With Aldehyde Or Derivative Patents (Class 528/129)
  • Patent number: 10287170
    Abstract: The present application is generally directed to ultrapure synthetic carbon materials having both high surface area and high porosity, ultrapure polymer gels and devices containing the same. The disclosed ultrapure synthetic carbon materials find utility in any number of devices, for example, in electric double layer capacitance devices and batteries. Methods for making ultrapure synthetic carbon materials and ultrapure polymer gels are also disclosed.
    Type: Grant
    Filed: January 12, 2017
    Date of Patent: May 14, 2019
    Assignee: BASF SE
    Inventors: Aaron M. Feaver, Henry R. Costantino, William D. Scott
  • Patent number: 9920024
    Abstract: The method according to the present invention is a method for purifying a compound represented by a specific formula (1) or a resin having a structure represented by a specific formula (2), the method including a step of bringing a solution (A) including an organic solvent optionally immiscible with water, and the compound or the resin into contact with an acidic aqueous solution.
    Type: Grant
    Filed: November 28, 2014
    Date of Patent: March 20, 2018
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Masatoshi Echigo, Takashi Makinoshima, Naoya Uchiyama
  • Patent number: 9771994
    Abstract: A friction material for a clutch comprising a plurality of fibers and a filler material including crystalline silica. The crystalline silica is cristobalite in an example aspect. A friction material for a clutch comprising: a plurality of fibers; and, a filler composition including: an amorphous silica-containing material; and, a plurality of crystalline silica particles, said particles having a Mohs hardness at least 6 and characterized by a rounded morphology. A friction material for a clutch comprising: a plurality of fibers; a filler composition including: diatomaceous earth; and, cristobalite including a plurality of particles characterized by a median particle size in a range from about 0.5 ?m to about 5 ?m; and, a resin; and, the friction material includes cristobalite in a range of from about 2% to about 20% by weight based on total weight of the friction material and has a static friction coefficient of at least 0.115.
    Type: Grant
    Filed: November 6, 2015
    Date of Patent: September 26, 2017
    Assignee: Schaeffler Technologies AG & Co. KG
    Inventors: Murat Bakan, Rashid Farahati
  • Patent number: 9403704
    Abstract: There is provided a water treatment method using a water treatment flocculant that suffers from minimal secondary contamination with flocculation residues and contains an alkaline solution of a phenolic resin. A water treatment method involving the addition of a flocculant to water to be treated and subsequent membrane separation treatment. The flocculant contains an alkaline solution of a phenolic resin having a melting point in the range of 130° C. to 220° C. The water treatment flocculant is produced by a resole-type second-order reaction in the presence of an alkaline catalyst in which an aldehyde is added to an alkali solution of a novolak phenolic resin. The novolak phenolic resin is produced by a reaction between a phenol and an aldehyde in the presence of an acid catalyst.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: August 2, 2016
    Assignees: KURITA WATER INDUSTRIES, LTD., GUN EI CHEICAL INDUSTRY CO., LTD.
    Inventors: Yasuhiro Ooi, Keijirou Tada, Yukio Abe, Takeshi Iizuka, Satoru Kitano
  • Patent number: 9226499
    Abstract: Provided are protected antimicrobial compounds which are useful for controlling microorganisms in aqueous or water-containing systems, such as oil or gas field fluids, at elevated temperature. The antimicrobial compounds are of the formula I: wherein R3 and R4 are as defined herein.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: January 5, 2016
    Assignee: Dow Global Technologies LLC
    Inventors: Charles E. Coburn, Michael V. Enzien, Heather R. Mcginley, David W. Moore
  • Patent number: 9006313
    Abstract: A polycondensation product based on aromatics and/or heteroaromatics and aldehydes, the polycondensate containing at least one structural unit (I) having a polyisobutylene side chain and an aromatic or heteroaromatic and at least one structural unit (II) having an ionizable functional group and an aromatic or heteroaromatic, structural unit (I) not being the same as structural unit (II) and the aldehyde used having no acid or ester functions. A process for the preparation and the use as an additive for hydraulic binders are disclosed.
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: April 14, 2015
    Assignee: Construction Research & Technology GmbH
    Inventors: Alexander Kraus, Frank Dierschke, Fabian Becker
  • Patent number: 8883937
    Abstract: A cyclic compound represented by formula (1): wherein L, R1, R?, and m are as defined in the specification. The cyclic compound of formula (1) is highly soluble to a safety solvent, highly sensitive, and capable of forming resist patterns with good profile. Therefore, the cyclic compound is useful as a component of a radiation-sensitive composition.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: November 11, 2014
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Masatoshi Echigo, Hiromi Hayashi
  • Patent number: 8877826
    Abstract: Systems and methods for the electrochemical polymerization process for preparation of cross-linked gel. The process includes mixing a hydroxylated benzene and aldehyde in an aqueous media in an inert container to form a hydroxylated benzene and aldehyde mixture. Furthermore, the process includes introducing electrodes into the inert container. Further, the electrochemical polymerization process includes supplying electric current to the hydroxylated benzene and aldehyde mixtures in the inert container through the electrodes. The resultant products of electrochemical polymerization process either gels or activated carbon gels have unique characteristics.
    Type: Grant
    Filed: December 23, 2012
    Date of Patent: November 4, 2014
    Assignee: Qatar University
    Inventors: Ahmed Awadallah-F, Shaheen A. Al-Muhtaseb
  • Patent number: 8835002
    Abstract: Water-dispersible core-shell microcapsules that are essentially free of formaldehyde. Also, oligomeric compositions of, and microcapsules obtained from, particular reaction products between a polyamine component and a particular mixture of glyoxal and a C4-6 2,2-dialkoxy-ethanal. These compositions and microcapsules can be used as part of a perfuming composition or of a perfumed consumer product.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: September 16, 2014
    Assignee: Firmenich SA
    Inventors: Damien Berthier, Géraldine Leon, Nicolas Paret
  • Patent number: 8642714
    Abstract: The present invention provides a phenol resin having, as a unit in its main-chain skeleton, a structure represented by the following general formula (I), as well as a resin composition using the same. According to the phenol resin of the invention, epoxylation thereof, chemical modification thereof, reaction thereof with an epoxy resin, and the like are facilitated. Phenol resins ranging from low-molecular-weight resins rich in fluidity to high-melting resins can be synthesized, and these phenol resins are industrially useful. When the phenol resin of the present invention is used as a hardening agent for epoxy resin etc., its resin composition can give a cured product of high Tg without deteriorating adhesiveness.
    Type: Grant
    Filed: January 24, 2007
    Date of Patent: February 4, 2014
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Haruaki Sue, Kuniaki Satou, Osamu Matsuzaka
  • Patent number: 8557381
    Abstract: Resol beads are disclosed that are prepared in high yield by reaction of a phenol with an aldehyde, with a base as catalyst, a colloidal stabilizer, and optionally a surfactant. The resol beads have a variety of uses, and may be thermally treated and carbonized to obtain activated carbon beads.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: October 15, 2013
    Assignee: Eastman Chemical Company
    Inventors: Charles Edwan Sumner, Ramesh Chand Munjal, Ruairi Seosamh O'Meadhra, Chester Wayne Sink, Jerry Steven Fauver, Robert Melvin Schisla, Shriram Bagrodia, Spencer Erich Hochstetler, Tera Jill Hardin
  • Patent number: 8557262
    Abstract: The present invention provides divinyl ether derivatives capable of releasing in a controlled manner at least one active aldehyde and/or ketone into the surrounding environment. The invention relates to the use of these divinyl ether derivatives as perfuming or flavoring ingredients, as well as to the perfuming compositions and consumer articles containing them.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: October 15, 2013
    Assignee: Firmenich SA
    Inventors: Gary Bernard Womack, Robert Langley Fuller, Glenn Paul Johannes Verhovnik, Nathalie Pinel, Magali Lateulere, Marie Buy
  • Patent number: 8519083
    Abstract: The present invention relates to a process for producing an MEK-modified resorcinol-formalin resin, in which recovery and reuse of the specific raw materials (water, calcium chloride, and methyl ethyl ketone (MEK)), and methanol contained in formalin, are carried out in parallel. Using this closed-system recycle production method, a resorcinol-formalin resin aqueous solution can be obtained, wherein the resin aqueous solution has a reaction product concentration of from 30 to 80%, moderate flowability with a pH of 6 to 10, a calcium chloride concentration of 100 ppm or less, a peak area corresponding to a resorcinol monomer of from 3 to 9% to the entire peak area obtained by gel permeation chromatography analysis, and a peak area corresponding to resorcinol pentanuclear or higher nuclear bodies of from 30 to 55% to the entire peak.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: August 27, 2013
    Assignee: Hodogaya Chemical Co., Ltd.
    Inventors: Nobuo Kaifu, Hiroshi Nakaoka, Kaoru Abe
  • Patent number: 8470930
    Abstract: The present invention relates to novolak resins prepared with, inter alia, one or more alkylphenols. The invention further relates to compositions comprising the novolak resins, such as vulcanizable rubber compositions, and to products obtained therewith.
    Type: Grant
    Filed: September 10, 2008
    Date of Patent: June 25, 2013
    Assignee: SI Group, Inc.
    Inventors: L. Scott Howard, Todd M. Aube, Timothy Edward Banach, James J. Lamb
  • Patent number: 8450446
    Abstract: Rosin modified phenolic resins are prepared by reacting together resin acid, fatty acid, tri- or higher-functional phenolic compound and aldehyde. The fatty acid may be Monomer (derived from the fatty acid dimerization process). The reaction mixture may optionally include a,l3-olefinically unsaturated carbonyl compounds and/or polyol. The resin may be dissolved in a solvent to form a varnish. The resin may be used as a component of printing inks, e.g., inks for lithographic or gravure printing.
    Type: Grant
    Filed: August 27, 2007
    Date of Patent: May 28, 2013
    Assignee: Arizona Chemical Company, LLC
    Inventor: Thomas Fontana
  • Patent number: 8420749
    Abstract: The object of the present invention is to provide an epoxy resin composition capable of realizing low dielectric constant and low dielectric dissipation factor, which is suited for use as a latest current high-frequency type electronic component-related material, without deteriorating heat resistance during the curing reaction. A phenol resin, which has the respective structural units of a phenolic hydroxyl group-containing aromatic hydrocarbon group (P) derived from phenols, an alkoxy group-containing condensed polycyclic aromatic hydrocarbon group (B) derived from methoxynaphthalene and a divalent hydrocarbon group (X) such as methylene and also has a structure represented by —P—B—X— wherein P, B and X are structural sites of these groups in a molecular structure, is used as a curing agent for the epoxy resin, or a phenol resin as an epoxy resin material.
    Type: Grant
    Filed: March 1, 2006
    Date of Patent: April 16, 2013
    Assignee: Dainippon Ink and Chemicals, Inc.
    Inventors: Ichirou Ogura, Yoshiyuki Takahashi, Yutaka Sato
  • Patent number: 8399576
    Abstract: Disclosed is a phosphorous containing phenol novolac resin, having a structure as below: In the above formula, Z is selected from — or —CH2—. Each Y is independently selected from —, —CH2—, —C(CH3)2—, —S—, —SO2—, —O—, —CO—, or —N?N—. Each X is independently selected from a hydrogen or phosphorous containing group, wherein the hydrogen and phosphorous containing group have a molar ratio of 1:0.1 to 0.1:1. Each R1 is independently selected from a hydrogen or C1-5 alkyl group. Each R2 is independently selected from a C1-5 alkyl group. m is an integer of 1 to 10, and n is 0 or 1.
    Type: Grant
    Filed: February 4, 2011
    Date of Patent: March 19, 2013
    Assignee: Grand Tek Advance Material Science Co., Ltd.
    Inventors: Shang-Wei Tang, Hsueh-Tso Lin, Kuan-Ching Chen, Dick Zhong
  • Patent number: 8367749
    Abstract: The invention relates to microspheres coated with a phenolic novolak resin, a process for preparing them, and their use in making foundry shapes, e.g. molds, cores, sleeves, pouring cups, etc., which are used in casting metal parts.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: February 5, 2013
    Assignee: Ask Chemicals L.P.
    Inventor: Ronald C. Aufderheide
  • Patent number: 8349989
    Abstract: A method of sealing a semiconductor element which involves applying an epoxy resin composition including an epoxy resin and a phenolic resin obtained by reacting phenol, a biphenyl compound represented by the general formula (3) and benzaldehyde to a semiconductor element and curing the composition to seal the semiconductor element: wherein X in the formula (3) is a halogen, an OH group or an OCH3 group. The molar ratio of the total of the biphenyl compound and benzaldehyde relative to the phenol is from 0.27 to 0.40, and the molar ratio of benzaldehyde/biphenyl compound is from 5/95 to 40/60.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: January 8, 2013
    Assignee: Air Water Inc.
    Inventors: Kiyotaka Murata, Yoshihisa Sone
  • Patent number: 8333909
    Abstract: The invention provides an electrolyte comprising an ester-cured alkaline phenolic resole resin containing conducting alkaline salts and methods for the use of the resin.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: December 18, 2012
    Assignee: BAC2 Limited
    Inventor: Graham Simpson Murray
  • Patent number: 8298402
    Abstract: The present invention relates to alkylphenol-aldehyde resins containing oligo- or polymers having a repeat structural unit of the formula where R1 is a branched alkyl or alkenyl radical which has from 10 to 40 carbon atoms and bears at least one carboxyl, carboxylate and/or ester group, R2 is hydrogen or R1 R3 is hydrogen or an alkoxy group of the formula -(A-O)m—H, A is a C2- to C4-alkylene group, m is from 1 to 100, R4 is hydrogen, a C1- to C11-alkyl radicals or a carboxyl group, R5 is C1-C200-alkyl or -alkenyl, O—R6 or O—C(O)—R6, R6 is C1-C200-alkyl or -alkenyl, n is from 1 to 100 and k is 1 or 2.
    Type: Grant
    Filed: September 22, 2006
    Date of Patent: October 30, 2012
    Assignee: Clariant Produkte (Deutschland) GmbH
    Inventors: Matthias Krull, Carsten Cohrs, Heidi Rausch
  • Patent number: 8288003
    Abstract: Provided are a method for producing a phosphorus-containing phenolic compound in which reactivity is considerably excellent in the reaction between a phosphorus-containing compound and an aromatic nucleus of a phenol; in the case of using a polyhydric phenol or a phenolic resin as the phenol, a novel phosphorus-containing phenolic compound that serves as a curing agent for an epoxy resin and imparts excellent heat resistance to a cured product; a curable resin composition containing the novel phosphorus-containing phenolic compound; a cured product of the curable resin composition; a printed wiring board; and a semiconductor sealing material. An aromatic aldehyde (a1) having an alkoxy group as a substituent on an aromatic nucleus is allowed to react with an organic phosphorus compound (a2) intramolecularly having a P—H group or a P—OH group. The resultant reaction product is then allowed to react with a phenol (a3).
    Type: Grant
    Filed: August 5, 2009
    Date of Patent: October 16, 2012
    Assignee: DIC Corporation
    Inventors: Koji Hayashi, Yoshiyuki Takahashi, Ichirou Ogura
  • Patent number: 8263714
    Abstract: An epoxy resin composition including an epoxy resin and a curing agent as essential components, in which the curing agent comprises a phenol resin which has each structural moiety of a phenolic hydroxyl group-containing aromatic hydrocarbon group (P), an alkoxy group-containing aromatic hydrocarbon group (B) and a divalent aralkyl group (X), and also has, in a molecular structure, a structure in which the phenolic hydroxyl group-containing aromatic hydrocarbon group (P) and the alkoxy group-containing aromatic hydrocarbon group (B) are bonded with the other phenolic hydroxyl group-containing aromatic hydrocarbon group (P) or alkoxy group-containing aromatic hydrocarbon group (B) via the divalent aralkyl group (X).
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: September 11, 2012
    Assignee: Dainippon Ink and Chemicals, Inc.
    Inventors: Ichiro Ogura, Yoshiyuki Takahashi, Kazuo Arita, Kunihiro Morinaga, Yutaka Satou
  • Patent number: 8247072
    Abstract: Resol beads are disclosed that are prepared in high yield by reaction of a phenol with an aldehyde, with a base as catalyst, a colloidal stabilizer, and optionally a surfactant. The resol beads have a variety of uses, and may be thermally treated and carbonized to obtain activated carbon beads.
    Type: Grant
    Filed: November 8, 2006
    Date of Patent: August 21, 2012
    Assignee: Eastman Chemical Company
    Inventors: Charles Edwan Sumner, Jr., Ramesh Chand Munjal, Ruairi Seosamh O'Meadhra, Chester Wayne Sink, Jerry Steven Fauver, Robert Melvin Schisla, Jr., Shriram Bagrodia, Spencer Erich Hochstetler, Tera Jill Hardin
  • Patent number: 8183368
    Abstract: The object of the present invention is to provide a thermosetting compound having dielectric properties, in particular permittivity and dielectric loss, which are improved compared to prior art, a composition containing the same, and a molded article. The thermosetting compound according to the present invention is a dihydro benzoxazine compound represented by the following Formula (2), where, R6 to R13 represent a hydrogen atom, an alkyl group, or the like, and R14 represents a divalent saturated alicyclic hydrocarbon group having a condensed ring structure.
    Type: Grant
    Filed: August 3, 2006
    Date of Patent: May 22, 2012
    Assignee: Sekisui Chemical Co., Ltd.
    Inventors: Yuji Eguchi, Kazuo Doyama, Shigeki Nomura, Hatsuo Ishida
  • Patent number: 8158743
    Abstract: Rosin modified phenolic resins are prepared by reacting together rosin, fatty acid, phenol and aldehyde. The fatty acid may be Monomer (derived from the fatty acid dimerization process). The reaction mixture may optionally include ?,?-olefinically unsaturated carboxylic acid(s) or anhydride(s), and polyol(s). The resin may be dissolved in a solvent to form a varnish. The resin may be used as a component of inks for lithographic or gravure printing.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: April 17, 2012
    Assignee: Arizona Chemical Company, LLC
    Inventor: Thomas A. Fontana
  • Patent number: 8133933
    Abstract: Phenolic resin binder systems for sand molds, used in metal casting, which improve the quality of thermally reclaimed sand, are described. The substantial or complete elimination of calcium compounds (e.g., calcium stearate and calcium hydroxide, conventionally employed as a mold lubricant and a resin curing catalyst, respectively) allows the thermally reclaimed sand to be reused over multiple thermal reclamation cycles without the adverse effects previously encountered.
    Type: Grant
    Filed: August 11, 2006
    Date of Patent: March 13, 2012
    Assignee: Georgia-Pacific Chemicals LLC
    Inventors: Richard Rediger, Edward Lucas
  • Patent number: 7994271
    Abstract: Disclosed is a phenolic resin having flame retardance, fast curing property and low melt viscosity, which is useful for a curing agent for epoxy resin-based semiconductor sealing materials. Also disclosed are a method for producing such a phenolic resin and use of such a phenolic resin. Specifically disclosed is a phenolic resin obtained by reacting a phenol, a bismethylbiphenyl compound and an aromatic aldehyde at such a ratio that the molar ratio of the total of the bismethylbiphenyl compound and the aromatic aldehyde relative to the phenol is 0.10-0.60, and the aromatic aldehyde/the bismethylbiphenyl compound (molar ratio) is from 5/95 to 50/50. Also specifically disclosed is an epoxy resin composition composed of such a phenolic resin and an epoxy resin.
    Type: Grant
    Filed: October 16, 2006
    Date of Patent: August 9, 2011
    Assignee: Air Water Inc.
    Inventors: Kiyotaka Murata, Yoshihisa Sone
  • Patent number: 7989575
    Abstract: A composition is disclosed, which comprises a hydroxyaromatic-aldehyde resole resin comprising an aldehyde and a hydroxyaromatic compound, modified with a urea-aldehyde condensate. The hydroxyaromatic-aldehyde resole resin is prepared without ammonia or a primary amine and the composition does not contain a triazone or a substituted triazone compound. The composition has improved premix stability, improved cure efficiency, comparable tensile strength, and lower volatiles than the hydroxyaromatic-aldehyde resole resin unmodified with a urea-aldehyde condensate. Also disclosed are articles prepared therefrom.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: August 2, 2011
    Assignee: Momentive Specialty Chemicals Inc.
    Inventor: Stephen W. Arbuckle
  • Publication number: 20110184077
    Abstract: The present invention is a method for decomposing a polymer material by chemically decomposing a polymer material containing a first monomer and a second monomer in a mixture of the polymer material with the first monomer or a derivative of the first monomer to produce a chemical raw material. A relationship between a proportion of number of molecules of the second monomer to number of molecules of the first monomer in a reaction system for decomposing the polymer material and the molecular weight of the chemical raw material produced in the reaction system is acquired in advance (S101). Subsequently, an addition mount of the derivative of the first monomer to be added to the polymer material is determined based on the above relationship (S102). The first monomer in the addition amount determined is then mixed with the polymer material (S103).
    Type: Application
    Filed: September 9, 2009
    Publication date: July 28, 2011
    Applicant: SUMITOMO BAKELITE CO., LTD
    Inventors: Junya Goto, Masaki Ishikawa, Tamotsu Orihara, Taichi Koide
  • Publication number: 20110104495
    Abstract: A filled nanoparticle includes a nanosized polymer shell encapsulating a reactive chemical. In another aspect, a filled nanoparticle includes a nanosized polymer shell encapsulating a core which includes a reactive functional group attached to a polymer. A miniemulsion polymerization process of producing filled nanoparticles includes: providing a mixture comprising monomer, initiator or catalyst to aid polymerization, reactive chemical, surfactant and water; shearing the mixture to form a miniemulsion of nanosized particles dispersed in water, the nanosized particles comprising the monomer combined with the reactive chemical; and then heating the miniemulsion to polymerize the monomer and produce filled nanoparticles comprising a nanosized polymer shell encapsulating the reactive chemical.
    Type: Application
    Filed: May 12, 2009
    Publication date: May 5, 2011
    Inventors: Ramanathan S. Lalgudi, Jeff J. Boyce, Barry L. McGraw
  • Patent number: 7935778
    Abstract: The present invention relates to a phenol resin obtained by reacting phenolic compounds with formaldehyde and/or formaldehyde-forming compounds. The present invention furthermore relates to the use of such a phenol resin, as well as to a molded product having a core of solid, inert parts impregnated with such a phenol resin.
    Type: Grant
    Filed: January 15, 2004
    Date of Patent: May 3, 2011
    Assignee: Trespa International B.V.
    Inventors: Gerardus Wilhelmus Schuren, Theodorus Vrijsen
  • Publication number: 20110054142
    Abstract: The present invention relates to a method for continuously preparing cyclohexanone from phenol making use of a catalyst comprising at least one catalytically active metal selected from platinum and palladium comprising a) hydrogenating phenol to form a product stream comprising cyclohexanone and unreacted phenol; b) separating at least part of the product stream, or at least part of the product stream from which one or more components having a lower boiling point than cyclohexanone have been removed, into a first fraction comprising cyclohexanone and a second fraction comprising phenol and cyclohexanol, using distillation; c) separating the second fraction into a third fraction, rich in cyclohexanol, and a fourth fraction, rich in phenol and, using distillation; d) subjecting at least part of the fourth fraction to a further distillation step, thereby forming a fifth fraction and a sixth fraction, wherein the fifth fraction is enriched in phenol compared to the sixth fraction, and wherein the sixth fraction c
    Type: Application
    Filed: December 16, 2008
    Publication date: March 3, 2011
    Inventors: Marleen Horsels, Rudy Francols Maria Jozef Parton, Johan Thomas Tinge
  • Patent number: 7872088
    Abstract: Disclosed are binders including urea-extended phenol-formaldehyde alkaline resole resins to which melamine-containing resin has been added, and non-woven fiber compositions made therewith. The disclosed binders may be cured to low formaldehyde-emission and low trimethylamine-emission, water-resistant thermoset binders.
    Type: Grant
    Filed: February 15, 2007
    Date of Patent: January 18, 2011
    Assignee: Knauf Insulation GmbH
    Inventors: William S. Miller, Brian L. Swift, Scott L. Stillabower
  • Patent number: 7820738
    Abstract: A process for the preparation of a readily water-redispersible polymer powder by spray drying of an aqueous polymer dispersion in the presence of a novel spray drying assistant.
    Type: Grant
    Filed: February 18, 2005
    Date of Patent: October 26, 2010
    Assignee: BASF Aktiengesellschaft
    Inventors: Ines Pietsch, Joachim Pakusch, Oliver Reese, Heinrich Sack
  • Patent number: 7820765
    Abstract: A functionalized polymer includes a polymer chain and, bonded thereto, an functional group having the general formula —NHAR1 where A is an oxygen atom, a sulfinyl (thionyl) group, a sulfonyl group, a quaternary phosphonium group, or a secondary amino group and where R1 is a hydrogen atom or a moiety of the general formula —CH2Z where Z is H or a substituted or unsubstituted aryl, alkyl, alkenyl, alkenaryl, aralkenyl, alkaryl, or aralkyl group. The material can be the reaction product of a living polymer and a compound that includes protected imine functionality. The functional group can interact with particulate filler such as, e.g., carbon black.
    Type: Grant
    Filed: July 19, 2006
    Date of Patent: October 26, 2010
    Assignee: Bridgestone Corporation
    Inventor: Yuan-Yong Yan
  • Patent number: 7807748
    Abstract: A phenol-formaldehyde resin, having a low concentration of tetradimer, making the resin suitable for preparing a binder composition for making non-woven fiber products, such as fiberglass insulation, prepared by reacting phenol and formaldehyde in the presence of a sulfite source.
    Type: Grant
    Filed: July 27, 2007
    Date of Patent: October 5, 2010
    Assignee: Georgia-Pacific Chemicals LLC
    Inventors: Ramji Srinivasan, Kim Tutin, James Knight, Paul Baxter
  • Publication number: 20100221656
    Abstract: A photosensitive compound has two or more structural units, in a molecule, represented by the following general formula (1): wherein R1 to R8 are selected from the group consisting of a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, an acetoxy group, a phenyl group, a naphthyl group, and an alkyl group in which some or all of the hydrogen atoms are optionally replaced by fluorine atoms; R9 is a hydrogen atom or a hydroxyl group; X is a substituted or unsubstituted phenylene group or a substituted or unsubstituted naphthalene group; and Y is an oxygen atom or a single bond.
    Type: Application
    Filed: February 14, 2008
    Publication date: September 2, 2010
    Applicant: CANON KABUSHIKI KAISHA
    Inventor: Toshiki Ito
  • Patent number: 7781538
    Abstract: The invention relates to tin-free reaction products of hydroxyl-containing hydrogenated ketone resins, carbonyl-hydrogenated ketone-aldehyde resins, and carbonyl-hydrogenated and ring-hydrogenated ketone-aldehyde resins based on aromatic ketones and polyisocyanates, to a process for their preparation and to the use thereof, in particular as a main component, base component or additive component in coating materials, adhesives, inks, polishes, glazes, stains, pigment pastes, filling compounds, cosmetics articles, sealants and/or insulants.
    Type: Grant
    Filed: June 21, 2005
    Date of Patent: August 24, 2010
    Assignee: Evonik Degussa GmbH
    Inventors: Patrick Glöckner, Andreas Wenning, Peter Denkinger, Michael Ewald
  • Patent number: 7776509
    Abstract: A photosensitive compound has two or more structural units, in a molecule, represented by the following general formula (1): wherein R1 to R10 are selected from the group consisting of hydrogen atom, halogen atom, alkyl group, alkoxy group, phenyl group, naphthyl group, and alkyl group in which a part or all of hydrogen atoms are substituted with fluorine atom; and X is a substituted or unsubstituted phenylene group or a substituted or unsubstituted naphthylene group.
    Type: Grant
    Filed: January 28, 2008
    Date of Patent: August 17, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventors: Toshiki Ito, Takako Yamaguchi
  • Patent number: 7772331
    Abstract: Provided is a method of producing a low viscosity phenol-modified aromatic hydrocarbon formaldehyde resin (C), including subjecting an aromatic hydrocarbon formaldehyde resin (A) and a phenol (B) to condensation reaction under the presence of an acid catalyst. The method includes: terminating, when a reaction mixture has a viscosity at 25° C. of 200 to 1,500 mPa·S, the condensation reaction by adding an inorganic basic compound and/or a tertiary amine compound having a boiling point of 300° C. or more; and distilling and removing the phenol (B) unreacted and a low boiling component after termination of the condensation reaction, whereby there can be produced a low viscosity phenol-modified aromatic hydrocarbon formaldehyde resin which is kept in a liquid state and contains small amounts of unreacted phenols, and in which increase in viscosity is small even after removal of low boiling components.
    Type: Grant
    Filed: April 6, 2007
    Date of Patent: August 10, 2010
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Masashi Ogiwara, Seiji Kita
  • Patent number: 7759448
    Abstract: Process including steps (a.) through (c.). Step (a.) involves providing a mixture of 41-47 parts by weight phenol component and 54-58 parts by weight formaldehyde. The phenol component in this step is approximately ? by weight para-phenylphenol and ? by weight phenol. Step (b.) involves adding 2-12 parts by weight previously manufactured phenolic resole resin to the mixture formed in step (a.). Step (c.) involves allowing the resulting mixture of phenol, formaldehyde, and phenolic resole resin to react, thereby producing a phenolic resin having a high molecular weight fraction of at least 10 weight-percent. Also, phenolic resole resin made by the process of described herein. Such phenolic resole resin has an average molecular weight that is at least 10% lower and a viscosity that is at least 10% lower than a comparable phenolic resole resin made by carrying out steps (a.) and (c.) in the absence of step (b.) as described herein.
    Type: Grant
    Filed: October 6, 2006
    Date of Patent: July 20, 2010
    Assignee: Honeywell International Inc.
    Inventor: Terence B. Walker
  • Patent number: 7741406
    Abstract: A phenol-formaldehyde resin, having a low concentration of tetradimer, making the resin suitable for preparing a binder composition for making non-woven fiber products, such as fiberglass insulation, prepared by reacting phenol and formaldehyde in the presence of a sulfite source.
    Type: Grant
    Filed: September 13, 2006
    Date of Patent: June 22, 2010
    Assignee: Georgia-Pacific Chemicals LLC
    Inventors: Ramji Srinivasan, Kim Tutin, James Knight, Paul Baxter
  • Patent number: 7718752
    Abstract: A process for producing a resorcinol-formalin resin containing no salts, having a moderate flowability when transformed into an aqueous solution, and having a reduced content of resorcinol monomer and a reduced content of resorcinol-formalin resin of resorcinol pentanuclear or higher nuclear bodies, the whole steps including an one-stage reaction and liquid-liquid distribution being conducted in the same reactor, which comprises adding resorcinol, an inorganic salt, and an organic solvent having a solubility parameter of 7.0 to 12.
    Type: Grant
    Filed: October 6, 2004
    Date of Patent: May 18, 2010
    Assignee: Hodogaya Chemical Co., Ltd.
    Inventors: Nobuo Kaifu, Hiroshi Nakaoka, Hisatoshi Koinuma
  • Patent number: 7718751
    Abstract: The present invention concerns a pre-mix for a syntactic phenolic foam composition; a syntactic phenolic foam composition; and a process for preparing the syntactic phenolic foam composition. The pre-mix comprises thermally expandable and/or expanded thermoplastic microspheres, the microspheres comprising a thermoplastic polymer shell made of a homopolymer or copolymer of 100 to 25, for example 93 to 40, parts by weight of a nitrile-containing, ethylenically unsaturated monomer, or a mixture thereof; and 0 to 75, for example 7 to 60, parts by weight of a non-nitrile-containing, ethylenically unsaturated monomer, or a mixture thereof; and a propellant, or a mixture thereof, trapped within the thermoplastic polymer shell; and one of either a highly reactive phenolic resole resin capable of fully crosslinking at temperatures between 15° C. and 60° C.
    Type: Grant
    Filed: March 15, 2006
    Date of Patent: May 18, 2010
    Assignee: Pyro Technologies Limited
    Inventor: Murray Orpin
  • Patent number: 7713315
    Abstract: The invention provides mineral oil distillates having a water content of less than 150 ppm and a conductivity of at least 50 pS/m, which comprise from 0.1 to 200 ppm of at least one alkylphenol-aldehyde resin and from 0.1 to 200 ppm of at least one nitrogen-containing polymer.
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: May 11, 2010
    Assignee: Clariant Produkte (Deutschland) GmbH
    Inventors: Matthias Krull, Werner Reimann
  • Patent number: 7683155
    Abstract: A phenolic novolak having the contents of a monomeric phenol and a dimeric phenol and a degree of dispersion controlled can be obtained in high yield by a process for production of a phenolic novolak having a step of conducting a heterogeneous reaction of a phenol and an aldehyde in the presence of a phosphoric acid and an unreactive oxygen-containing organic solvent as a reaction cosolvent.
    Type: Grant
    Filed: August 29, 2003
    Date of Patent: March 23, 2010
    Assignee: Asahi Organic Chemicals Industry Col., Ltd.
    Inventors: Shigeki Inatomi, Noboru Tanoue, Motoji Yokoyama, Hirofumi Shinohara, Satoshi Takehara
  • Patent number: 7659327
    Abstract: The invention relates to microspheres coated with a phenolic novolak resin, a process for preparing them, and their use in making foundry shapes, e.g. molds, cores, sleeves, pouring cups, etc., which are used in casting metal parts.
    Type: Grant
    Filed: August 7, 2006
    Date of Patent: February 9, 2010
    Assignee: Ashland Licensing and Intellectual Property, LLC
    Inventor: Ronald C. Aufderheide
  • Patent number: 7642333
    Abstract: An anhydride and resorcinol latent catalyst system for a phenolic resole resin provides a resin having long pot life and long shelf life, yet cures quickly thereafter.
    Type: Grant
    Filed: May 21, 2007
    Date of Patent: January 5, 2010
    Assignee: Georgia-Pacific Chemicals LLC
    Inventors: Shahid P. Qureshi, Charles C. Chan
  • Patent number: 7632624
    Abstract: A material comprising a specific bisphenol compound of formula (1) is useful in forming a photoresist undercoat wherein R1 and R2 are H, alkyl, aryl or alkenyl, R3 and R4 are H, alkyl, alkenyl, aryl, acetal, acyl or glycidyl, R5 and R6 are alkyl having a ring structure, or R5 and R6 bond together to form a ring. The undercoat-forming material has an extinction coefficient sufficient to provide an antireflective effect at a thickness of at least 200 nm, and a high etching resistance as demonstrated by slow etching rates with CF4/CHF3 and Cl2/BCl3 gases for substrate processing.
    Type: Grant
    Filed: May 10, 2007
    Date of Patent: December 15, 2009
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Jun Hatakeyama, Toshihiko Fujii, Takeru Watanabe, Katshiro Kobayashi