With Aldehyde Or Derivative Patents (Class 528/129)
  • Patent number: 7632624
    Abstract: A material comprising a specific bisphenol compound of formula (1) is useful in forming a photoresist undercoat wherein R1 and R2 are H, alkyl, aryl or alkenyl, R3 and R4 are H, alkyl, alkenyl, aryl, acetal, acyl or glycidyl, R5 and R6 are alkyl having a ring structure, or R5 and R6 bond together to form a ring. The undercoat-forming material has an extinction coefficient sufficient to provide an antireflective effect at a thickness of at least 200 nm, and a high etching resistance as demonstrated by slow etching rates with CF4/CHF3 and Cl2/BCl3 gases for substrate processing.
    Type: Grant
    Filed: May 10, 2007
    Date of Patent: December 15, 2009
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Jun Hatakeyama, Toshihiko Fujii, Takeru Watanabe, Katshiro Kobayashi
  • Patent number: 7589164
    Abstract: A flexibilized resorcinolic novolak resin is prepared by reacting a phenolic compound, such as resorcinol, with an unsaturated dihydroxy, an unsaturated aldehyde, an aliphatic dialdehyde, or a mixture thereof. An aldehyde (different from the unsaturated aldehyde and the aliphatic dialdehyde) is either simultaneously or subsequently added to the reaction mixture. The flexibilized resorcinolic novolak resin can be used in an adhesive composition for enhancing the adhesion between tire cords and rubber for tire applications.
    Type: Grant
    Filed: December 6, 2006
    Date of Patent: September 15, 2009
    Inventors: Raj B. Durairaj, Mark A. Lawrence
  • Patent number: 7563850
    Abstract: An inexpensive and durable polyelectrolyte composition includes both an aromatic polymer containing carbonyl linkages and/or sulfonyl linkages in the backbone chain and bearing cation-exchange groups and a fused salt exhibits a high ionic conductivity even in the absence of water or a solvent. The aromatic polymer is preferably an aromatic polyether sulfone comprising specific structural units and bearing cation-exchange groups, an aromatic polyether ketone comprising specific structural units and bearing cation-exchange groups, an aromatic polyether sulfone block copolymer consisting of at least one hydrophilic segment bearing cation-exchange groups and at least one hydrophobic segment free from cation-exchange groups, and/or an aromatic polyether ketone block copolymer consisting of at least one hydrophilic segment bearing cation-exchange groups and at least one hydrophobic segment free from cation-exchange groups.
    Type: Grant
    Filed: November 29, 2002
    Date of Patent: July 21, 2009
    Assignee: Ube Industries, Ltd.
    Inventors: Masayuki Kinouchi, Tetsuji Hirano, Nobuharu Hisano
  • Publication number: 20090171061
    Abstract: The present invention provides a phenol resin having, as a unit in its main-chain skeleton, a structure represented by the following general formula (I), as well as a resin composition using the same. According to the phenol resin of the invention, epoxylation thereof, chemical modification thereof, reaction thereof with an epoxy resin, and the like are facilitated. Phenol resins ranging from low-molecular-weight resins rich in fluidity to high-melting resins can be synthesized, and these phenol resins are industrially useful. When the phenol resin of the present invention is used as a hardening agent for epoxy resin etc., its resin composition can give a cured product of high Tg without deteriorating adhesiveness.
    Type: Application
    Filed: January 24, 2007
    Publication date: July 2, 2009
    Applicant: HITACHI CHEMICAL COMPANY, LTD.
    Inventors: Haruaki Sue, Kuniaki Satou, Osamu Matsuzaka
  • Patent number: 7538175
    Abstract: A polymer having hole transport functionality and antioxidant properties is disclosed. The polymer comprises a phenolic segment and a hole transport segment. The polymer is suitable for use in the charge transport layer of an imaging member. Processes for producing the polymer are also disclosed.
    Type: Grant
    Filed: October 13, 2005
    Date of Patent: May 26, 2009
    Assignee: Xerox Corporation
    Inventors: Yu Qi, Nan-Xing Hu, Greg McGuire, Cuong Vong
  • Publication number: 20090054585
    Abstract: The object of the present invention is to provide an epoxy resin composition capable of realizing low dielectric constant and low dielectric dissipation factor, which is suited for use as a latest current high-frequency type electronic component-related material, without deteriorating heat resistance during the curing reaction. A phenol resin, which has the respective structural units of a phenolic hydroxyl group-containing aromatic hydrocarbon group (P) derived from phenols, an alkoxy group-containing condensed polycyclic aromatic hydrocarbon group (B) derived from methoxynaphthalene and a divalent hydrocarbon group (X) such as methylene and also has a structure represented by —P—B—X— wherein P, B and X are structural sites of these groups in a molecular structure, is used as a curing agent for the epoxy resin, or a phenol resin as an epoxy resin material.
    Type: Application
    Filed: March 1, 2006
    Publication date: February 26, 2009
    Applicant: DAINIPPON INK AND CHEMICALS, INC.
    Inventors: Ichirou Ogura, Yoshiyuki Takahashi, Yutaka Sato
  • Patent number: 7425602
    Abstract: The present invention relates to novolak resins prepared with, inter alia, one or more alkylphenols. The invention further relates to compositions comprising the novolak resins, such as vulcanizable rubber compositions, and to products obtained therewith.
    Type: Grant
    Filed: November 19, 2004
    Date of Patent: September 16, 2008
    Assignee: SI Group, Inc.
    Inventors: L. Scott Howard, Todd M. Aube, Timothy Edward Banach, James J. Lamb
  • Publication number: 20080221294
    Abstract: Resol beads are disclosed prepared by reaction of a phenol with an aldehyde, with a base as catalyst, in the presence of a colloidal stabilizer, and optionally a surfactant. The resol beads have a variety of uses, and may be thermally treated and carbonized to obtain activated carbon beads.
    Type: Application
    Filed: April 9, 2008
    Publication date: September 11, 2008
    Applicant: EASTMAN CHEMICAL COMPANY
    Inventors: Chester Wayne Sink, Charles Edwan Sumner, Ramesh Chand Munjal, Ruairi Seosamh O'Meadhra, Jerry Steven Fauver, Robert Melvin Schisla, Shriram Bagrodia, Tera Jill Hardin
  • Publication number: 20080187865
    Abstract: A photosensitive compound has two or more structural units, in a molecule, represented by the following general formula (1): wherein R1 to R10 are selected from the group consisting of hydrogen atom, halogen atom, alkyl group, alkoxy group, phenyl group, naphthyl group, and alkyl group in which a part or all of hydrogen atoms are substituted with fluorine atom; and X is a substituted or unsubstituted phenylene group or a substituted or unsubstituted naphthylene group.
    Type: Application
    Filed: January 28, 2008
    Publication date: August 7, 2008
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Toshiki Ito, Takako Yamaguchi
  • Publication number: 20080085991
    Abstract: Process including steps (a.) through (c.). Step (a.) involves providing a mixture of 41-47 parts by weight phenol component and 54-58 parts by weight formaldehyde. The phenol component in this step is approximately ? by weight para-phenylphenol and ? by weight phenol. Step (b.) involves adding 2-12 parts by weight previously manufactured phenolic resole resin to the mixture formed in step (a.). Step (c.) involves allowing the resulting mixture of phenol, formaldehyde, and phenolic resole resin to react, thereby producing a phenolic resin having a high molecular weight fraction of at least 10 weight-percent. Also, phenolic resole resin made by the process of described herein. Such phenolic resole resin has an average molecular weight that is at least 10% lower and a viscosity that is at least 10% lower than a comparable phenolic resole resin made by carrying out steps (a.) and (c.) in the absence of step (b.) as described herein.
    Type: Application
    Filed: October 6, 2006
    Publication date: April 10, 2008
    Inventor: Terence B. Walker
  • Patent number: 7345207
    Abstract: Process for preparing high-concentration formaldehyde solutions having a CH2O content of ?50% by weight from an aqueous formaldehyde solution having a lower CH2O content by evaporation of part of this solution (partial evaporation), in which the aqueous formaldehyde solution is heated to an evaporation temperature T at which the gas phase becomes enriched in water relative to the liquid phase and the gas phase formed is taken off continuously or discontinuously, wherein the evaporation temperature T obeys the relationship: T[° C.]<Tmax[° C.] where Tmax(c)=A+B×(c/100)+C×(c/100)2+D×(c/100)3 and A=+68.759, B=+124.77, C=?12.851, D=?10.095, where c is the instantaneous CH2O content of the aqueous formaldehyde solution during the evaporation in percent by weight and is from 20 to 99% by weight.
    Type: Grant
    Filed: March 4, 2004
    Date of Patent: March 18, 2008
    Assignee: BASF Aktiengesellschaft
    Inventors: Eckhard Stroefer, Neven Lang, Hans Hasse, Thomas Grützner, Michael Ott
  • Patent number: 7345136
    Abstract: Water-resistant, protein-based adhesive dispersion compositions and methods for preparing them are provided. The adhesive dispersions are prepared by copolymerizing a denatured vegetable protein, such as soy flour, that has been functionalized with methylol groups with one or more reactive comonomers, and preparing an acidic dispersion of the adhesive. The adhesive dispersions exhibit superior water resistance, and can be used to bond wood substrates, such as panels or laminate, or in the preparation of composite materials.
    Type: Grant
    Filed: April 4, 2005
    Date of Patent: March 18, 2008
    Assignees: Heartland Resource Technologies LLC, USDA
    Inventors: James M. Wescott, Charles R. Frihart
  • Patent number: 7345132
    Abstract: Provided an industrially excellent method of producing a phenol novolak resin having an ortho ratio of 30% or more by: (1) a method of reacting a phenol and an aldehyde using an oxalic acid catalyst at 110 to 160° C. under pressure; or (2) a method of reacting a phenol and an aldehyde under pressure while removing the heat of reaction by a condenser with controlling a pressure so that water or an organic solvent present in the reaction system is refluxed.
    Type: Grant
    Filed: January 19, 2005
    Date of Patent: March 18, 2008
    Assignee: Chang Chun Plastics Co. Ltd
    Inventors: Noriaki Saito, Ichishi Aizu, Nobuyuki Nakajima, Masahiro Fujiwara, Koji Yano
  • Patent number: 7323534
    Abstract: A composition is disclosed, which comprises a hydroxyaromatic-aldehyde resole resin comprising an aldehyde and a hydroxyaromatic compound, modified with a urea-aldehyde condensate. The composition has improved premix stability, improved cure efficiency, comparable tensile strength, and lower volatiles than the hydroxyaromatic-aldehyde resole resin unmodified with a urea-aldehyde condensate. Also disclosed are articles prepared therefrom.
    Type: Grant
    Filed: October 12, 2005
    Date of Patent: January 29, 2008
    Assignee: Hexion Specialty Chemicals, Inc.
    Inventor: Stephen W. Arbuckle
  • Patent number: 7321020
    Abstract: The invention relates to the polycondensation products produced by reaction of bisphenol residues from bisphenol production with an aldehyde in an acidic medium useful for the production of refractory molded bodies, of unmolded substances used in the refractory industry and, together with coating powder residues, as binding agents or binding agent components for the production of molded nonwoven fabric parts.
    Type: Grant
    Filed: July 10, 2003
    Date of Patent: January 22, 2008
    Assignee: Bakelite AG
    Inventor: Josef Suren
  • Patent number: 7319131
    Abstract: The invention herein disclosed comprises the use of oxazolidines, nitroalcohols, nitrones, halonitroparaffins, oxazines, azaadamantanes, hexamethylenetetramine salts, nitroamines, imidazolidines, triazines, nitrooxazolidines, and imidazolidine-oxazolidine hybrids to serve as hardeners for curing phenolic resins. The hardeners and accelerators/catalysts described in the invention can be applied in any application where phenolic resins are used, including but not limited to fiber reinforced composite applications such as pultrusion, filament winding, bulk molding compound (BMC), sheet molding compounds (SMC), vacuum assisted resin transfer, prepregs, adhesives, foundry materials, abrasives, friction materials, insulation, laminates, coatings, electronics, fire resistant, and flame-retardant end uses.
    Type: Grant
    Filed: July 28, 2004
    Date of Patent: January 15, 2008
    Assignee: Angus Chemical Company
    Inventors: Raymond J. Swedo, George David Green
  • Patent number: 7319130
    Abstract: The invention herein disclosed comprises the use of oxazolidines, nitroalcohols, nitroamines, aminonitroalcohols, imines, hexahydropyimidines, nitrones, hydroxylamines, nitro-olefins and nitroacetals to serve as hardeners and/or as catalysts for curing phenolic resins. The hardeners and catalysts described in the invention can be applied in any application where phenolic resins are used, including but not limited to adhesives, molding, coatings, pultrusion, prepregs, electronics, composites, fire resistant, and flame-retardant end uses.
    Type: Grant
    Filed: November 19, 2003
    Date of Patent: January 15, 2008
    Assignee: Angus Chemical Company
    Inventor: Raymond J. Swedo
  • Patent number: 7317064
    Abstract: The invention includes formulations useful for creating reinforced composites based on 1) novolac resin compositions, and, 2) non-formaldehyde hardeners, as well as processes for manufacturing components using said reinforced composites.
    Type: Grant
    Filed: July 28, 2004
    Date of Patent: January 8, 2008
    Assignee: Angus Chemical Company
    Inventors: Raymond J. Swedo, George David Green
  • Patent number: 7317063
    Abstract: The invention herein disclosed comprises the use of oxazolidines, nitroalcohols, nitroamines, aminonitroalcohols, imines, hexahydropyrimidines, nitrones, hydroxylamines, nitro-olefins and nitroacetals to serve as hardeners and/or as catalysts for curing phenolic resins. The hardeners and catalysts described in the invention can be applied in any application where phenolic resins are used, including but not limited to adhesives, molding, coatings, pultrusion, prepregs, electronics, composites, fire resistant, and flame-retardant end uses.
    Type: Grant
    Filed: April 23, 2004
    Date of Patent: January 8, 2008
    Assignee: Angus Chemical Company
    Inventors: Raymond J. Swedo, George David Green
  • Publication number: 20070299163
    Abstract: The present invention relates to a novel phenolic resin, which is characterized that the content of free bisphenol contained therein is not more than 5 wt %, and it has a narrow molecular weight distribution represented by Mw/Mn that is not more than 2.0. The present invention also relates to a method for preparing the novel phenolic resin described above and an epoxy resin composition in which the phenolic resin is used as a curing agent.
    Type: Application
    Filed: November 9, 2006
    Publication date: December 27, 2007
    Inventors: Kuen Yuan Hwang, An Pang Tu, Chun Hsiung Kao, Fang Shian Su
  • Patent number: 7282466
    Abstract: The invention relates to sulfur-functionalized polymer gels and carbon gels, including aerogels, and such carbon gels containing platinum or metal nanoparticles. The platinum-containing gels may be useful as fuel-cell electrodes.
    Type: Grant
    Filed: November 5, 2004
    Date of Patent: October 16, 2007
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Jeffrey W Long, Debra R Rolison, Wendy Baker
  • Publication number: 20070238850
    Abstract: Provided is a method of producing a low viscosity phenol-modified aromatic hydrocarbon formaldehyde resin (C), including subjecting an aromatic hydrocarbon formaldehyde resin (A) and a phenol (B) to condensation reaction under the presence of an acid catalyst. The method includes: terminating, when a reaction mixture has a viscosity at 25° C. of 200 to 1,500 mPa·S, the condensation reaction by adding an inorganic basic compound and/or a tertiary amine compound having a boiling point of 300° C. or more; and distilling and removing the phenol (B) unreacted and a low boiling component after termination of the condensation reaction, whereby there can be produced a low viscosity phenol-modified aromatic hydrocarbon formaldehyde resin which is kept in a liquid state and contains small amounts of unreacted phenols, and in which increase in viscosity is small even after removal of low boiling components.
    Type: Application
    Filed: April 6, 2007
    Publication date: October 11, 2007
    Inventors: Masashi Ogiwara, Seiji Kita
  • Patent number: 7259221
    Abstract: A silane-modified phenolic resin is prepared by reacting a phenolic compound (e.g., resorcinol) with an aldehyde to produce a phenolic novolak resin. The phenolic novolak resin is further reacted with at least one silane compound to produce the silane-modified phenolic resin. The reaction is typically carried out in the presence of an acid or base catalyst. The resulting resin has a lower softening point and can be used as a methylene acceptor compound in a vulcanizable rubber composition.
    Type: Grant
    Filed: March 18, 2005
    Date of Patent: August 21, 2007
    Inventors: Raj B. Durairaj, C. Michael Walkup, Mark A. Lawrence
  • Publication number: 20070191573
    Abstract: Resol beads are disclosed prepared by reaction of a phenol with an aldehyde, with a base as catalyst, in the presence of a colloidal stabilizer, and optionally a surfactant. The resol beads have a variety of uses, and may be thermally treated and carbonized to obtain activated carbon beads.
    Type: Application
    Filed: November 8, 2006
    Publication date: August 16, 2007
    Inventors: Chester Wayne Sink, Charles Edwan Sumner, Ramesh Chand Munjal, Ruairi Seosamh O'Meadhra, Jerry Steven Fauver, Robert Melvin Schisla, Shriram Bagrodia
  • Publication number: 20070191574
    Abstract: Disclosed are binders including urea-extended phenol-formaldehyde alkaline resole resins to which melamine-containing resin has been added, and non-woven fiber compositions made therewith. The disclosed binders may be cured to low formaldehyde-emission and low trimethylamine-emission, water-resistant thermoset binders.
    Type: Application
    Filed: February 15, 2007
    Publication date: August 16, 2007
    Inventors: William S. Miller, Brian L. Swift, Scott L. Stillabower
  • Patent number: 7241833
    Abstract: A process for production of phenolic novolak which comprises the step of conducting heterogeneous reaction of a phenol with 0.40 to 0.93 mol of an aldehyde per mol of the phenol in the presence of at least 25 parts by mass of a phosphoric acid per 100 parts by mass of the phenol. This process can give in high yield phenolic novolak with the contents of monomeric and dimeric phenols and a degree of dispersion controlled.
    Type: Grant
    Filed: November 15, 2002
    Date of Patent: July 10, 2007
    Assignee: Asahi Organic Chemicals Industry Co.., LTP
    Inventors: Shigeki Inatomi, Noboru Tanoue
  • Patent number: 7217780
    Abstract: There are disclosed, a polyether ketone having a primary particle size of 50 ?m or less; and a method of producing a polyether ketone by a desalting polycondensation, which contains a step of conducting a polymerization reaction under a condition of deposition of the polymer. The polyether ketone obtained by the present invention has small particle size, high molecular weight and sufficiently small content of impurities such as alkali metal components.
    Type: Grant
    Filed: December 10, 2002
    Date of Patent: May 15, 2007
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Masahiro Toriida, Takashi Kuroki, Takaharu Abe, Akira Hasegawa, Kuniyuki Takamatsu, Yoshiteru Taniguchi, Isao Hara, Setsuko Fujiyoshi, Tadahito Nobori, Shoji Tamai
  • Patent number: 7214758
    Abstract: This invention relates to an adhesive composition comprising: an elastomeric latex; a phenol, an aldehyde and an alkylated melamine-formaldehyde resin suitable for use in the adhesion of textile material to rubber. This invention also relates to a method of promoting the adhesion of a textile material to rubber comprising the step of contacting the textile material with an adhesive composition comprising an elastomeric latex; a phenol; an aldehyde; and an alkylated melamine-formaldehyde resin. The adhesive composition of this invention provides equal or better retention of adhesive strength after heat aging.
    Type: Grant
    Filed: April 23, 2004
    Date of Patent: May 8, 2007
    Assignee: Cytec Technology Corp.
    Inventor: Andrei Winkler
  • Patent number: 7196156
    Abstract: A flexibilized resorcinolic novolak resin is prepared by reacting a phenolic compound, such as resorcinol, with an unsaturated dihydroxy, an unsaturated aldehyde, an aliphatic dialdehyde, or a mixture thereof. An aldehyde (different from the unsaturated aldehyde and the aliphatic dialdehyde) is either simultaneously or subsequently added to the reaction mixture. The flexibilized resorcinolic novolak resin can be used in an adhesive composition for enhancing the adhesion between tire cords and rubber for tire applications.
    Type: Grant
    Filed: December 12, 2003
    Date of Patent: March 27, 2007
    Assignee: Indspec Chemical Corporation
    Inventors: Raj B. Durairaj, Mark A. Lawrence
  • Patent number: 7097734
    Abstract: Methods for securing wood members together are disclosed. The methods include the use of an adhesive that quickly cures without heating. Adhesives may be impingement sprayed or splattered onto a contact surface. The methods may be used to form high-strength bonds between wood and/or plastic members in short processing times.
    Type: Grant
    Filed: May 16, 2002
    Date of Patent: August 29, 2006
    Inventor: David A. Hill
  • Patent number: 7081287
    Abstract: A high performance thermoplastic hose useful as a power steering hose, the high performance thermoplastic hose comprising a high performance engineering thermoplastic such as polyurethane and a chlorine-containing polyolefin such as chlorinated polyethylene, chlorinated polypropylene, chlorinated copolymers containing ethylene and propylene, chlorosulfonated polyethylene, chlorosulfonated polypropylene, chlorosulfonated copolymers of ethylene and propylene or mixture thereof, is disclosed. Also disclosed are a method for manufacturing the high performance thermoplastic hose, and a thermoplastic vulcanizate capable of resisting chemical attack and withstanding temperatures up to about 300° F.
    Type: Grant
    Filed: October 2, 2002
    Date of Patent: July 25, 2006
    Assignee: Dayco Products, LLC
    Inventor: Jayanta Bhattacharyya
  • Patent number: 7074877
    Abstract: A resin for use in manufacturing wet friction materials which contributes to enhancing durability of manufactured wet friction materials, a manufacturing method thereof, and a wet friction material having excellent durability are provided. The resin for use in manufacturing wet friction materials can be obtained by reacting phenols with aldehydes in the presence of at least one basic catalyst, which contains a water-soluble phenolic resin as a main component. Further, the manufacturing method of the resin for wet friction materials includes a step of reacting phenols with aldehydes in the presence of at least one basic catalyst to obtain a water-soluble phenolic resin having a predetermined water percentage. Furthermore, the wet friction material is manufactured by impregnating a base material with the resin for wet friction materials.
    Type: Grant
    Filed: December 12, 2002
    Date of Patent: July 11, 2006
    Assignees: Sumitomo Bakelite Company Limited, NSK-Warner K.K.
    Inventors: Hiroshi Aiba, Masahiro Mori
  • Patent number: 7049387
    Abstract: The cure rate of phenol-aldehyde resins is accelerated by conjoint use of a cyclic carbonate cure accelerant and an amine cure accelerant. The cure rate is accelerated still further by addition of a resorcinol source to resin comprising a cyclic carbonate and an amine cure accelerator. Also, cured resins made in accordance with the method.
    Type: Grant
    Filed: October 16, 2001
    Date of Patent: May 23, 2006
    Assignee: Georgia-Pacific Resins, Inc.
    Inventor: Frederick C. Dupre, Jr.
  • Patent number: 7041772
    Abstract: The present invention discloses a process for producing a benzoxazine resin which comprises the steps of reacting a phenol compound, an aldehyde compound and a primary amine in the presence of an organic solvent to synthesize a benzoxazine resin and removing generated condensation water and the organic solvent from a system under heating and a reduced pressure, wherein a pressure in the reaction system at the time of removal is set to 260 mmHg or higher.
    Type: Grant
    Filed: March 12, 2002
    Date of Patent: May 9, 2006
    Assignee: Hitachi Chemical Co., Ltd.
    Inventors: Teruki Aizawa, Yasuyuki Hirai, Syunichi Numata
  • Patent number: 6984710
    Abstract: An alkoxylated alkylphenol-formaldehyde-diamine polymer prepared by alkoxylating an alkylphenol-formaldehyde-diamine polymer and use of the alkoxylated alkylphenol-formaldehyde-diamine polymer to resolve water-in-oil emulsions, especially emulsions of water in crude oil.
    Type: Grant
    Filed: October 13, 2003
    Date of Patent: January 10, 2006
    Assignee: Nalco Energy Services, L.P.
    Inventor: George Richard Meyer
  • Patent number: 6936680
    Abstract: Provided an industrially excellent method of producing a phenol novolak resin having an ortho ratio of 30% or more by: (1) a method of reacting a phenol and an aldehyde using an oxalic acid catalyst at 110 to 160° C. under pressure; or (2) a method of reacting a phenol and an aldehyde under pressure while removing the heat of reaction by a condenser with controlling a pressure so that water or an organic solvent present in the reaction system is refluxed.
    Type: Grant
    Filed: December 4, 2001
    Date of Patent: August 30, 2005
    Assignee: Chang Chun Plastics Co., Ltd.
    Inventors: Noriaki Saito, Ichishi Aizu, Nobuyuki Nakajima, Masahiro Fujiwara, Koji Yano
  • Patent number: 6916505
    Abstract: A water-soluble composition including a water soluble polyamine adduct which is a reaction product of: (a) an alkoxy group modified polyepoxide resin containing an average of at least 1.5 epoxide groups per molecule; and (b) a Mannich base polyamine. The Mannich base polyamine is a reaction product of a polyamine containing at least two amino groups with a N-Mannich condensate prepared from a reaction of a phenolic compound, an aldehyde, and a secondary amine wherein the secondary amine of the N-Mannich condensate is replaced by one of the at least two amino groups of the polyamine, and wherein the ratio of the Mannich base polyamine to the alkoxy group modified polyepoxide resin contains an excess of an active amine hydrogen relative to epoxide groups so that the water soluble polyamine adduct has an amine hydrogen equivalent weight of at most 1000 based on solids content.
    Type: Grant
    Filed: March 4, 2003
    Date of Patent: July 12, 2005
    Assignee: Air Products and Chemicals, Inc.
    Inventors: William R. Raymond, Michael Cook
  • Patent number: 6881356
    Abstract: A process for preparing a solution of sulfone-containing tanning materials comprises a) preparing a component A by a1) reacting phenol with concentrated sulfuric acid, with oleum of an SO3 content of from 20 to 65% by weight or with a mixture of sulfuric acid and oleum of an SO3 content of from 20 to 65% by weight, the molar ratio of total sulfuric acid, reckoned as SO3, to phenol being in the range from 0.7:1 to 1.5:1, at from 100 to 180° C. to form a mixture containing phenolsulfonic acid, dihydroxydiphenyl sulfone and sulfuric acid, or mixing the individual components to prepare a corresponding mixture, a2) then condensing said mixture with from 0.25 to 4 mol of urea and with from 0.5 to 4 mol of an aliphatic aldehyde of 1 to 6 carbon atoms per mole of phenol units present at from 40 to 90° C., a3) optionally adding a base to set a pH of from 4 to 5, b) preparing a component B by b1) reacting dihydroxydiphenyl sulfone with from 0.
    Type: Grant
    Filed: August 16, 2002
    Date of Patent: April 19, 2005
    Assignee: BASF Aktiengesellschaft
    Inventors: Gunther Pabst, Gerhard Wolf, Jürgen Kast, Jürgen Werner
  • Patent number: 6881814
    Abstract: Phenolic resins and processes of making these phenolic resins that are useful for making binders for mineral wool insulation products are disclosed. The addition of a boron salt early in the process of making these phenolic resins leads to enhanced properties such as a reduction in the amount of tetradimers and an improvement in the stability of both the base resin and the pre-react.
    Type: Grant
    Filed: October 7, 2002
    Date of Patent: April 19, 2005
    Assignee: Dynea Canada Ltd.
    Inventors: Kwok Tang, Ruben A. Santos, Bohumila Zapletal
  • Patent number: 6875807
    Abstract: A silane-modified phenolic resin is prepared by reacting a phenolic compound (e.g., resorcinol) with an aldehyde to produce a phenolic novolak resin. The phenolic novolak resin is further reacted with at least one silane compound to produce the silane-modified phenolic resin. The reaction is typically carried out in the presence of an acid or base catalyst. The resulting resin has a lower softening point and can be used as a methylene acceptor compound in a vulcanizable rubber composition.
    Type: Grant
    Filed: May 28, 2003
    Date of Patent: April 5, 2005
    Assignee: Indspec Chemical Corporation
    Inventors: Raj B. Durairaj, C. Michael Walkup, Mark A. Lawrence
  • Patent number: 6864344
    Abstract: Sulfonated condensation products that are stable in storage and have increased thermal stability are based on aminoplastic formers having at least two amino groups or naphthalene and formaldehyde and, optionally include organic nitrogen bases which additionally contain, as nitrogenous formulation auxiliary agents, compounds of general formula (I) R1—NH—X—Y—R2, wherein R1 and R2 independently represent H, —CH3, —C2H5, —C3H7, —(CH2)n—CH2—; X?—CH2, CO, CS; Y?S, NH, —(CH2)m—; n=0 to 9; m=1 to 4; and/or compounds of general formula (II), wherein Z?—OCH3, —SO3—H, —SO3Na+, —NO2, —NH2, —NH—NH2, —CO2—Na+, —CHO. The mole ratio of aminoplastic formers: formaldehyde: sulfite: nitrogenous formulation auxiliary agents rangin from 1:1.9 to 6.0:1.0 to 2.0:0.01 to 1.5 and/or the mole ratio of naphthalene sulfonic acid: formaldehyde; nitrogenous formulation auxiliary agents equals 1:0.7 to 3.0:0.01 to 1.5. Method for preparing these condensation products of using them, e.g.
    Type: Grant
    Filed: September 29, 2000
    Date of Patent: March 8, 2005
    Assignee: SKW Polymers GmbH
    Inventors: Uwe Holland, Martin Matzinger, Johann Plank
  • Publication number: 20040266973
    Abstract: An alkoxylated alkylphenol-arylaldehyde polymer prepared by alkoxylating an alkylphenol-arylaldehyde polymer and use of the alkyoxylated alkylphenol-arylaldehyde polymer to resolve water-in-oil emulsions, especially emulsions of water in crude oil.
    Type: Application
    Filed: June 24, 2003
    Publication date: December 30, 2004
    Inventors: J. Byron Strickland, Paul M. Lindemuth, Grahame N. Taylor
  • Patent number: 6831146
    Abstract: A resin composition for wet friction materials contains as a main component a phenolic resin formed as a result of the reaction between phenols and aldehydes in the presence of a basic catalyst, and a particulate filler having a specific surface area of 35 to 410 m2/g as an additive. A wet friction material is formed using the resin composition for wet friction materials described above as a binder. The thus formed wet friction material exhibits a small initial rate of change in friction coefficient, a large positive gradient of &Dgr;&mgr;-V characteristic, and excellent durability.
    Type: Grant
    Filed: March 31, 2003
    Date of Patent: December 14, 2004
    Assignees: Sumitomo Bakelite Company Limited, NSK-Warner K.K.
    Inventors: Hiroshi Aiba, Masahiro Mori
  • Patent number: 6821530
    Abstract: The invention relates to methods of treating mixtures containing polymeric materials, e.g., collagen, to form a polymer that intercalates into the polymeric material. The treatment provides greater tensile strength to the mixture, among other advantages. The polymer is formed of a monomeric unit having at least one catechol group that is oxidized to a quinone upon polymerization.
    Type: Grant
    Filed: May 19, 2003
    Date of Patent: November 23, 2004
    Assignee: Shriners Hospitals for Children
    Inventors: Thomas J. Koob, Daniel J. Hernandez
  • Patent number: 6806343
    Abstract: A phenol-formaldehyde resole resin for use as a binder for glass fibers is acidified to a pH of 3 or less after base-catalyzed resinification. An increase in actual solids is observed compared with neutralized resin. Phenol-formaldehyde-urea-ammonia resins are surprisingly stable at pH 3 with desirable cure profiles.
    Type: Grant
    Filed: May 31, 2002
    Date of Patent: October 19, 2004
    Assignee: CertainTeed Corporation
    Inventor: Kathleen H. Coventry-Saylor
  • Publication number: 20040192876
    Abstract: A process for forming a planarization film on a substrate that does not smoke or fume on heating includes applying a polymeric solution including a novolac resin having a weight average molecular weight between about 1000 and 3000 amu, which has been fractionated to remove molecules with molecular weight below about 350 amu, a surfactant selected from a group consisting of a non-fluorinated hydrocarbon, a fluorinated hydrocarbon and combinations thereof, and an optional organic solvent to a substrate, followed by heating the substrate.
    Type: Application
    Filed: April 6, 2004
    Publication date: September 30, 2004
    Inventors: Nigel Hacker, Todd Krajewski, Richard Spear
  • Publication number: 20040181026
    Abstract: The present invention provides a rosin modified phenolic resin having a weight average molecular weight of 3,000 to 400,000, which is obtained by reacting a monoester with a polyhydric alcohol and a phenol formaldehyde initial condensate, said monoester being prepared by partially esterifying a rosin and an animal and vegetable oil fatty acid with a monoalcohol, and a method for producing the same. Also the present invention provides a gel varnish comprising the resin, an animal and vegetable oil component, and a gelling agent, and a printing ink comprising the gel varnish. Printing is conducted using the printing ink.
    Type: Application
    Filed: March 9, 2004
    Publication date: September 16, 2004
    Applicant: HARIMA CHEMICALS, INC.
    Inventors: Hiroshi Toyoda, Tadahisa Chiyoda
  • Publication number: 20040167312
    Abstract: A phenol novolak resin has a peak intensity ratio of ortho-ortho bond (o-o)/ortho-para bond (o-p)/para-para bond (p-p) in a resin structure not substantially varying in each molecular weight fraction and has a weight average molecular weight (Mw) of 3000 to 20000 in terms of polystyrene, which peak intensity ratio is detected by 13C-NMR analysis. The phenol novolak resin can form both dense pattern and isolation pattern with good shapes in the formation of a fine resist pattern of not more than 0.35 &mgr;m and has satisfactory sensitivity, definition, and focal depth range properties, and has a resin composition being uniform in each molecular weight fraction. A process for producing the phenol novolak resin, and a positive photoresist composition using the resin are also provided.
    Type: Application
    Filed: February 9, 2004
    Publication date: August 26, 2004
    Applicant: TOKYO OHKA KOGYO CO., LTD.
    Inventors: Ken Miyagi, Yasuhide Ohuchi, Atsuko Hirata, Kousuke Doi, Hidekatsu Kohara, Toshimasa Nakayama
  • Patent number: 6734275
    Abstract: The present invention relates to a method of gluing wood based materials by providing an adhesive system onto wood based materials followed by curing, the adhesive system comprises a urea based amino resin and a hardener composition, wherein the hardener composition comprises an acid and a phenolic resin. The invention also relates to an adhesive system and a hardener composition as well as wood based products obtained by the method or through the use of the adhesive system.
    Type: Grant
    Filed: October 18, 2002
    Date of Patent: May 11, 2004
    Assignee: Akzo Nobel N.V.
    Inventors: Salme Pirhonen, Benyahia Nasli-Bakir, Ingvar Lindh
  • Patent number: 6730769
    Abstract: (i) As a primary reaction, m-cresol is allowed to react with propionaldehyde in the presence of an acid catalyst and thereby yields a polymer having a weight average molecular weight Mw of 200 to 500 and a molecular weight distribution Mw/Mn of 1.7 or less, and (ii) as a secondary reaction, the polymer is allowed to react with 3,4-xylenol and formaldehyde and thereby yields a novolak resin having an Mw of 1000 to 20000. By adding a specific photosensitizer, the novolak resin yields a positive photoresist composition.
    Type: Grant
    Filed: May 1, 2002
    Date of Patent: May 4, 2004
    Assignee: Tokyo Ohka Kogyo Co., Ltd.
    Inventors: Akira Katano, Mitsuo Hagihara, Ken Miyagi, Toshiaki Tachi