Abstract: A stroke detection system operative to detect strokes suffered by mobile communication device users, the system including a hardware processor operative in conjunction with a mobile communication device having at least one built-in sensor. The hardware processor is configured to, repeatedly and without being activated by the device's user, compare data derived from the at least one sensor to at least one baseline value for at least one indicator of user well-being, stored in memory accessible to the processor and/or make a stroke risk level evaluation; and/or perform at least one action if and only if the stroke risk level is over a threshold.
Type:
Grant
Filed:
March 10, 2020
Date of Patent:
September 12, 2023
Assignee:
CELLOSCOPE LTD.
Inventors:
Yuval Naveh, Shahar Davidson, Tomer Shussman
Abstract: An analytical toilet comprising a bowl for receiving excreta from a user; a flush mechanism for cleaning the bowl after use; at least one analytical test device wherein a sample of excreta is analyzed; a manifold comprising conduits and valves for distributing one or more fluids to and from the at least one receptacle; and a digital control device controlling the valves to distribute the sample to the analytical test device for analysis; and distribute fluid to remove the sample from the analytical test device after analysis and to clean the analytical test device is disclosed.
Type:
Grant
Filed:
March 6, 2020
Date of Patent:
September 5, 2023
Assignee:
Hall Labs LLC
Inventors:
David R. Hall, David Crismon, Joshua Larsen, Jared Reynolds, Kevin Jeffrey Campbell
Abstract: A monitoring apparatus is provided. A strip includes a first end section, a second end section opposite the first end section, and a midsection between the first end section and the second end section, and further includes a first surface and a second surface. An adhesive covers a portion of the first surface of the strip. Only two electrocardiographic electrodes are included. A flexible circuit is mounted to the second surface of the strip. An accelerometer, a respiratory sensor, and a wireless transceiver are provided on the second surface of the strip. A processor is positioned over a portion of the flexible circuit and coupled to the electrodes and the wireless transceiver.
Type:
Grant
Filed:
May 9, 2022
Date of Patent:
September 5, 2023
Assignee:
BARDY DIAGNOSTICS, INC.
Inventors:
Gust H. Bardy, Jon Mikalson Bishay, Jason Felix
Abstract: According to an embodiment, a method for diagnosing traumatic brain injury (TBI) in a subject may include repeatedly measuring heart rate variability (HRV) in the subject and a plurality of HRV altering variables; calculating an HRV fingerprint based on the subject's measured HRV and the measured plurality of HRV altering variables; generating a predicted HRV of the subject based on the HRV fingerprint; and diagnosing a TBI in the subject when the measured HRV of the subject deviates from the predicted HRV of the subject.
Abstract: A method includes collecting a plurality of bipolar electrograms and respective unipolar electrograms of patients, the electrograms including annotations in which one or more human reviewers have identified and marked a window-of-interest and one or more activation times inside the window-of-interest. A ground truth data set is generated from the electrograms, for training at least one electrogram-preprocessing step of a Machine Learning (ML) algorithm. The ML algorithm is applied to the electrograms, to at least train the at least one electrogram-preprocessing step, so as to detect an occurrence of an activation in a given bipolar electrogram within the window-of-interest.
Abstract: A medical information processing apparatus according to an embodiment includes a processing circuitry. The processing circuitry is configured: to receive an input of first transition data indicating a transition up to the present time of a biological index value exhibiting a condition of a patient and second transition data indicating a transition up to the present time of a treatment means implemented on the patient; to set a goal value of the biological index value as a treatment index value; and to predict a time at which the biological index value of the patient will reach the treatment index value, on the basis of such first transition data and second transition data of one or more past patients different from the patient that have characteristics similar to characteristics of the first transition data and the second transition data of the patient.
Abstract: An electrophysiology system including signal channels each of which processes an electrophysiological signal along a signal path extending from an input port that receives the analog electrophysiological signal, via an adjustable gain element that amplifies the electrophysiological signal, and via an ADC element that converts the analog signal into a corresponding digital signal, to an output port. The system further includes a monitoring element that generates a monitoring signal representative of a DC component of the electrophysiological signal and a gain control element that generates a control signal responsive to the monitoring signal. The control signal controls the gain setting of the gain element to cause a decrease in gain, if an increase in the magnitude of the DC component is determined; and/or an increase in gain, if a decrease in the magnitude of the DC component is determined.
Type:
Grant
Filed:
March 12, 2019
Date of Patent:
August 29, 2023
Assignee:
CathVision ApS
Inventors:
Sigge Nejst Larsen, Victor Shadbolt, David P. MacAdam, Harold Wodlinger
Abstract: To improve convenience of a biopotential detector. A support includes a lower surface and an upper surface. A first detection electrode is exposed on the lower surface. A first signal terminal is exposed on the upper surface and is electrically connected to the first detection electrode. A secondary battery and a charging circuit are supported in the support. A positive electrode terminal is exposed on the upper surface and is electrically connected to the secondary battery. A gel member covering the first detection electrode is attachable/detachable to/from the lower surface. A signal processing device having a connecting part is attachable/detachable to/from the upper surface. When the signal processing device is attached to the upper surface, the first signal terminal and the positive electrode terminal are connected to the connecting part.
Abstract: A method is proposed for recording diagnostic measurement data of a head of an examination object in head imaging via a magnetic resonance device. The method comprises performing an overview scan of the head of the examination object, wherein overview measurement data is acquired in the overview scan and performing various diagnostic scans of the head of the examination object based on the acquired overview measurement data, wherein diagnostic measurement data is acquired in the various diagnostic scans.
Type:
Grant
Filed:
August 23, 2021
Date of Patent:
August 22, 2023
Assignees:
Siemens Healthcare GmbH, The General Hospital Corporation
Abstract: The present technology relates to an information processing system, a recording medium, and an information processing method which are capable of transmitting information to persons who are considered to be worthy of the transmission. An information processing system according to an aspect of the present technology stores position information indicating a position of a device of a user and date information at which position measurement is performed in correlation with each other, forms a community including users who leave a movement trajectory satisfying a predetermined condition at the periphery of a specific location on the basis of a user's movement history indicated by the stored information, and distributes a message input through a specific interface to users who pertain to the community. The present technology is applicable to a device such as an electronic signboard that is installed at a specific location.
Abstract: Provided is a method of detecting the R peak of an electrocardiogram (ECG) signal using an adaptive median filter. The method includes allowing an ECG signal (hereinafter, referred to as a first ECG signal) received from an ECG signal measuring apparatus having a predetermined sampling rate to pass through an adaptive median filter, calculating a difference value between the first ECG signal and a signal (hereinafter, referred to as a second ECG signal) passing through the adaptive median filter, extracting R peak candidate groups by applying a maximum filtering size and an adaptive threshold applicable in the adaptive median filter to the calculated difference value between the first and second ECG signals, and detecting an R peak candidate group having a maximum value among the R peak candidate groups as an R peak.
Type:
Grant
Filed:
September 15, 2021
Date of Patent:
August 22, 2023
Assignee:
ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
Inventors:
Tae Wuk Bae, Kee Koo Kwon, Kyu Hyung Kim
Abstract: A method to optimize analyzer use in a laboratory having a plurality of analyzers based on laboratory workload is presented. The method comprises determining current laboratory workload, calculating workload capability of the plurality of analyzers minus one analyzer if the current laboratory workload is below a threshold criteria and if there are two or more analyzers in the plurality of analyzers, masking one of the plurality of analyzers if the current workload is met by the plurality of analyzers minus one analyzer, proceeding with current workload, and repeating the above steps until the current laboratory workload has been completed.
Abstract: In an embodiment of this invention, in a learning phase, a state estimation device acquires activity state data and biometric data at that time from user terminals of a plurality of users, generates a regression formula representing the relationship between the biometric data and the activity state data using a regression analysis method on the basis of these pieces of measurement data, and calculates a difference between the coefficients of the regression formula of all users and each user to generate a coefficient correction regression formula representing a relationship between the difference of the coefficient and an average value of the biometric data.
Type:
Grant
Filed:
August 21, 2019
Date of Patent:
August 15, 2023
Assignee:
NIPPON TELEGRAPH AND TELEPHONE CORPORATION
Inventors:
Akihiro Chiba, Naoki Asanoma, Kazuhiro Yoshida
Abstract: A monitoring system includes a wearable patch device configured to be secured to a body of a patient, the wearable patch device comprising a patch body, a first discrete transducer associated with a first position of the patch body, a second discrete transducer associated with a second portion of the patch body, and a wireless transmitter, and electronics including one or more processors and one or more memory devices and configured to receive signals based on transducer readings of the first and second discrete transducers and determine an amount of blood flow through one or more valves of a heart of the patient based on the signals.
Abstract: Techniques for triggering the storage or transmission of cardiac electrogram (EGM) signals associated with a premature ventricular contractions (PVC) include sensing a cardiac EGM signal of a patient via a plurality of electrodes, detecting a premature ventricular contraction (PVC) within the cardiac EGM signal, determining whether PVC storage criteria is met, in response to a determination that the PVC storage criteria is met, storing a portion of the cardiac EGM signal associated with the PVC, and in response to a determination that the PVC storage criteria is not met, eschewing storing the portion of the cardiac EGM signal associated with the PVC.
Type:
Grant
Filed:
July 6, 2020
Date of Patent:
August 8, 2023
Assignee:
Medtronic, Inc.
Inventors:
John E. Burnes, Shantanu Sarkar, Gautham Rajagopal
Abstract: An apparatus for generating ECG recordings and a method for using the same are disclosed. The apparatus includes a handheld device having four electrodes on an outer surface thereof, the handheld device having an extended configuration and a storage configuration. The apparatus also includes a controller configured to measure signals between the electrodes to provide signals that are used to generate an ECG recording selected from the group consisting of standard lead traces and precordial traces. When the handheld device is in the extended configuration and the first and second electrodes contact a first hand of a patient such that the first and second electrodes contact different locations on the first hand, the third electrode is in contact with a location on the patient's other hand and the fourth electrode contacts a point on the patient's body that depends on the particular trace being measured.
Abstract: A system for synchronizing application of treatment signals with a cardiac rhythm is provided. The system includes a memory that receives and stores a synchronization signal indicating that a predetermined phase such as R-wave of a cardiac rhythm of a patient has started. A synchronization module analyzes whether the stored synchronization signal is erroneous and if so, prevents a medical treatment device from applying a treatment energy signal such as an IRE pulse to a patient to take into account an irregular heart beat and noise in the synchronization signal in order to maximize safety of the patient.
Type:
Grant
Filed:
November 23, 2020
Date of Patent:
July 25, 2023
Assignee:
AngioDynamics, Inc.
Inventors:
Peter Callas, James Lovewell, Bradley C. Stribling, Dave Warden
Abstract: An electrocardiography patch is provided. A backing includes an elongated strip with a midsection connecting two rounded ends. The midsection tapers in from each end and is narrower than each of the two ends. An electrode is positioned on each end of the backing on a contact surface to capture electrocardiographic signals. A circuit trace electrically is coupled to each of the electrodes in the pair. A battery is provided on an outer surface of the backing opposite the contact surface. Memory is provided on the outer surface of the backing to store data regarding the electrocardiographic signals. A processor is powered by the battery to write the data into the memory.
Type:
Grant
Filed:
December 14, 2020
Date of Patent:
July 18, 2023
Assignee:
Bardy Diagnostics, Inc.
Inventors:
Jon Mikalson Bishay, Gust H. Bardy, Jason Felix
Abstract: A probe device includes an optical device including at least one of a photodetector or a first light source. A cover structure is included and is arranged in front of the optical device. The cover structure includes an electrode which contacts, in use, a body tissue.
Type:
Grant
Filed:
March 19, 2020
Date of Patent:
July 11, 2023
Assignee:
STMicroelectronics S.r.l.
Inventors:
Vincenzo Vinciguerra, Piero Fallica, Mario Francesco Romeo
Abstract: An implantable medical device is disclosed. A housing includes a hollow body forming a first electrode on an outer surface with end caps affixed to opposite ends, one end cap forming a second electrode. A microcontroller circuit is provided and includes a microcontroller operable under program instructions stored within a non-volatile memory device. An analog front end is interfaced to the electrodes to sense electrocardiographic signals. A transceiver circuit is operable to wirelessly communicate with an external data device. The program instructions define instructions to continuously sample the electrocardiographic signals into the non-volatile memory device and to offload the non-volatile memory device to the external data device. A receiving coil and a charging circuit are operable to charge an onboard power source for the microcontroller circuit.
Type:
Grant
Filed:
July 15, 2020
Date of Patent:
July 11, 2023
Assignee:
Bardy Diagnostics Inc.
Inventors:
Jason Felix, Joshua Djon Green, Corey B. Williamson, Gust H. Bardy
Abstract: A system comprising a pair of devices to enable communication between a first person and a second person; a body-suit to be worn by the first person; and a model replica of the body-suit configured to receive the tactile stimuli and/or the electrical stimuli from the second person and to convert the tactile stimuli and/or the electrical stimuli into the electrical signals which are conveyed to the body-suit over a network; wherein the body-suit is configured to replicate the tactile stimuli and/or the electrical stimuli of the model replica and convey the tactile stimuli and/or the electrical stimuli to the first person; and wherein the system allows a human to send a physical sensation of touch remotely to another human.
Type:
Grant
Filed:
March 15, 2021
Date of Patent:
July 4, 2023
Inventors:
Neil S. Davey, Sonya Davey, Samir Devalaraja, Sanjay Kunchakarra
Abstract: An abnormality diagnostic device includes a diagnoser configured to diagnose a type of abnormality that occurs in an abnormality diagnostic target on the basis of differences between abnormality simulation results for each type of abnormalities obtained by simulating a plurality of types of abnormalities in the abnormality diagnostic target and a plurality of time-series observation results obtained by observing the abnormality diagnostic target in time series using a plurality of detectors.
Abstract: Provided is an exacerbation prediction device equipped with a respiration sensing means of continuously sensing respiration data of a patient, a calculation means of calculating stable respiration data that are respiration data during a condition in which a respiratory rate is lowered and stable for a certain period of time from the sensed continuous respiration data of the patient, and a prediction means of predicting occurrence of an acute exacerbation in the patient in accordance with the stable respiration data calculated during a certain period of time.
Abstract: A bow shaped pulse meter for new-born patients, comprising a control unit arranged in a central portion of the pulse meter, a first arm with an integrated first electrode and a second arm with an integrated second electrode extending respectively in a bow from opposite sides of the central portion, the integrated electrodes are configured to be in contact with a patient body (not shown) when in use, the electrodes being further electrically connected to the control unit.
Abstract: An intracardiac ventricular pacemaker is configured to operate in in a selected one of an atrial-tracking ventricular pacing mode and a non-atrial tracking ventricular pacing mode. A control circuit of the pacemaker determines at least one motion signal metric from the motion signal, compares the at least one motion signal metric to pacing mode switching criteria, and, responsive to the pacing mode switching criteria being satisfied, switches from the selected one of the non-atrial tracking pacing mode and the atrial tracking pacing mode to the other one of the non-atrial tracking pacing mode and the atrial tracking pacing mode for controlling ventricular pacing pulses delivered by the pacemaker.
Type:
Grant
Filed:
November 30, 2020
Date of Patent:
June 27, 2023
Assignee:
Medtronic, Inc.
Inventors:
Todd J. Sheldon, Yong K. Cho, Wade M. Demmer, Mark K. Erickson, Vincent E. Splett
Abstract: An X-ray fluoroscopic imaging apparatus which can accurately perform enhancement processing of a device and can also reduce a burden on an operator is provided. An exclusion region E is set so as to surround an obstacle on an X-ray image generated by an image generation unit. A marker extraction unit extracts a marker from a region except for an exclusion region in the X-ray image. An integration unit superimposes a predetermined number of X-ray images on the basis of the position of the marker to generate an integrated image. In this case, detecting obstacle as a marker can be avoided, so the integrated image becomes an image with a stent suitably highlighted. Even in cases where it is difficult to set the region-of-interest so that an obstacle falls out of the range, such as a case in which an obstacle overlaps or is in proximity to a stent, it is easy to set the exclusion region so that the marker is out of range and the obstacle falls within the range.
Abstract: An analytical toilet comprising a bowl adapted to receive excreta; one or more conduits for transporting a sample from the bowl; one or more fluid sources in fluid connection with the one or more conduits; and one or more microfluidic chips, comprising at least one fluid inlet; at least one fluid outlet; and a sensor configured to detect at least one property of an excreta sample is disclosed.
Type:
Grant
Filed:
March 6, 2020
Date of Patent:
June 27, 2023
Assignee:
Medic, Inc.
Inventors:
David R. Hall, David Crismon, Kevin Jeffrey Campbell
Abstract: A system and method for remote ECG data streaming in real-time is provided. A continuous connection is established between a cloud-based server and a physiological monitor. The physiological monitor includes at least two electrodes and is affixed to a chest of a patient or implanted within the patient. ECG data is collected via one or more of the electrodes and encrypted via a wireless interface on the physiological monitor using a secret key stored on the physiological monitor. The encrypted ECG data is transmitted from the cloud-based server and received on a computing device in real-time.
Abstract: A noise-separating cardiac monitor is provided. An implantable housing includes an external surface. A wireless antenna is shaped to wrap around an interior periphery of the implantable housing. Electrodes are provided on a ventral surface of the implantable housing to capture P-wave signals and R-wave signals. Electronic circuitry is provided within the wearable housing and includes a low power microcontroller. A front end circuit includes a signal lead operable to sense cardiac electrical potentials through one of the electrodes, a reference lead operable to sense the cardiac electrical potentials through another electrode, and a reference generator configured to inject a driven reference to the reference lead. The signal lead includes a coupling capacitor and a protection resistor associated with thermal noise. The thermal noise is not contained in the driven reference and not introduced to the reference lead. A non-volatile memory is electrically interfaced with the microcontroller.
Abstract: A stick-on biosensor capable of acquiring satisfactory biological information is provided. The stick-on biosensor includes a pressure-sensitive adhesive layer and an electrode part, said pressure-sensitive adhesive layer having a stick-on surface to be attached to a subject; a base material layer provided on the side opposite the stick-on surface of the pressure-sensitive adhesive layer; and an electronic device provided on the base material layer and configured to process a biological signal acquired through the electrode part. A structure, which includes the pressure-sensitive adhesive layer, the electrode part, and the base material layer, has a flexural rigidity of 0.010 [MPa·mm3/mm] or higher, and an adhesive strength of the electrode part to adhere to the subject is greater than 0.6 [N/cm2] and less than or equal to 5.0 [N/cm2].
Abstract: The technology involves scaffold structures used for in-ear sensor systems. Such systems that can perform biometric signal detection or act as a human-computer interface. Scaffolding arrangements minimize the amount of material placed in the ear while providing a secure fitting device that can be worn for hours, days or longer in order to provide maximal benefit to the wearer. The scaffolding includes a “C”-shaped arcuate curvature for at least part of the housing. This configuration can act as a natural leaf spring to help maintain the housing in contact with different points along the ear. Sensors are located along various points of the scaffolding for use in different diagnostic situations. Different components of an on-board sensor input and processing system can be distributed along different parts of the scaffolding. Such structures beneficially minimize ambient sound occlusion and avoid the need of an exterior strap or clip worn around the ear.
Type:
Grant
Filed:
May 7, 2020
Date of Patent:
June 20, 2023
Assignee:
NextSense, Inc.
Inventors:
Nick Robertson, Russell Mirov, John Stivoric
Abstract: Systems and methods are provided for analyzing electrocardiogram (ECG) data of a patient using a substantial amount of ECG data. The systems receive ECG data from a sensing device positioned on a patient such as one or more ECG leads/electrodes that may be integrated in a smart device. The system may include an application that communicates with an ECG platform running on a server(s) that processes and analyzes the ECG data, e.g., using neural networks, to detect and/or predict various abnormalities, conditions and/or descriptors. The system may also determine a confidence score corresponding to the abnormalities, conditions and/or descriptors. The processed ECG data is used to generate a graphic user interface that is communicated from the server(s) to a computer for display in a user-friendly and interactive manner with enhanced accuracy.
Type:
Grant
Filed:
August 9, 2021
Date of Patent:
June 20, 2023
Assignee:
CARDIOLOGS TECHNOLOGIES SAS
Inventors:
Julien Fontanarava, Gregoire De Masse, Jia Li, Chiara Scabellone
Abstract: According to an aspect there is provided a method of determining a calibration parameter for a first blood pressure, BP, measurement device, the method comprising obtaining a first physiological characteristic measurement of a subject using the first BP measurement device, wherein the first BP measurement device is for obtaining physiological characteristic measurements of a physiological characteristic of the subject and for determining a BP measurement of the subject from the physiological characteristic measurements using the calibration parameter, wherein the first physiological characteristic measurement is obtained when a torso of the subject is in a first posture; obtaining a second physiological characteristic measurement of the subject using the first BP measurement device, wherein the second physiological characteristic measurement is obtained when the torso of the subject is in a second, different, posture; determining the change in the posture of the torso from the first posture to the second post
Type:
Grant
Filed:
December 5, 2017
Date of Patent:
June 20, 2023
Assignee:
KONINKLIJKE PHILIPS N.V.
Inventors:
Laurentia Johanna Huijbregts, Jens Muehlsteff, Lars Schmitt
Abstract: The device for locating cardiac arrhythmias comprises a three-dimensional reconstruction of the patient's torso and a number of surface electrodes, wherein the three-dimensional reconstruction of the patient's torso is generated through a number of images obtained by means of at least one camera. In particular, the device comprises elements for locating the surface electrodes, which detect the position of the electrodes with respect to the patient's torso, and data processing elements that generate, on the basis of the three-dimensional reconstruction and the position of the electrodes, a surface electrocardiographic map, and said surface electrocardiographic map has a number of data corresponding to readings of the surface electrodes related to areas of the three-dimensional reconstruction.
Type:
Grant
Filed:
October 29, 2015
Date of Patent:
June 13, 2023
Assignees:
FUNDACION PARA LA INVESTIGACION BIOMEDICA DEL HOSPITAL GREGORIO MARANON, UNIVERSITAT POLITECNICA DE VALENCIA
Inventors:
Andreu Martinez Climent, Felipe Atienza Fernandez, Angel Arenal, Francisco Fernandez Aviles, Maria S. Guillem Sanchez
Abstract: The present disclosure relates to an implantable medical device, in particular a cardiac defibrillator, comprising an implantable defibrillator configured to generate an electrical defibrillation signal, an implantable electrode connected with the implantable defibrillator by a lead and configured to deliver the electrical defibrillation signal to a patient, an implantable sensor configured to detect mechanical vibrations by the heart of the patient and to provide a detection signal based on the detected mechanical vibrations, and a controller configured to analyze the detection signal to determine at least one parameter characterizing the mechanical vibrations and to initiate a defibrillation operation of the implantable defibrillator based on the determined parameter characterizing the mechanical vibrations.
Abstract: A wearable electrode includes an electrode (203) fixed to garment (21) such that the electrode (203) can simultaneously come in contact with the skin of respective parts from the ventral side to the dorsal side of the upper left part of the body of a wearer (20), and an electrode (204) fixed to the garment such that the electrode (204) can simultaneously come in contact with the skin of respective parts from the ventral side to the dorsal side of the upper right part of the body of the wearer (20). The electrodes (203, 204) are installed such that the attaching positions gradually descend from the ventral side to the dorsal side with the wearer (20) standing upright, or the attaching positions gradually ascend from the ventral side to the dorsal side with the wearer (20) standing upright.
Type:
Grant
Filed:
October 16, 2017
Date of Patent:
May 30, 2023
Assignees:
NIPPON TELEGRAPH AND TELEPHONE CORPORATION, TORAY INDUSTRIES, INC.
Abstract: A method for administering stimulations to a sleeping subject is provided. The method includes obtaining brain wave data generated based on brain wave activity of the subject over a predetermined time frame and determining a spectral power ratio of a spindle band to delta and theta bands of the brain wave data at a time within the predetermined time frame. The spectral power ratio and brain wave data are sent to the input of a pretrained deep neural network to generate a probability score that sleep spindles are being detected in the brain wave activity. The method may continue to obtain brain wave data and analyze the data using the pretrained deep neural network. A determination that sleep spindles are detected may be made when the probability score is above a predetermined threshold score for a predetermined threshold period of time.
Type:
Grant
Filed:
October 2, 2019
Date of Patent:
May 30, 2023
Assignee:
NEW YORK UNIVERSITY
Inventors:
Zhe S. Chen, Prathamesh M. Kulkarni, Zhengdong Xiao, Jing Wang
Abstract: Physiological monitoring can be provided through a lightweight wearable monitor that includes two components, a flexible extended wear electrode patch and a reusable monitor recorder that removably snaps into a receptacle on the electrode patch. The wearable monitor sits centrally (in the midline) on the patient's chest along the sternum oriented top-to-bottom. The placement of the wearable monitor in a location at the sternal midline, with its unique narrow “hourglass”-like shape, significantly improves the ability of the wearable monitor to cutaneously sense cardiac electrical potential signals, particularly the P-wave and, to a lesser extent, the QRS interval signals indicating ventricular activity in the ECG waveforms. Additionally, the monitor recorder includes an ECG sensing circuit that measures raw cutaneous electrical signals and performs signal processing prior to outputting the processed signals for sampling and storage.
Type:
Grant
Filed:
September 19, 2022
Date of Patent:
May 30, 2023
Assignee:
BARDY DIAGNOSTICS, INC.
Inventors:
Jason Felix, Jon Mikalson Bishay, Gust H. Bardy
Abstract: A system for providing a standard electrocardiogram (ECG) signal for a human body using contactless ECG sensors for outputting to exiting medical equipment or for storage or viewing on a remote device. The system comprises a digital processing module (DPM) adapted to connect to an array of contactless ECG sensors provided in a fabric or the like. A selection mechanism is embedded into the DPM which allows the DPM to identify body parts using the ECG signals of the different ECG sensors and select for each body part the best sensor lead. The DPM may then produce the standard ECG signal using the selected ECG signals for the different body parts detected. The system is adapted to continuously re-examine the selection to ensure that the best leads are selected for a given body part following a movement of the body part, thereby, allowing for continuous and un-interrupted ECG monitoring of the patient.
Type:
Grant
Filed:
February 1, 2021
Date of Patent:
May 23, 2023
Assignee:
RR SEQUENCES INC.
Inventors:
Deepak Bobby Jain, Joshua Weeks, David Nadezhdin, Jean-Francois Asselin
Abstract: A physiological signal collection electrode comprising a signal collection portion, a signal output terminal and a signal transmission portion interconnecting the signal collection portion and the signal output terminal, wherein the signal collection portion comprises a signal collection pad and the signal transmission portion comprises a signal transmission pad, wherein the signal collection portion and the signal transmission portion are integrally formed into an elongate and conductive electrode pad which extends in a longitudinal direction along a longitudinal axis; wherein the signal collection portion has a signal collection surface for making abutment contact with a signal surface and the signal collection surface is parallel to the longitudinal axis; and wherein the signal output terminal is parallel to the signal collection surface, extends transversely to the longitudinal axis and protrudes above the signal collection surface.
Abstract: An electrocardiography device is provided, including an adhesive assembly, a printed circuit board, two electrodes, a power supply assembly, and a sensing assembly. The printed circuit board is disposed on the adhesive assembly. The electrodes are connected to the circuit board and arranged along a first direction. The power supply assembly and the sensing assembly are disposed on the adhesive assembly and arranged along a second direction. The first direction is different from the second direction, and the power supply assembly is separate from the sensing assembly.
Abstract: Described herein are methods, devices, and systems that improve arrhythmia episode detection specificity, such as, but not limited to, atrial fibrillation (AF) episode detection specificity. Such a method can include obtaining an ordered list of R-R intervals within a window leading up to a detection of a potential arrhythmia episode, determining a measure of a dominant repeated R-R interval pattern within the window, and comparing the measure of the dominant repeated R-R interval pattern to a pattern threshold. If the measure of the dominant repeated R-R interval pattern is below the pattern threshold, that is indicative of a regularly irregular pattern being present, and there is a determination that the detection of the potential arrhythmia episode does not correspond to an actual arrhythmia episode. Such embodiments can beneficially be used to significantly reduce the number of false positive arrhythmia detections.
Abstract: Systems, methods, and interfaces are described herein for identification of effective electrodes to be used in sensing and/or therapy. Two or more portions of a signal monitored using an electrode may be compared to determine whether the electrode is effective. The two or more portions may correspond to the same portion or window of a cardiac cycle. Further, signals from a first electrode and from a second electrode located proximate the first electrode may be compared to determine whether one or both of the electrodes are effective.
Abstract: A system and method for facilitating a cardiac rhythm disorder diagnosis with the aid of a digital computer is provided. Cutaneous action potentials of a patient are recorded over a set period of time as ECG data and a difference between recording times of successive pairs of R-wave peaks are recorded as R-R intervals. A heart rate is associated with each time difference. An R-R interval plot of the ECG data is generated. A presence of a cardiac event is displayed by presenting a presence of sinus tachycardia or a presence of bradycardia via the R-R interval plot.
Abstract: Some aspects relate to systems, devices, and methods of assessing heart rate recovery. A heart rate of a patient may be measured during a plurality of heart rate recovery events. Each of the plurality of heart rate recovery events comprises a duration of time after an activity resulting in an elevated heart rate. Heart rate recovery information may be determined based on the measured heart rate during each of the plurality of heart rate recovery events and a cardiac status of the patient may be generated from the determined heart rate recovery information over the plurality of heart rate recovery events.
Type:
Grant
Filed:
June 23, 2020
Date of Patent:
May 9, 2023
Assignee:
Medtronic, Inc.
Inventors:
Paul D. Ziegler, Shantanu Sarkar, Eduardo Warman
Abstract: A system and a method for identifying a patient with a threshold number of distinct ECG abnormalities. The system and the method include an ECG monitoring device; a server; a database; a network; a memory containing machine readable medium comprising a machine executable code having stored thereon instructions for identifying patients with a threshold number of distinct ECG abnormalities; and a processor coupled to the memory, the processor configured to execute the machine executable code to cause the processor to: receive an ECG data output from the ECG monitoring device; process the ECG data output to identify abnormalities in the ECG data; and analyze the abnormalities in the ECG data in order to output an indication of whether the patient has depressed LVEF, wherein the ECG monitoring device, the server, the database, the memory, and the processor are coupled to the network via communication links.
Abstract: The present invention relates to a physiological monitoring device. Some embodiments of the invention allow for long-term monitoring of physiological signals. Further embodiments may also allow for the monitoring of secondary signals such as motion.
Type:
Grant
Filed:
February 10, 2020
Date of Patent:
April 18, 2023
Assignee:
iRhythm Technologies, Inc.
Inventors:
Timothy J. Bahney, Hung H. Ho, Shena H. Park, Genaro S. Sepulveda, Mark J. Day, Yuriko Tamura
Abstract: Systems and methods for predicting a patient specific risk of cardiac events for cardiac arrhythmia are provided. A medical image sequence of a heart of a patient is received. Cardiac function features are extracted from the medical image sequence. Additional features are extracted from patient data of the patient. A patient specific risk of a cardiac event is predicted based on the extracted cardiac function features and the extracted additional features.
Abstract: An implantable system for stimulating a human heart or an animal heart contains a processor, a memory unit, an atrial stimulation unit, and a detection unit for detecting atrial tachycardia. The system is characterized in that the memory unit stores a computer-readable program, which prompts the processor to carry out the following steps when the program is being executed on the processor: a) detecting by way of the detection unit whether atrial tachycardia to be treated is present in a human heart or an animal heart; b) when atrial tachycardia to be treated is present, applying atrial antitachycardia pacing by way of the atrial stimulation unit; and c) after the atrial antitachycardia pacing has been applied, carrying out an atrial post-treatment stimulation, the post-treatment stimulation being configured to be within a range of 1 minute up to 7 days.
Type:
Grant
Filed:
March 31, 2020
Date of Patent:
April 18, 2023
Assignee:
BIOTRONIK SE & Co. KG
Inventors:
Thomas Doerr, Sergey Ershov, Torsten Radtke, Martin Roemer, Ingo Weiss
Abstract: A wearable device and methods for providing a wearable device are disclosed. In a first aspect, the wearable device comprises at least one power source, one computer controller and a plurality of instruments that when worn on a user access physiological data from at least the user axilla. The wearable device monitors one or more or a combination of body temperature, pulse, R-R interval, respiration rate, pulse ox (SpO2), sleep, movement included fall detection. The device stores, processes and communicates collected or processed data to an external computer system. A software system provides summary information, reporting and alarms based on data collected by the one or more instruments.