Nanowire Or Quantum Wire (axially Elongated Structure Having Two Dimensions Of 100 Nm Or Less) Patents (Class 977/762)
  • Publication number: 20140001441
    Abstract: A nanowire device having a plurality of internal spacers and a method for forming said internal spacers are disclosed. In an embodiment, a semiconductor device comprises a nanowire stack disposed above a substrate, the nanowire stack having a plurality of vertically-stacked nanowires, a gate structure wrapped around each of the plurality of nanowires, defining a channel region of the device, the gate structure having gate sidewalls, a pair of source/drain regions on opposite sides of the channel region; and an internal spacer on a portion of the gate sidewall between two adjacent nanowires, internal to the nanowire stack. In an embodiment, the internal spacers are formed by depositing spacer material in dimples etched adjacent to the channel region. In an embodiment, the dimples are etched through the channel region. In another embodiment, the dimples are etched through the source/drain region.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Inventors: Seiyon Kim, Kelin J. Kuhn, Tahir Ghani, Anand S. Murthy, Mark Armstrong, Rafael Rios, Abhijit Jayant Pethe, Willy Rachmady
  • Patent number: 8617967
    Abstract: A vertically oriented nanometer-wires structure is disclosed. The vertically oriented nanometer-wires structure includes a non-crystalline base and many straight nanometer-wires. The straight nanometer-wires are uniformly distributed on the non-crystalline base, and the angle between each of the straight nanometer-wire and the non-crystalline base is 80-90 degrees. The straight nanometer-wires structure can be widely applied in semiconductor, optoelectronic, biological and energy field. What is worth to be noticed is that the non-crystalline base can be glass, ceramics, synthetic, resin, rubber or even metal foil, and the straight nanometer-wires and the non-crystalline base are still orthogonal to each other.
    Type: Grant
    Filed: November 3, 2010
    Date of Patent: December 31, 2013
    Assignee: Tunghai University
    Inventor: Hsi-Lien Hsiao
  • Publication number: 20130341596
    Abstract: A complimentary metal oxide semiconductor (CMOS) device includes a wafer having a buried oxide (BOX) layer having a first region with a first thickness and a second region with a second thickness, the first thickness is less than the second thickness, a nanowire field effect transistor (FET) arranged on the BOX layer in the first region, the nanowire FET, and a finFET arranged on the BOX layer in the second region.
    Type: Application
    Filed: July 13, 2012
    Publication date: December 26, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Josephine B. Chang, Chung-Hsun Lin, Jeffrey W. Sleight
  • Publication number: 20130341658
    Abstract: A light-emitting device includes a first conductive semiconductor layer formed on a substrate, a mask layer formed on the first conductive semiconductor layer and having a plurality of holes, a plurality of vertical light-emitting structures vertically grown on the first conductive semiconductor layer through the plurality of holes, a current diffusion layer surrounding the plurality of vertical light-emitting structures on the first conductive semiconductor layer, and a dielectric reflector filling a space between the plurality of vertical light-emitting structures on the current diffusion layer.
    Type: Application
    Filed: April 30, 2013
    Publication date: December 26, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Dong-hoon LEE, Geon-wook YOO, Nam-goo CHA, Kyung-wook HWANG
  • Publication number: 20130342221
    Abstract: Metal nanowires, such as silver nanowires coated on a substrate were sintered together to form fused metal nanowire networks that have greatly improved conductivity while maintaining good transparency and low haze. The method of forming such a fused metal nanowire networks are disclosed that involves exposure of metal nanowires to various fusing agents on a short timescale. The resulting sintered network can have a core-shell structure in which metal halide forms the shell. Additionally, effective methods are described for forming patterned structure with areas of sintered metal nanowire network with high conductivity and areas of un-sintered metal nanowires with low conductivity. The corresponding patterned films are also described.
    Type: Application
    Filed: October 30, 2012
    Publication date: December 26, 2013
    Applicant: C3NANO INC.
    Inventors: Ajay Virkar, Ying-Syi Li, Xiqiang Yang, Melburne C. LeMieux
  • Publication number: 20130341589
    Abstract: A light emitting diode includes a substrate, a first-type semiconductor layer, a nanorod layer and a transparent planar layer. The first-type semiconductor layer is disposed over the substrate. The nanorod layer is formed on the first-type semiconductor layer. The nanorod layer includes a plurality of nanorods and each of the nanorods has a quantum well structure and a second-type semiconductor layer. The quantum well structure is in contact with the first-type semiconductor layer, and the second-type semiconductor layer is formed on the quantum well structure. The transparent planar layer is filled between the nanorods. A surface of the second-type semiconductor layer is exposed out of the transparent planar layer.
    Type: Application
    Filed: March 12, 2013
    Publication date: December 26, 2013
    Applicant: LEXTAR ELECTRONICS CORPORATION
    Inventors: Chang-Chin Yu, Hsiu-Mu Tang, Mong-Ea Lin
  • Publication number: 20130341704
    Abstract: Nanowire-based gate all-around transistor devices having one or more active nanowires and one or more inactive nanowires are described herein. Methods to fabricate such devices are also described. One or more embodiments of the present invention are directed at approaches for varying the gate width of a transistor structure comprising a nanowire stack having a distinct number of nanowires. The approaches include rendering a certain number of nanowires inactive (i.e. so that current does not flow through the nanowire), by severing the channel region, burying the source and drain regions, or both. Overall, the gate width of nanowire-based structures having a plurality of nanowires may be varied by rendering a certain number of nanowires inactive, while maintaining other nanowires as active.
    Type: Application
    Filed: December 30, 2011
    Publication date: December 26, 2013
    Inventors: Willy Rachmady, Van H. Le, Ravi Pillarisetty, Jack T. Kavalieros, Robert S. Chau, Seung Hoon Sung
  • Patent number: 8614394
    Abstract: Disclosed are p-n zinc (Zn) oxide nanowires and a methods of manufacturing the same. A p-n Zn oxide nanowire includes a p-n junction structure in which phosphorus (P) is on a surface of a Zn oxide nanowire.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: December 24, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seung-nam Cha, Byong-gwon Song, Jae-eun Jang
  • Publication number: 20130337335
    Abstract: The present invention relates to a negative electrode material for a secondary battery and to a method for manufacturing same. The negative electrode material includes a graphite matrix and a plurality of tin-oxide nanorods disposed on the graphite matrix. Thus, when the negative electrode material is used as the negative electrode for a secondary battery, the negative electrode material may provide high initial capacity (1010 mAhg?1) and coulombic efficiency, superior rate capability, and improved electrochemical properties. Further, the method for manufacturing the negative electrode material for a secondary battery includes: a step of activating a surface of graphite; coating tin-oxide nanoparticles onto the activated surface of the graphite so as to form tin-oxide seed-type graphite; and heating the tin-oxide seed-type graphite using heated water in order to grow a plurality of tin-oxide nanorods.
    Type: Application
    Filed: December 15, 2011
    Publication date: December 19, 2013
    Inventors: Won-Bae Kim, Jong-Guk Kim
  • Publication number: 20130334578
    Abstract: A molecule sensor included in a molecule sensor device has a semiconductor substrate, a bottom gate, a source portion, a drain portion, and a nano-scale semiconductor wire. The bottom gate is for example a poly-silicon layer formed on the semiconductor substrate and electrically insulated from the semiconductor substrate. The source portion is formed on the semiconductor substrate and insulated from the semiconductor substrate. The drain portion is formed on the semiconductor substrate and insulated from the semiconductor substrate. The nano-scale semiconductor wire is connected between the source portion and the drain portion, formed on the bottom gate, insulated from the bottom gate, and has a decoration layer thereon for capturing a molecular. The source portion, drain portion, and nano-wire semiconductor wire are for example another poly-silicon layer. The bottom gate receives a specified voltage to change an amount of surface charge carriers of the nano-scale semiconductor wire.
    Type: Application
    Filed: April 25, 2013
    Publication date: December 19, 2013
    Applicant: NATIONAL TAIWAN UNIVERSITY
    Inventors: CHE-WEI HUANG, YU-JIE HUANG, PEI-WEN YEN, HSIAO-TING HSUEH, SHEY-SHI LU, CHIH-TING LIN
  • Publication number: 20130334499
    Abstract: A method is provided. The method includes forming a plurality of nanowires on a top surface of a substrate and forming an oxide layer adjacent to a bottom surface of each of the plurality of nanowires, wherein the oxide layer is to isolate each of the plurality of nanowires from the substrate.
    Type: Application
    Filed: August 2, 2013
    Publication date: December 19, 2013
    Inventors: Benjamin Chu-Kung, Uday Shah, Ravi Pillarisetty, Been-Yin Jin, Marko Radosavljevic, Willy Rachmady
  • Patent number: 8609981
    Abstract: A p-type transparent conductive oxide and a solar cell containing the p-type transparent conducting oxide, wherein the p-type transparent conductive oxide includes a molybdenum trioxide doped with an element having less than six valence electrons, the element is selected from the group consisting of alkali metals, alkaline earth metals, group III elements, group IV, group V, transition elements and their combinations. Doping an element having less than six valence electron results in hole number increase, and thus increasing the hole drift velocity, and making Fermi level closer to the range of p-type materials. Hence, a p-type transparent conductive material is generated. This p-type transparent conducting oxide not only has high electron hole drift velocity, low resistivity, but also reaches a transmittance of 88% in the visible wavelength range, and therefore it is very suitable to be used in solar cells.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: December 17, 2013
    Assignee: National Tsing Hua University
    Inventors: Han-Yi Chen, Chia-Hsiang Chen, Huan-Chieh Su, Kuo-Liang Liu, Tri-Rung Yew
  • Patent number: 8611134
    Abstract: Embodiments of the present invention are directed systems and methods for reading the resistance states of crossbar junctions of a crossbar array. In one aspect, a system includes one or more sense amplifiers connected to column wires of the crossbar array, a reference row wire connected to each sense amp, and a wire driver connected to the reference row wire and configured to drive the reference row wire. The sense amplifiers are configured so that when a selected row wire of the crossbar array is driven by a sense voltage, the column wires are held at approximately zero volts and pass currents through the column wires and sense amplifiers to the reference row wire so that resistive voltage losses along the reference row wire substantially mirror the resistive voltage losses along the selected row wire, allowing the sense amplifiers to determine the crossbar junction resistance states.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: December 17, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventor: Richard J. Carter
  • Patent number: 8608849
    Abstract: A method for making zinc oxide nano-structure, the method includes the following steps. Firstly, providing a growing device, the growing device comprising a heating apparatus and a reacting room. Secondly, providing a growing substrate and forming a metal layer thereon. Thirdly, depositing a catalyst layer on the metal layer. Fourthly, placing the growing substrate into the reacting room together with a quantity of zinc source material. Fifthly, introducing a oxygen-containing gas into the reacting room. Lastly, heating the reacting room to a temperature range of 500˜1100° C.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: December 17, 2013
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Hai-Lin Sun, Kai-Li Jiang, Qun-Qing Li, Shou-Shan Fan
  • Patent number: 8610128
    Abstract: A thin film transistor includes: a silicon nanowire on a substrate, the silicon nanowire having a central portion and both side portions of the central portion; a gate electrode on the central portion; and a source electrode and a drain electrode spaced apart from the source electrode on the both side portions, the source electrode and the drain electrode electrically connected to the silicon nanowire, respectively.
    Type: Grant
    Filed: March 25, 2013
    Date of Patent: December 17, 2013
    Assignee: LG Display Co., Ltd.
    Inventors: Gee-Sung Chae, Mi-Kyung Park
  • Publication number: 20130328014
    Abstract: An axially hetero-structured nanowire includes a first segment that includes GaAs, and a second segment integral with the first that includes InxGa1-xAs. The parameter x has a maximum value x-max within the second segment that is at least 0.02 and less than 0.5. A nanostructured semiconductor component includes a GaAs (111)B substrate, and a plurality of nanopillars integral with the substrate at an end thereof. Each of the plurality of nanopillars can be a nanowire according to an embodiment of the current invention. A method of producing axially hetero-structured nanowires is also provided.
    Type: Application
    Filed: March 1, 2012
    Publication date: December 12, 2013
    Applicant: The Regents of the University of California
    Inventors: Joshua Shapiro, Diana Huffaker
  • Publication number: 20130330611
    Abstract: A rechargeable lithium cell comprising: (a) an anode comprising a prelithiated lithium storage material or a combination of a lithium storage material and a lithium ion source; (b) a hybrid cathode active material composed of a meso-porous structure of a carbon, graphite, metal, or conductive polymer and a phthalocyanine compound, wherein the meso-porous structure is in an amount of from 1% to 99% by weight based on the total weight of the meso-porous structure and the phthalocyanine combined, and wherein the meso-porous structure has a pore with a size from 2 nm to 50 nm to accommodate phthalocyanine compound therein; and (c) an electrolyte or electrolyte/separator assembly. This secondary cell exhibits a long cycle life and the best cathode specific capacity and best cell-level specific energy of all rechargeable lithium-ion cells ever reported.
    Type: Application
    Filed: June 11, 2012
    Publication date: December 12, 2013
    Inventors: Gourong Chen, Yanbo Wang, Aruna Zhamu, Bor Z. Jang
  • Publication number: 20130328116
    Abstract: A semiconductor nanowire is formed integrally with a wraparound semiconductor portion that contacts sidewalls of a conductive cap structure located at an upper portion of a deep trench and contacting an inner electrode of a deep trench capacitor. The semiconductor nanowire is suspended from above a buried insulator layer. A gate dielectric layer is formed on the surfaces of the patterned semiconductor material structure including the semiconductor nanowire and the wraparound semiconductor portion. A wraparound gate electrode portion is formed around a center portion of the semiconductor nanowire and gate spacers are formed. Physically exposed portions of the patterned semiconductor material structure are removed, and selective epitaxy and metallization are performed to connect a source-side end of the semiconductor nanowire to the conductive cap structure.
    Type: Application
    Filed: June 7, 2012
    Publication date: December 12, 2013
    Applicant: International Business Machines Corporation
    Inventors: Josephine B. Chang, Jeffrey W. Sleight
  • Patent number: 8603623
    Abstract: A spatially organized polymer nanostructured thin film and a ligand adsorbate attached to the polymer nanostructured thin film and, optionally, an additional material or materials attached to the ligand adsorbate. A method for forming a structure by: providing a spatially organized polymer nanostructured thin film and a ligand adsorbate, and adsorbing the ligand adsorbate onto the thin film and, optionally, binding additional material or materials to the ligand adsorbate.
    Type: Grant
    Filed: April 24, 2008
    Date of Patent: December 10, 2013
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Melik C. Demirel, Alok K Singh, Walter J Dressick
  • Publication number: 20130324447
    Abstract: Provided is a method for stabilizing a dispersion of a carbon nanomaterial in a lubricating oil basestock. The method includes providing a lubricating oil basestock; dispersing a carbon nanomaterial in the lubricating oil basestock; and adding at least one block copolymer thereto. The at least one block copolymer has two or more blocks includes at least one alkenylbenzene block and at least one linear alpha olefin block. The at least one block copolymer is present in an amount sufficient to stabilize the dispersion of the carbon nanomaterial in the lubricating oil basestock. Also provided is a lubricating engine oil having a composition including: a lubricating oil base stock; a carbon nanomaterial dispersed in the lubricating oil basestock; and at least one block copolymer.
    Type: Application
    Filed: June 1, 2012
    Publication date: December 5, 2013
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Andy Haishung Tsou, Vera Minak-Bernero, Martin N. Webster, Nikos Hadjichristidis
  • Publication number: 20130313736
    Abstract: An electrospinning fine fiber production methodology for generating a significant amount of fibers with diameters of less than 100 nanometers is provided. Also, a filter media composite comprising a substrate layer and an electrospun fine fiber layer having a increased efficiency relative to pressure drop and/or a controlled pore size distribution is provided. According to some embodiments nylon is electrospun from a solvent combination of formic and acetic acids.
    Type: Application
    Filed: July 30, 2013
    Publication date: November 28, 2013
    Applicant: CLARCOR INC.
    Inventors: Thomas B. Green, Scotty L. King, Lei Li
  • Publication number: 20130313513
    Abstract: Semiconductor devices having modulated nanowire counts and methods to form such devices are described. For example, a semiconductor structure includes a first semiconductor device having a plurality of nanowires disposed above a substrate and stacked in a first vertical plane with a first uppermost nanowire. A second semiconductor device has one or more nanowires disposed above the substrate and stacked in a second vertical plane with a second uppermost nanowire. The second semiconductor device includes one or more fewer nanowires than the first semiconductor device. The first and second uppermost nanowires are disposed in a same plane orthogonal to the first and second vertical planes.
    Type: Application
    Filed: December 23, 2011
    Publication date: November 28, 2013
    Inventors: Annalisa Cappellani, Kelin J. Kuhn, Rafael Rios, Gopinath Bhimarasetti, Tahir Ghani, Seiyon Kim
  • Publication number: 20130313514
    Abstract: There is provided a semiconductor light emitting device including: a substrate and a nanostructures spaced apart from one another on the substrate. The nanostructures includes a first conductivity-type semiconductor layer core, an active layer, and a second conductivity-type semiconductor layer. A filler fills spaces between the nanostructures and is formed to be lower than the plurality of nanostructures. An electrode is formed to cover upper portions of the nanostructures and portions of lateral surfaces of the nanostructures and electrically connected to the second conductivity-type semiconductor layer.
    Type: Application
    Filed: March 15, 2013
    Publication date: November 28, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Kyung Wook HWANG, Geon Wook YOO, Nam Goo CHA, Jae Hyeok HEO, Han Kyu SEONG, Hun Jae CHUNG
  • Patent number: 8591952
    Abstract: The present invention relates to coated, absorbent, freestanding assemblies comprising inorganic nanowires, articles of manufacture comprising the same, processes of producing the same and methods of use thereof. The assemblies of this invention are useful in various applications, including removal of organics or hydrophobic materials, and waterproofing applications.
    Type: Grant
    Filed: October 9, 2007
    Date of Patent: November 26, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Francesco Stellacci, Jing Kong, Xiaogang (Bruno) Liu, Jikang Yuan
  • Patent number: 8592246
    Abstract: Methods of manufacturing a solar cell module are provided. The method may include forming lower electrodes on a substrate, forming a light absorption layer on the lower electrodes and the substrate, patterning the light absorption layer to form a trench exposing the lower electrodes, and forming window electrodes using a conductive film. The conductive film extends from a top surface of the light absorption layer to a bottom of the trench along one-sidewall of the trench and is divided at another-sidewall of the trench.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: November 26, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventor: Rae-Man Park
  • Publication number: 20130309561
    Abstract: A rechargeable lithium cell comprising: (a) an anode; (b) a cathode comprising a hybrid cathode active material composed of a graphene material and a phthalocyanine compound, wherein the graphene material is in an amount of from 0.1% to 99% by weight based on the total weight of the graphene material and the phthalocyanine compound combined; and (c) a porous separator disposed between the anode and the cathode and electrolyte in ionic contact with the anode and the cathode. This secondary cell exhibits a long cycle life and the best cathode specific capacity and best cell-level specific energy of all rechargeable lithium-ion cells ever reported.
    Type: Application
    Filed: May 17, 2012
    Publication date: November 21, 2013
    Inventors: Guorong Chen, Yanbo Wang, Aruna Zhamu, Bor Z. Jang
  • Publication number: 20130309492
    Abstract: A chopped carbon fiber is made of a carbon fiber, which is coated with a sizing being formed of a heat resistant polymer or a precursor of the heat resistant polymer.
    Type: Application
    Filed: May 15, 2012
    Publication date: November 21, 2013
    Inventors: Satoshi SEIKE, Makoto Kibayashi, Anand Valliyur Rau
  • Publication number: 20130306490
    Abstract: Disclosed is a Nanotube Detangler capable of aligning and ordering the constituent nanotubes, nanowires and/or nanoparticles of a filament leading to greater tensile strength of the filament and subsequent threads or structures made from it. The technique exploits ion infusion as a mechanism to force the tangle of the nanotubes, nanowires and/or nanoparticles apart. Included in the invention are alignment enhancement technologies such as heating, vibration, electromagnetic, particle bombardment and chemical means. The present invention recognizes that aligned and ordered nanotubes, nanowires and nanoparticles in a filament will increase the conductivity of the filament and enable the fabrication of electric conductors, wires and circuit components. Such breakthroughs in strength and conductivity of filaments of nanotubes, nanowires and/or nanoparticles will revolutionize life on Earth.
    Type: Application
    Filed: May 15, 2012
    Publication date: November 21, 2013
    Inventor: Bryan Edward Laubscher
  • Patent number: 8586454
    Abstract: A two-step hydrogen anneal process has been developed for use in fabricating semiconductor nanowires for use in non-planar semiconductor devices. In the first part of the two-step hydrogen anneal process, which occurs prior to suspending a semiconductor nanowire, the initial roughness of at least the sidewalls of the semiconductor nanowire is reduced, while having at least the bottommost surface of the nanowire pinned to an uppermost surface of a substrate. After performing the first hydrogen anneal, the semiconductor nanowire is suspended and then a second hydrogen anneal is performed which further reduces the roughness of all exposed surfaces of the semiconductor nanowire and reshapes the semiconductor nanowire. By breaking the anneal into two steps, smaller semiconductor nanowires at a tight pitch survive the process and yield.
    Type: Grant
    Filed: February 5, 2013
    Date of Patent: November 19, 2013
    Assignee: International Business Machines Corporation
    Inventors: Jeffrey W. Sleight, Sarunya Bangsaruntip
  • Publication number: 20130303750
    Abstract: Methods for integrating the production of cellulose nanocrystals (CNC) and cellulose nanofibrils (CNF) from cellulose are provided. The methods use milder acid hydrolysis conditions than those for maximal CNC production to achieve reduced degradation of cellulose into soluble sugars. Also provided are negatively charged cellulosic solid residues (CSRs) in the form of cellulose fibers (CF) and/or cellulose microfibrils (CMF) during the acid hydrolysis, as well as CNFs fabricated from the CSRs.
    Type: Application
    Filed: May 15, 2012
    Publication date: November 14, 2013
    Applicant: The United States of America as Represented by the Secretary of Agriculture
    Inventors: JunYong Zhu, Richard S. Reiner
  • Publication number: 20130299214
    Abstract: The present disclosure provides an article having (a) a substrate having a first nanostructured surface that is antireflective when exposed to air and an opposing second surface; and (b) a conductor micropattern disposed on the first surface of the substrate, the conductor micropattern formed by a plurality of traces defining a plurality of open area cells. The micropattern has an open area fraction greater than 80% and a uniform distribution of trace orientation. The traces of the conductor micropattern have a specular reflectance in a direction orthogonal to and toward the first surface of the substrate of less than 50%. Each of the traces has a width from 0.5 to 10 micrometer. The articles are useful in devices such as displays, in particular, touch screen displays useful for mobile hand held devices, tablets and computers.
    Type: Application
    Filed: February 1, 2012
    Publication date: November 14, 2013
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Matthew H. Frey, Ta-Hua Yu, Kari A. McGee, Hui Luo, William B. Kolb, Brant U. Kolb, Moses M. David, Lijun Zu
  • Patent number: 8580081
    Abstract: The invention concerns a paper for smoking article, in particular for a cigarette, comprising areas treated with a coating formulation adapted to reduce the ignition propensity of said treated areas which comprises nanoparticles of cellulose having a median dimension (d50) equal to or less than five micrometers.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: November 12, 2013
    Assignee: Papeteries du Leman
    Inventors: Jocelyne Dumas, Joel Malachie, Arnaud Ruffin, Julie Jeanrot
  • Patent number: 8581222
    Abstract: The present invention relates to a phase change memory device comprising bismuth-tellurium nanowires. More specifically, the bismuth-tellurium nanowires having PRAM characteristics may be prepared by using a porous nano template without any high temperature process and said nanowires may be used in the phase change memory device by using their phase change characteristics to identify memory characteristics.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: November 12, 2013
    Assignee: Industry-Academic Cooperation Foundation, Yonsei University
    Inventors: Kyung Hwa Yoo, Nal Ae Han, Sung In Kim, Jeong Do Yang
  • Publication number: 20130295469
    Abstract: Method of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electrolytes are composed of ?-Li3PS4 or Li4P2S7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li2S), a first shell of ?-Li3PS4 or Li4P2S7, and a second shell including one of ?-Li3PS4 or Li4P2S7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.
    Type: Application
    Filed: May 3, 2012
    Publication date: November 7, 2013
    Applicant: UT-Battelle, LLC
    Inventors: Chengdu Liang, Zengcai Liu, Wujun Fu, Zhan Lin, Nancy J. Dudney, Jane Y. Howe, Adam J. Rondinone
  • Publication number: 20130291941
    Abstract: A solid-state hole transport composite material (ssHTM) is provided made from a p-type organic semiconductor and a dopant material serving as a source for either sodium (Na+) or potassium (K+) ions. The p-type organic semiconductor may be molecular (a collection of discrete molecules, that are either chemically identical or different), oligomeric, polymeric materials, or combinations thereof. In one aspect, the p-type organic semiconductor is 2,2?,7,7?-tetrakis(N,N-di-p-methoxyphenylamine)-9,9?-spirobifluorene (Spiro-OMeTAD). The dopant material is an inorganic or organic material salt. A solid-state dye-sensitized solar cell (ssDSC) with the above-described ssHTM, is also provided.
    Type: Application
    Filed: May 1, 2012
    Publication date: November 7, 2013
    Inventors: Sean Andrew Vail, Wei Pan, Gary D. Foley, Jong-Jan Lee
  • Publication number: 20130295384
    Abstract: A transparent electrode and method for manufacturing the same are disclosed. The major integrants of the transparent electrode comprise a graphene and a nanofiber. The nanofiber exhibits a light-permeable network structure to increase the light transmittance of the transparent electrode. The graphene is absorbed on the surface of the nanofiber to form a conductive light-permeable network structure. And the unique properties of the graphene lead an improvement of the mechanical strength property of the transparent electrode.
    Type: Application
    Filed: November 5, 2012
    Publication date: November 7, 2013
    Applicant: TAIWAN TEXTILE RESEARCH INSTITUTE
    Inventors: Chen-Chi M. Ma, Yuan-Li Huang, Shin-Yi Yang, Hsi-Wen Tien
  • Patent number: 8575009
    Abstract: A two-step hydrogen anneal process has been developed for use in fabricating semiconductor nanowires for use in non-planar semiconductor devices. In the first part of the two-step hydrogen anneal process, which occurs prior to suspending a semiconductor nanowire, the initial roughness of at least the sidewalls of the semiconductor nanowire is reduced, while having at least the bottommost surface of the nanowire pinned to an uppermost surface of a substrate. After performing the first hydrogen anneal, the semiconductor nanowire is suspended and then a second hydrogen anneal is performed which further reduces the roughness of all exposed surfaces of the semiconductor nanowire and reshapes the semiconductor nanowire. By breaking the anneal into two steps, smaller semiconductor nanowires at a tight pitch survive the process and yield.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: November 5, 2013
    Assignee: International Business Machines Corporation
    Inventors: Jeffrey W. Sleight, Sarunya Bangsaruntip
  • Patent number: 8574419
    Abstract: The invention relates to a chemical reactor with a nanometric superstructure, comprising at least one member wherein at least one reaction chamber is arranged, and said reaction chamber being filled at least partially with a high specific surface area material having a specific surface area greater than 5 m2/g, and characterized in that said high specific surface area material is selected from nanotubes or nanofibers. These nanotubes or nanofibers are preferably selected in the group consisting of carbon nanofibers or nanotubes, ?-SiC nanofibers or nanotubes, TiO2 nanofibers or nanotubes. They may be deposited on an intermediate structure selected in the group consisting of glass fibers, carbon fibers, SiC foams, carbon foams, alveolar ?-SiC foams, said intermediate structure filling the reaction chamber of said reactor at least partially.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: November 5, 2013
    Assignees: Centre National de la Recherche Scientifique, Universite de Strasbourg
    Inventors: Cuong Phamhuu, Nicolas Keller, Jacques M. Ledoux, Izabella Janowska, David Edouard, Valérie Keller-Spitzer, Thierry Romero, Liu Yu
  • Publication number: 20130284503
    Abstract: An electronic element includes a carbon nanotube film, at least one first electrode and at least one second electrode spaced from the at least one first electrode. The carbon nanotube film includes a number of carbon nanotube linear units spaced from each other, and a number of carbon nanotube groups. The carbon nanotube linear units extend along a first direction to form a number of first conductive paths. The carbon nanotube groups are combined with the carbon nanotube linear units by van der Waals force in a second direction intercrossed with the first direction, to form a number of second conductive paths. The carbon nanotube groups between adjacent carbon nanotube linear units are spaced from each other in the first direction. The at least one first and second electrodes are electrically connected with the carbon nanotube film through the first conductive paths or the second conductive paths.
    Type: Application
    Filed: March 6, 2013
    Publication date: October 31, 2013
    Applicant: BEIJING FUNATE INNOVATION TECHNOLOGY CO., LTD.
    Inventor: BEIJING FUNATE INNOVATION TECHNOLOGY CO., LTD.
  • Publication number: 20130289687
    Abstract: Electrically conductive nanowires incorporated within scaffolds enhance tissue growth, bridge the electrically resistant pore walls and markedly improve electrical communication between adjacent cardiac cell bundles. Integration of conducting nanowires within 3D scaffolds should improve the therapeutic value of cardiac patches. Examples demonstrate efficacy of gold nanowires in alginate matrices seeded with cardiomyocytes.
    Type: Application
    Filed: December 28, 2011
    Publication date: October 31, 2013
    Applicants: MASSACHUSETTS INSTITUTE OF TECHNOLOGY, Children's Medical Center Corporation
    Inventors: Tal Dvir, Daniel S. Kohane, Robert S. Langer, Brian Timko
  • Publication number: 20130285017
    Abstract: Embodiments of the present invention provide transistor structures having strained channel regions. Strain is created through lattice mismatches in the source and drain regions relative to the channel region of the transistor. In embodiments of the invention, the transistor channel regions are comprised of germanium, silicon, a combination of germanium and silicon, or a combination of germanium, silicon, and tin and the source and drain regions are comprised of a doped III-V compound semiconductor material. Embodiments of the invention are useful in a variety of transistor structures, such as, for example, trigate, bigate, and single gate transistors and transistors having a channel region comprised of nanowires or nanoribbons.
    Type: Application
    Filed: December 20, 2011
    Publication date: October 31, 2013
    Inventors: Van H. Le, Harold W. Kennel, Willy Rachmady, Ravi Pillarisetty, Jack Kavalieros, Niloy Mukherjee
  • Patent number: 8568871
    Abstract: Disclosed is a method for nanostructure synthesis that includes growing nanostructures on a layered structure compound at a low temperature using a solution containing a solvent and at least one precursor. The method can include synthesizing and assembling nanowires in essentially the same method step. Disclosed nanostructures and nanowires are substantially uniform in diameter and single crystal. Nanowires can intersect to form networks and can be covalently bonded at points of intersection. Disclosed nanowire networks can be substantially uniform and can form an ordered network. Nanowire networks can be used to fabricate electronic and optical devices.
    Type: Grant
    Filed: October 28, 2008
    Date of Patent: October 29, 2013
    Assignee: State of Oregon acting by and through the State Board of Higher Education on behalf of Portland State University
    Inventors: Jun Jiao, Haiyan Li
  • Patent number: 8569900
    Abstract: A nanowire device includes a nanowire having differently functionalized segments. Each of the segments is configured to interact with a species to modulate the conductance of a segment. The nanowire is grown from a single catalyst and the segments include a first segment at a non-linear angle from a second segment.
    Type: Grant
    Filed: July 20, 2009
    Date of Patent: October 29, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Nathaniel J. Quitoriano, Theodore I. Kamins, Hans S. Cho
  • Patent number: 8568876
    Abstract: Techniques for making nanowires with a desired diameter are provided. The nanowires can be grown from catalytic nanoparticles, wherein the nanowires can have substantially same diameter as the catalytic nanoparticles. Since the size or the diameter of the catalytic nanoparticles can be controlled in production of the nanoparticles, the diameter of the nanowires can be subsequently controlled as well. The catalytic nanoparticles are melted and provided with a gaseous precursor of the nanowires. When supersaturation of the catalytic nanoparticles with the gaseous precursor is reached, the gaseous precursor starts to solidify and form nanowires. The nanowires are separate from each other and not bind with each other to form a plurality of nanowires having the substantially uniform diameter.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: October 29, 2013
    Assignee: Korea University Research and Business Foundation
    Inventor: Kwangyeol Lee
  • Patent number: 8569468
    Abstract: This invention provides a nanoplasmonic molecular ruler, which can perform label-free and real-time monitoring of nucleic acid (e.g., DNA) length changes and perform nucleic acid footprinting. In various embodiments the ruler comprises a nucleic acid attached to a nanoparticle, such that changes in the nucleic acid length are detectable using surface plasmon resonance. The nanoplasmonic ruler provides a fast and convenient platform for mapping nucleic acid-protein interactions, for nuclease activity monitoring, and for other footprinting related methods.
    Type: Grant
    Filed: September 14, 2007
    Date of Patent: October 29, 2013
    Assignee: The Regents of the University of California
    Inventors: Fanqing Frank Chen, Gang L. Liu, Luke P. Lee
  • Patent number: 8569151
    Abstract: A method of formation of nanowires at a surface of a substrate attached to a solid immersion lens. The method includes formation of a catalyst element at the surface of the substrate and growth of nanowires from the catalyst element formed at the surface of the substrate. The catalyst element is a metal nanoparticle and the formation of the catalyst element at the surface of the substrate deposits the metal nanoparticle using a light beam focused by the solid immersion lens at the surface of the substrate.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: October 29, 2013
    Assignee: Commissariat a l'Energie Atomique et aux Energies Alternatives
    Inventors: Delphine Neel, Pierre Ferret, Stéphane Getin
  • Publication number: 20130280636
    Abstract: Disclosed are an electrode for a fuel cell, a method of preparing the fuel cell electrode, a membrane-electrode assembly including the fuel cell electrode, and a fuel cell system including the fuel cell electrode. The electrode includes an electrode substrate having a conductive substrate and a layer-by-layer assembled multi-layer disposed on a side of the conductive substrate and a bilayer including a polymer electrolyte or a conductive nanoparticle, and a catalyst layer disposed on the electrode substrate.
    Type: Application
    Filed: August 3, 2012
    Publication date: October 24, 2013
    Applicant: SAMSUNG SDI CO., LTD.
    Inventors: Jun-Young KIM, Myoung-Ki MIN, Kah-Young SONG, Hee-Tak KIM
  • Publication number: 20130281012
    Abstract: Communication to or from a nanodevice is provided with a nanostructure-based antenna, preferably formed from, but not limited to, a single wall nanotube (SWNT). Other nanostructure-based antennas include double walled nanotubes, semiconducting nanowires, metal nanowires and the like. The use of a nanostructure-based antenna eliminates the need to provide a physical communicative connection to the nanodevice, while at the same time allowing communication between the nanodevice and other nanodevices or outside systems, i.e., systems larger than nanoscale such as those formed from semiconductor fabrication processes such as CMOS, GaAs, bipolar processes and the like.
    Type: Application
    Filed: October 2, 2012
    Publication date: October 24, 2013
    Inventor: Peter J. Burke
  • Publication number: 20130280908
    Abstract: Methods of metal assisted chemical etching III-V semiconductors are provided. The methods can include providing an electrically conductive film pattern disposed on a semiconductor substrate comprising a III-V semiconductor. At least a portion of the III-V semiconductor immediately below the conductive film pattern may be selectively removed by immersing the electrically conductive film pattern and the semiconductor substrate into an etchant solution comprising an acid and an oxidizing agent having an oxidation potential less than an oxidation potential of hydrogen peroxide. Such methods can form high aspect ratio semiconductor nanostructures.
    Type: Application
    Filed: March 15, 2013
    Publication date: October 24, 2013
    Inventors: Xiuling Li, Matthew T. Dejarld, Parsian Katal Mohseni, Jae Cheol Shin, Winston Chem
  • Publication number: 20130281795
    Abstract: A wearable remote electrophysiological monitoring system. The system includes a garment having at least one nanostructured, textile-integrated electrode attached thereto; a control module in electrical communication with the at least one nanostructured, textile-integrated sensor; and a remote computing system in communication with the control module.
    Type: Application
    Filed: April 18, 2012
    Publication date: October 24, 2013
    Applicant: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ARKANSAS
    Inventor: Vijay K. Varadan