1100° C. and in particular in the range from 850 to 950° C., and converted into synthesis gas.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 2, 2014
    Inventors: Andrian MILANOV, Ekkehard Schwab, Stephan Schunk, Guido Wasserschaff
  • Publication number: 20140005042
    Abstract: A method is described for preparing a catalyst suitable for use in a steam reforming process, including the steps of: (i) spraying a slurry containing a particulate catalyst compound, including one or more catalytic metals selected from the group consisting of Ni, Cu, Pt, Pd, Rh, Ru and Au, on to the surface of a shaped support in a pan coater to form a coated shaped support material having the catalytic metal in a surface layer, (ii) drying and optionally calcining the coated shaped support material to form a catalyst precursor, and (iii) optionally reducing the metal or metals in the catalyst precursor to a lower oxidation state to form the catalyst. The egg-shell catalyst is useful for performing a steam reforming reaction.
    Type: Application
    Filed: February 6, 2012
    Publication date: January 2, 2014
    Applicant: JOHNSON MATTHEY PUBLIC LIMITED COMPANY
    Inventor: Mark Robert Feaviour
  • Patent number: 8618017
    Abstract: A catalyst for hydrotreating and/or hydroconverting heavy metal-containing hydrocarbon feeds, comprises a support in the form of mainly irregular and non-spherical alumina-based agglomerates the specific shape. The catalyst is prepared by a specific order of steps: crushing, calcining, acidic autoclaving, drying, further calcining and impregnation with catalytic metals.
    Type: Grant
    Filed: May 3, 2012
    Date of Patent: December 31, 2013
    Assignee: IFP Energies Nouvelles
    Inventors: Stephane Kressmann, Magalie Roy-Auberger, Jean Luc Le Loarer, Denis Guillaume, Jean Francois Chapat
  • Patent number: 8617496
    Abstract: Provided are exhaust systems and components suitable for use in conjunction with gasoline engines to treat gaseous emissions such as hydrocarbons, nitrogen oxides, and carbon monoxides. Layered three-way conversion (TWC) catalysts comprise an outer layer whose rhodium is supported by an oxygen storage component, such as a ceria-zirconia composite, and the outer layer is substantially free from alumina as a support. The rhodium-containing layer can be free of all other precious metals, such as platinum and palladium. A lower palladium layer is provided where the palladium is supported by a refractory metal oxide. The lower palladium layer can be free of rhodium and platinum and can contain an oxygen storage component that is the same or different from that in the rhodium-containing layer. Methods of making and using these catalysts are also provided.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: December 31, 2013
    Assignee: BASF Corporation
    Inventors: Junmei Wei, Attilio Siani, Mirko Arnold, Stefan Kotrel, Stephan Siemund, Knut Wassermann
  • Patent number: 8614161
    Abstract: A CO2 reforming catalyst composition includes a hydroxyl group-containing porous oxide, and a composite porous catalyst supported by a porous supporter. The composite porous catalyst includes a catalyst metal.
    Type: Grant
    Filed: May 16, 2011
    Date of Patent: December 24, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seung Jae Lee, InHyuk Son, Chan Ho Pak, Hyun Chul Lee, Jeong Kuk Shon, Young Gil Jo
  • Patent number: 8613900
    Abstract: The present invention provides for a composition comprising a nanostructured transition metal oxide capable of oxidizing two H2O molecules to obtain four protons. In some embodiments of the invention, the composition further comprises a porous matrix wherein the nanocluster of the transition metal oxide is embedded on and/or in the porous matrix.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: December 24, 2013
    Assignee: The Regents of the University of California
    Inventors: Heinz M. Frei, Feng Jiao
  • Patent number: 8614158
    Abstract: Processes for activating and/or regenerating Fischer-Tropsch and/or oxygenate synthesis catalysts include the transportation of a modular, portable catalyst activation and/or regeneration unit to Fischer-Tropsch and/or oxygenate production units. An alternative process for activating and/or regenerating Fischer-Tropsch and/or oxygenate synthesis catalysts includes activating and/or regenerating the catalyst in a production unit at a catalyst treatment facility. An alternative process for activating and/or regenerating Fischer-Tropsch and/or oxygenate synthesis catalysts includes activating and/or regenerating the catalyst in a synthesis reactor at a catalyst treatment facility.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: December 24, 2013
    Assignee: Schlumberger Technology Corporation
    Inventor: Stephen C. Leviness
  • Patent number: 8609577
    Abstract: A catalyst for steam reforming of methanol, which includes a carrier material comprising a metal oxide and deposited thereon a) indium oxide (In2O3) and at least one further metal from the group of palladium (Pd), platinum (Pt), rhodium (Rh) and iridium (Ir) and/or b) an alloy comprising indium and at least one further metal from the group of palladium (Pd), platinum (Pt), rhodium (Rh) and iridium (Ir), as catalytically active substances.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: December 17, 2013
    Assignee: Institut fuer Mikrotechnik Mainz GmbH
    Inventors: Yong Men, Ralf Zapf
  • Publication number: 20130331257
    Abstract: The invention relates to a method for producing micro-nano combined active systems in which nanoparticles of a first component are bonded to microparticles of a second component, comprising the following steps: (a) producing a low-ligand colloidal suspension containing nanoparticles of the first component, (b) adding microparticles to the colloidal suspension containing the nanoparticles or adding the colloidal suspension containing the nanoparticles to a dispersion containing the microparticles and intensively mixing so that the nanoparticles adsorb onto the microparticles, (c) separating the microparticles and the nanoparticles bonded thereto from the liquid and drying the microparticles and the nanoparticles bonded thereto.
    Type: Application
    Filed: December 16, 2011
    Publication date: December 12, 2013
    Applicant: LASER ZENTRUM HANNOVER E.V.
    Inventors: Stephan Barcikowski, Philipp Wagener, Andreas Schwenke
  • Patent number: 8603940
    Abstract: An automobile exhaust gas catalytic converter includes a first catalyst layer; a second catalyst layer located on a downstream side as compared to the first catalyst layer; and a base material on which the first catalyst layer and the second catalyst layer are respectively located. In the exhaust gas catalytic converter, the proportion (LB/LS) of a coating length (LB) of the second catalyst layer from a downstream end of the base material with respect to a total length (LS) of the base material in the exhaust gas flow direction is approximately 50 to 90%, the proportion of an amount of Rh contained in the second catalyst layer with respect to a total amount of Rh contained in the first catalyst layer and the second catalyst layer is approximately 50 to 90% by mass, and the rest of Rh is contained together with Pd or Pt in the first catalyst layer.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: December 10, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Yoshihide Segawa
  • Publication number: 20130324623
    Abstract: The present invention concerns a process for the preparation of a catalyst comprising an active phase comprising at least one metal from group VIII selected from cobalt, nickel, ruthenium and iron, alone or as a mixture, and an oxide support which can be used in a Fischer-Tropsch synthesis process comprises at least once the linked sequence of a stage for impregnation of said oxide support, a drying stage in which said impregnated oxide support is entrained by means of a gas, said impregnated oxide support being subjected in said stage to a temperature rise ramp of between 250 and 600° C./min, the residence time of said impregnated oxide support in said drying stage being between 1 second and 1 minute, and a stage for calcination of said dried impregnated oxide support. The invention also concerns a Fischer-Tropsch synthesis process using the catalyst prepared according to the preparation process.
    Type: Application
    Filed: May 28, 2013
    Publication date: December 5, 2013
    Inventors: Sylvie MAURY, Fabrice DIEHL, Adrien BERLIET, Joseph LOPEZ
  • Publication number: 20130324624
    Abstract: Preparation of a catalyst comprising at least one metal from group VIII said process comprising stabilization of an oxide support, by impregnation of said oxide support, rapid drying, calcination of impregnated and dried oxide support, stabilization stage being followed at least once by impregnation of stabilized oxide support, drying of stabilized and impregnated oxide support operating in a fluidized bed in the presence of a gas, said support being subjected to a temperature rise ramp of between 0.5 and 5° C./min to attain a temperature of between 50 and 170° C., the residence time of said support once the drying temperature is reached being between 20 and 180 min, and calcination of said dried impregnated stabilized oxide support.
    Type: Application
    Filed: May 30, 2013
    Publication date: December 5, 2013
    Applicant: IFP Energies nouvelles
    Inventors: Sylvie MAURY, Fabrice DIEHL, Adrien BERLIET, Joseph LOPEZ
  • Publication number: 20130303364
    Abstract: Disclosed is a catalyst for converting nitrogen oxide into ammonia, which is capable of converting nitrogen oxide into ammonia under fuel lean exhaust gas conditions of more than theoretical air-fuel ratio (A/F=14.7), and a method for manufacturing the same. The catalyst according to the present invention comprises a metal oxide support impregnated with a precious metal, such that conversion of nitrogen oxide into ammonia under fuel lean exhaust gas conditions of more than theoretical air-fuel ratio (A/F=14.7) is possible.
    Type: Application
    Filed: August 23, 2012
    Publication date: November 14, 2013
    Applicants: POSTECH ACADEMY-INDUSTRY FOUNDATION, HYUNDAI MOTOR COMPANY
    Inventors: Jin Woo Choung, In-Sik Nam, Dal Young Yoon, Iljeong Heo
  • Patent number: 8580216
    Abstract: A catalyst system and a method for reducing nitrogen oxides in an exhaust gas by reduction with a hydrocarbon or oxygen-containing organic compound reducing agent are provided. The catalyst system contains a silver catalyst and a modifier catalyst, where the modifier catalyst contains a modifier oxide, where the modifier oxide is selected from the group consisting of iron oxide, cerium oxide, copper oxide, manganese oxide, chromium oxide, a lanthanide oxide, an actinide oxide, molybdenum oxide, tin oxide, indium oxide, rhenium oxide, tantalum oxide, osmium oxide, barium oxide, calcium oxide, strontium oxide, potassium oxide, vanadium oxide, nickel oxide, tungsten oxide, and mixtures thereof. The modifier oxide is supported on an inorganic oxide support or supports, where at least one of the inorganic oxide supports is an acidic support. The catalyst system of the silver catalyst and the modifier catalyst provides higher NOx conversion than either the silver catalyst or the modifier catalyst alone.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: November 12, 2013
    Assignees: ECS Holdings, Inc., Catalytic Solutions, Inc.
    Inventors: Rajashekharam V. Malyala, Stephen J. Golden
  • Patent number: 8574520
    Abstract: Described is a metal oxide support material containing nanoscaled iron-platinum group metal particles having a particle size in the range of 0.5 to 10 nm. At least 70% of the nanoscaled iron-platinum group metal particles are located on an outside surface layer of the metal oxide support material. The outside surface layer has an average volume of less than 50% based on the total volume of the metal oxide support material. Additionally, described is a process for preparation of metal oxide support materials containing nanoscaled iron-platinum group metal particles. Furthermore, described is the use of metal oxides containing nanoscaled iron-platinum group metal particles as catalysts, for example as a diesel oxidation catalyst for the treatment of exhaust gas emissions from a diesel engine.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: November 5, 2013
    Assignee: BASF SE Ludwigshafen
    Inventors: Tobias Joachim Koplin, Imme Domke, Christopher R. Castellano, Gerald Stephen Koermer, Wolfgang Schrof, Robert Feuerhake, Gunnar Schornick, Anna Cristadoro, Daniel Schönfelder, Hartmut Hibst, Mattijs Gregor Jurriaan Ten Cate
  • Publication number: 20130287660
    Abstract: Disclosed herein is a layered three-way catalytic system being separated in a front and a rear portion having the capability of simultaneously catalyzing the oxidation of hydrocarbons and carbon monoxide and the reduction of nitrogen oxides. Provided is a catalyst composite comprising a single front catalytic layer and two rear catalytic layers in conjunction with a substrate, where the single font layer and the rear bottom layer comprise a Pd component, the rear top layer comprises a Rh component, and the rear bottom layer is substantially free of an oxygen storage component (OSC).
    Type: Application
    Filed: November 21, 2011
    Publication date: October 31, 2013
    Applicant: UMICORE AG & CO. KG
    Inventors: John G. Nunan, Raoul Klingmann, Ryan J. Andersen, Davion Onuga Clark, David Henry Moser
  • Publication number: 20130284980
    Abstract: Catalyst comprising: a) a catalytic ceramic support comprising an arrangement of crystallites of the same size, same isodiametric morphology and same chemical composition or substantially of the same size, same isodiametric morphology and same chemical composition in which each crystallite is in point contact or virtually point contact with crystallites that surround it, and b) at least one active phase comprising metallic particles mechanically anchored into said catalytic support so that the coalescence and the mobility of each particle are limited to a volume corresponding to that of a crystallite of said catalytic ceramic support.
    Type: Application
    Filed: December 14, 2011
    Publication date: October 31, 2013
    Applicants: Universite De Limoges, L'Air Liquide Societe Anonyme Pour L'Etude Et L'Exploitation Des Procedes Georges Claude
    Inventors: Pascal Del-Gallo, Fabrice Rossignol, Thierry Chartier, Raphael Faure, Claire Bonhomme, Sébastien Goudalle
  • Patent number: 8569197
    Abstract: For preparing a reforming catalyst comprising a support, a group VIIIB metal and a group VIIB metal, comprises the following steps in the order a) then b) or b) then a): a step a) impregnating the support with an aqueous solution of hydrochloric acid comprising a group VIIIB metal; a step b) impregnating the support with an aqueous solution comprising a group VIIB metal and a sulphur-containing complexing agent in a reducing environment, or a step b) impregnation with an aqueous solution comprising a group VIIB metal, then with a solution comprising a sulphur-containing complexing agent in a reducing environment. The reducing environment is any reducing atmosphere comprising more than 0.1% by weight of a reducing gas or a mixture of reducing gases; or reducing solutions comprising, with respect to the group VIIB metal, in the range 0.1 to 20 equivalents of reducing metals, reducing organic compounds or inorganic reducing compounds.
    Type: Grant
    Filed: November 24, 2008
    Date of Patent: October 29, 2013
    Assignee: IFP Energies Nouvelles
    Inventor: Yohan Oudart
  • Patent number: 8568674
    Abstract: Oxidation catalyst composites for the treatment of exhaust gas emissions, such as the abatement of unburned hydrocarbons (HC), and carbon monoxide (CO) and the oxidation of NO to NO2 are disclosed The catalyst composites comprise two washcoat layers containing two different compositions of platinum group metals to optimize the NO2 exiting the catalyst composite. The key to improvement in NO oxidation is to have one catalyst layer that contains Pt while being substantially free of Pd. Methods and systems utilizing the catalyst composites are also disclosed.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: October 29, 2013
    Assignee: BASF Corporation
    Inventors: Shiang Sung, Stanley A. Roth, Claudia Wendt, Susanne Stiebels, Helke Doering
  • Patent number: 8563463
    Abstract: Methods for the rapid synthesis of catalyst are disclosed herein, as well as catalyst formed from such methods. One method of the rapid synthesis of catalyst comprises first forming a solution that comprises a solvent, a precious metal precursor, a catalyst substrate, a reducing agent and a stabilizer. The solution is homogenized. The precious metal precursor is reduced to nanoparticles of the precious metal and the nanoparticles are deposited onto the catalyst substrate to form catalyst particles. Reducing and depositing comprise increasing a temperature of the solution with microwave irradiation at a controlled rate to a predetermined temperature and holding the solution at the predetermined temperature with microwave irradiation until the reduction and depositing are detected to be complete.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: October 22, 2013
    Assignee: Nissan North America, Inc.
    Inventors: Ellazar V. Niangar, Taehee Han
  • Patent number: 8563460
    Abstract: A catalyst unit is described comprising a cylinder with a length C and a diameter D, wherein said unit has five holes arranged in a pentagonal pattern extending longitudinally therethrough, with five flutes running along the length of the unit, said flutes positioned equidistant adjacent holes of said pentagonal pattern. The catalyst may be used particularly in steam reforming reactors.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: October 22, 2013
    Assignee: Johnson Matthey PLC
    Inventors: David James Birdsall, Mileta Babovic, Mikael Per Uno Carlsson, Samuel Arthur French, Michiel Nijemeisland, William Maurice Sengelow, Edmund Hugh Stitt
  • Patent number: 8562934
    Abstract: A surface of a substrate comprising microcavities leading out of the substrate is placed in contact with an aqueous solution comprising a plurality of suspended particles and a fabric. Perpendicular pressure is applied the expanse of the substrate between the fabric and the surface of the substrate, and relative movement of the fabric and the surface is applied to the expanse of the substrate. At least one particle is thus fed into each microcavity, therein forming a porous material that is a catalyst material for nanothread or nanotube growth.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: October 22, 2013
    Assignees: Commissariat a l'Energie Atomique et aux Energies Alternatives, STMicroelectronics (Crolles 2) SAS
    Inventors: Jean-Christophe Coiffic, Maurice Rivoire
  • Publication number: 20130274093
    Abstract: A method of making iron and cobalt pre-catalysts and catalysts in activated, finished form suitable for use in Fischer-Tropsch synthesis. The pre-catalysts are prepared by mixing an iron or cobalt salt, a base, and a metal oxide textural promoter or support. The reaction is carried out in a solvent deficient environment. The resulting product is then calcined at temperatures of about 300-500° C. to produce a metal oxide. The catalysts are prepared by reducing the metal oxide in the presence of hydrogen at temperatures of about 300-500° C. and carbiding the reduced metal in the case of iron.
    Type: Application
    Filed: March 15, 2013
    Publication date: October 17, 2013
    Inventors: Brian F. Woodfield, Calvin H. Bartholomew, Kyle Brunner, William Hecker, Xuchu Ma, Fen Xu, Lynn Astle
  • Patent number: 8557729
    Abstract: A catalyst unit is described in the form of a cylinder having a length C and diameter D, which has two or more flutes running along its length, wherein said cylinder has domed ends of lengths A and B, such that (A+B+C)/D is in the range 0.50 to 2.00, and (A+B)/C is in the range 0.40 to 5.00. The catalyst may be used particularly in reactions where hydrogen is a reactant such as hydroprocessing, hydrogenation, water-gas shift reactions, methanation, hydrocarbon synthesis by the Fischer-Tropsch reaction, methanol synthesis and ammonia synthesis.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: October 15, 2013
    Assignee: Johnson Matthey PLC
    Inventors: Daniel Lee Cairns, Mileta Babovic, Terence James Fitzpatrick, Elizabeth Margaret Holt, Colin William Park, William Maurice Sengelow, Edmund Hugh Stitt
  • Patent number: 8557728
    Abstract: A catalyst unit is described in the form of a cylinder having a length C and diameter D, which has one or more holes extending therethrough, wherein said cylinder has domed ends of lengths A and B, such that (A+B+C)/D is in the range 0.50 to 2.00, and (A+B)/C is in the range 0.40 to 5.00. The catalyst or catalyst unit preferably has one or more flutes miming along its length. The catalyst may be used particularly in steam reforming reactors.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: October 15, 2013
    Assignee: Johnson Matthey PLC
    Inventors: David James Birdsall, Mileta Babovic, Mikael Per Uno Carlsson, Samuel Arthur French, Michiel Nijemeisland, William Maurice Sengelow, Edmund Hugh Stitt
  • Publication number: 20130264520
    Abstract: The invention relates to a catalyst comprising: a) a catalyst support made of a ceramic, the support comprising an arrangement of crystallites having the same size, the same isodiametric morphology and the same chemical composition or substantially the same size, the same isodiametric morphology and the same chemical composition, in which each crystallite makes point contact or almost point contact with the surrounding crystallites; and b) at least one active phase comprising metallic particles that interact chemically with said catalyst support made of a ceramic and that are mechanically anchored to said catalyst support in such a way that the coalescence and mobility of each particle are limited to a maximum volume corresponding to that of a crystallite of said catalyst support.
    Type: Application
    Filed: December 14, 2011
    Publication date: October 10, 2013
    Applicants: L'Air Liquide Societe Anonyme Pour L'Etide Et L'Exploitation Des Procedes Georges Claude, Centre National De La Recherche Scientifique- France, Universite De Limoges
    Inventors: Pascal Del-Gallo, Fabrice Rossignol, Thierry Chartier, Raphael Faure, Claire Bonhomme, Sebastien Goudalle
  • Publication number: 20130266809
    Abstract: A biotemplated nanomaterial can include a crystalline perovskite.
    Type: Application
    Filed: April 10, 2013
    Publication date: October 10, 2013
    Applicant: Massachusetts Institute of Technology
    Inventors: Nuerxiati Nueraji, Angela M. Belcher
  • Patent number: 8551904
    Abstract: A process for making a ceramic catalyst material includes mixing a catalyst precursor material with a mineral particulate to form a mixture; adding a binder, silicon carbide, and a parting agent to the mixture to form unfired spheroids; and heating the unfired spheroids at a temperature effective to oxidize the silicon carbide and the catalyst precursor material to form the ceramic catalyst material. In another embodiment, the process includes the addition of a catalyst metal oxide salt to an aluminosilicate hydrogel aggregate mixture. Once the mixture sets, the set mixture is heated to a temperature to effective to produce a high surface area ceramic catalyst material.
    Type: Grant
    Filed: March 16, 2011
    Date of Patent: October 8, 2013
    Assignee: Nalco Company
    Inventor: Felice DiMascio
  • Publication number: 20130261349
    Abstract: A catalyst composition comprising tin and optionally a second metal for use in the production of alcohols such as ethanol from carboxylic acids such as acetic acid. An acidic solution such as nitric acid is utilized in the preparation of the catalyst according to one embodiment of the present invention to better solubilize an organometallic tin precursor resulting in the formation of catalysts having particularly high selectivity to ethanol.
    Type: Application
    Filed: March 28, 2012
    Publication date: October 3, 2013
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventors: Heiko Weiner, Zhenhua Zhou
  • Patent number: 8544261
    Abstract: This invention provides an exhaust gas purification catalyst, which can burn PM (particulate matter) at a temperature below the temperature required in the prior art technique and can realize a high PM combustion rate at elevated temperatures, and an exhaust gas purification apparatus using the exhaust gas purification catalyst. The exhaust gas purification catalyst comprises a composite oxide having oxygen release properties and Ag and a noble metal co-supported on the composite oxide. The exhaust gas purification catalyst and an exhaust gas purification apparatus (1) using the exhaust gas purification catalyst can increase the PM combustion rate at elevated temperatures and, at the same time, can burn PM at a temperature below the temperature required in the prior art technique. Further, fuel consumption loss caused by forced regeneration, EM deterioration, and catalyst deterioration can be suppressed, and, thus, the load on automobiles can be reduced.
    Type: Grant
    Filed: August 5, 2008
    Date of Patent: October 1, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventors: Takeshi Mori, Norihiko Suzuki, Yuichi Matsuo, Atsushi Furukawa
  • Patent number: 8545780
    Abstract: A catalyst material including a catalyst carrier including a porous alumina support and a hindrance layer on the alumina support, the hindrance layer comprising one or more of a sulfate, carbonate, hydroxide, or oxide of barium, strontium, or calcium is described. The catalyst carrier further includes a rare earth oxide. The catalyst material can further comprise a platinum group metal. The catalyst material is useful for methods and systems of abating pollutants from automotive exhaust gas.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: October 1, 2013
    Assignee: BASF Corporation
    Inventors: Shau-Lin F. Chen, Gary A. Gramiccioni, Wiley Feng, Eric An, Scott Zhao
  • Publication number: 20130248414
    Abstract: Nanoparticle catalyst compositions and methods for preparation of same are described. The nanoparticle catalysts are platinum-free and are useful in effecting selective ring-opening reactions, for example in upgrading heavy oil. The catalyst may be of monometallic composition, or may comprise an alloyed or core-shell bimetallic composition. The nanoparticles are of controlled size and shape.
    Type: Application
    Filed: January 23, 2013
    Publication date: September 26, 2013
    Applicant: GOVERNORS OF THE UNIVERSITY OF ALBERTA
    Inventor: GOVERNORS OF THE UNIVERSITY OF ALBERTA
  • Publication number: 20130245336
    Abstract: The present invention relates to processes for producing ethanol using a catalyst comprising rhodium and tin on a support. The rhodium and tin may be present in a molar ratio of 20:80 to 80:20.
    Type: Application
    Filed: March 14, 2012
    Publication date: September 19, 2013
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventors: Zhenhua Zhou, Victor J. Johnston, Heiko Weiner
  • Publication number: 20130239556
    Abstract: A method for producing an exhaust gas purifying catalyst according to the present invention includes step (a) of preparing a metal oxide support containing zirconium; step (b) of preparing a solution containing rhodium; and step (c) of adding the metal oxide support prepared in the step (a), and ammonium carbonate, ammonium hydrogencarbonate or ammonia water, to the solution prepared in the step (b) to obtain the solution having a pH adjusted to a range of 3.0 or higher and 7.5 or lower. The present invention provides a method capable of producing an exhaust gas purifying catalyst including a metal oxide support containing zirconium and rhodium of a minute particle size which is supported on the metal oxide support at a high degree of dispersion.
    Type: Application
    Filed: November 25, 2011
    Publication date: September 19, 2013
    Applicant: YAMAHA HATSUDOKI KABUSHIKI KAISHA
    Inventors: Yutaka Itou, Naohiro Morozumi
  • Publication number: 20130245332
    Abstract: The present invention relates to a process for the formation of an alcohol from an alkanoic acid, the steps of the process comprising: contacting a feed stream containing the alkanoic acid and hydrogen at an elevated temperature with a hydrogenating catalyst comprising from 3 to 25 wt. % of active metals comprising tin and cobalt and a metal promoter selected from the group consisting of noble metals or first metal, the first metal selected from the group of barium, cesium and potassium.
    Type: Application
    Filed: March 13, 2012
    Publication date: September 19, 2013
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventors: Heiko Weiner, Zhenhua Zhou, Radmila Jevtic, Victor J. Johnston
  • Patent number: 8536085
    Abstract: A method is provided for preparing a supported cobalt-containing catalyst having substantially homogeneously dispersed, small cobalt crystallites. The method comprises depositing cobalt nitrate on a support and then subjecting the support to a two-step decomposition protocol. In the first step, the support is heated in an oxygen-containing, substantially water-free atmosphere to about 160° C. to form an intermediate decomposition product. This intermediate product is then or hydrolyzed and reduced, or hydrolyzed, calcined and reduced.
    Type: Grant
    Filed: October 24, 2011
    Date of Patent: September 17, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Stuart L. Soled, Joseph E. Baumgartner, Christine E. Kliewer, El-Mekki El-Malki, Patricia A. Bielenberg
  • Patent number: 8536082
    Abstract: The invention relates to a method of preparing a dehydrogenation catalyst comprising a group VIII metal, a group IVA metal and a refractory oxide support. The method comprises stages of preparing the dry impregnation aqueous solution containing said group VIII metal, ammonia, either in solution or in gas form, and a complexing agent. It then comprises stages of aging the aqueous solution, of dry impregnation of the support, of maturing the impregnated support, of drying the impregnated support and of calcining the dried support.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: September 17, 2013
    Assignee: IFP Energies Nouvelles
    Inventors: Alexandre Chambard, Yohan Oudart
  • Publication number: 20130237729
    Abstract: A composition comprising an extruded inorganic support comprising an oxide of a metal or metalloid, and at least one catalytically active metal, wherein the extruded inorganic support has pores, a total pore volume, and a pore size distribution, wherein the pore size distribution displays at least two peaks of pore diameters, each peak having a maximum, wherein a first peak has a first maximum of pore diameters of equal to or greater than about 120 nm and a second peak has a second maximum of pore diameters of less than about 120 nm, and wherein greater than or equal to about 5% of a total pore volume of the extruded inorganic support is contained within the first peak of pore diameters.
    Type: Application
    Filed: March 7, 2012
    Publication date: September 12, 2013
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Tin-Tack Peter Cheung, Joseph Bergmeister, III, Stephen L. Kelly
  • Patent number: 8530372
    Abstract: Catalysts, systems and methods for abating emissions in an exhaust stream are provided. Systems comprising a transition metal oxide stabilized oxygen storage catalyst are described. The emissions treatment system is advantageously used for the treatment of exhaust streams from lean burn engines including diesel engines and lean burn gasoline engines.
    Type: Grant
    Filed: July 21, 2010
    Date of Patent: September 10, 2013
    Assignee: BASF Corporation
    Inventors: Tian Luo, Michel Deeba
  • Publication number: 20130231241
    Abstract: The invention relates to a process to produce catalysts by powder injection moulding and the catalysts thereof, wherein the catalysts are made by preparing a ceramic formulation with temperature controlled rheological properties comprising catalytic components, heating the powder formulation up to at least the fluid state transition temperature, shaping a sample by injecting the fluid powder formulation into an injection mould followed by cooling the injected powder formulation below the fluid state transition temperature, de-binding the shaped sample, and sintering the shaped sample to form a ceramic catalyst. Alternatively the ceramic structure may be formed initially followed by a coating of the ceramic structure by one or more catalytic compounds.
    Type: Application
    Filed: April 17, 2013
    Publication date: September 5, 2013
    Applicant: Yara International ASA
    Inventors: David WALLER, David M. BRACKENBURY