Schottky Barrier (e.g., A Transparent Schottky Metallic Layer Or A Schottky Barrier Containing At Least One Of Indium Or Tin (e.g., Sno 2 , Indium Tin Oxide)) Patents (Class 257/449)
  • Patent number: 7132656
    Abstract: According to this invention, silicon-based photodetectors using waveguides formed with silicide regions can have high speed and high efficiency for near IR applications. Utilizing the unique properties of silicides, the proposed method provides a simple and elegant way to implement a photodetector design in which photogenerated carriers travel perpendicular to the direction of light propagation. Therefore, the speed and quantum efficiency of the photodetector may be optimized independently. This device configuration may be implemented in one of the two approaches: (a) waveguides formed through surface silicidation of a silicon-based layer of a substrate (b) waveguides formed through silicidation of ridge waveguide side-walls of a silicon-based layer of a substrate; The use of mature silicon technology promises low cost of production and other benefits.
    Type: Grant
    Filed: September 20, 2004
    Date of Patent: November 7, 2006
    Assignee: National Research Council of Canada
    Inventors: Dan-Xia Xu, Siegfried Janz
  • Patent number: 7119411
    Abstract: An interconnect structure connecting two isolated metal lines in a non-display area of a TFT-array substrate. A first metal line is disposed on the substrate, covered with a first insulating layer. A second metal line is disposed on the first insulating layer and covered by a second insulating layer. ITO (indium tin oxide) wiring is disposed on the second insulating layer, electrically connecting the first and second metal lines. A passivation structure is disposed on the second insulating layer, with an opening therein to expose and surround the ITO wiring.
    Type: Grant
    Filed: February 17, 2004
    Date of Patent: October 10, 2006
    Assignee: AU Optronics Corp.
    Inventor: Kun-Hong Chen
  • Patent number: 7115896
    Abstract: A nitride semiconductor is grown on a silicon substrate by depositing a few mono-layers of aluminum to protect the silicon substrate from ammonia used during the growth process, and then forming a nucleation layer from aluminum nitride and a buffer structure including multiple superlattices of AlRGa(1-R)N semiconductors having different compositions and an intermediate layer of GaN or other Ga-rich nitride semiconductor. The resulting structure has superior crystal quality. The silicon substrate used in epitaxial growth is removed before completion of the device so as to provide superior electrical properties in devices such as high-electron mobility transistors.
    Type: Grant
    Filed: November 25, 2003
    Date of Patent: October 3, 2006
    Assignee: Emcore Corporation
    Inventors: Shiping Guo, David Gotthold, Milan Pophristic, Boris Peres, Ivan Eliashevich, Bryan S. Shelton, Alex D. Ceruzzi, Michael Murphy, Richard A. Stall
  • Patent number: 7087834
    Abstract: An apparatus and method for solar energy production comprises a multi-layer solid-state structure including a photosensitive layer, a thin conductor, a charge separation layer, and a back ohmic conductor, wherein light absorption occurs in a photosensitive layer and the charge carriers produced thereby are transported through the thin conductor through the adjacent potential energy barrier. The open circuit voltage of the solar cell can be manipulated by choosing from among a wide selection of materials making up the thin conductor, the charge separation layer, and the back ohmic layer.
    Type: Grant
    Filed: December 31, 2003
    Date of Patent: August 8, 2006
    Assignee: Andrena, Inc.
    Inventor: Eric W. McFarland
  • Patent number: 7053458
    Abstract: An image sensor and method is provided to improve the measurement of a dark signal reference while substantially suppressing radiation charges that enter an active area of the image sensor from reaching a shielded dark signal detector. In one implementation, dark signal detector is shielded and separated from the active area to substantially reduce the radiation charges that reach the dark signal detector. In another implementation, the image sensor includes a radiation guard that is disposed between the active area and the shielded detector. When radiation or light is permitted to enter the active area, the guard when adequately biased attracts and collects radiated charges that may otherwise travel beyond the active area to reach the shielded detector and contaminate a measurement for the dark signal reference.
    Type: Grant
    Filed: April 30, 2002
    Date of Patent: May 30, 2006
    Assignee: ESS Technology, Inc.
    Inventors: Richard A. Mann, Selim Bencuya
  • Patent number: 7053457
    Abstract: The invention relates to an opto-electronic component for converting electromagnetic radiation into an intensity-dependent photocurrent, comprising a substrate (1) with a microelectronic circuit whose surface is provided with a first layer (7) which is electrically contacted thereto and made of amorphous silicon a-i:H or alloys thereof, and at least one other optically active layer (8) is disposed upstream from said first layer in the direction of incident light thereof (7). The invention also relates to the production thereof. The aim of the invention is to improve upon an opto-electronic component of the above-mentioned variety in order to obtain high spectral sensitivity within the visible light range and, correspondingly, significantly reduce sensitivity to radiation in the infrared range without incurring any additional construction costs.
    Type: Grant
    Filed: February 26, 2002
    Date of Patent: May 30, 2006
    Assignee: STMicroelectronics NV
    Inventors: Peter Rieve, Jens Prima, Konstantin Seibel, Marcus Walder
  • Patent number: 7042058
    Abstract: An image sensor and method is provided to improve the measurement of a dark signal reference while substantially suppressing radiation charges that enter an active area of the image sensor from reaching a shielded dark signal detector. In one implementation, dark signal detector is shielded and separated from the active area to substantially reduce the radiation charges that reach the dark signal detector. In another implementation, the image sensor includes a radiation guard that is disposed between the active area and the shielded detector. When radiation or light is permitted to enter the active area, the guard when adequately biased attracts and collects radiated charges that may otherwise travel beyond the active area to reach the shielded detector and contaminate a measurement for the dark signal reference.
    Type: Grant
    Filed: January 6, 2005
    Date of Patent: May 9, 2006
    Assignee: ESS Technology, Inc.
    Inventors: Richard A. Mann, Selim Bencuya
  • Patent number: 7026701
    Abstract: A Schottky barrier photodetector comprises a waveguide structure formed by a thin strip of material having a relatively high free charge carrier density, for example a conductor or certain classes of highly-doped semiconductor, surrounded by material having a relatively low free charge carrier density, the material on at least one side of the strip comprising a semiconductor, the strip having finite width and thickness with dimensions such that optical radiation couples to the strip and propagates along the length of the strip as a plasmon-polariton wave, light for detection being coupled to one end of the strip to propagate along the strip as said plasmon-polariton wave, ohmic contact means applied to the semiconductor material and at least one electrode means connected to the strip for applying bias to the Schottky barrier and extracting a photodetector current corresponding to the light applied to the photodetector.
    Type: Grant
    Filed: March 4, 2004
    Date of Patent: April 11, 2006
    Assignee: Spectalis Corp.
    Inventors: Christine Ann Scales, Pierre Simon Joseph Berini
  • Patent number: 7015560
    Abstract: A light-receiving device, a method for manufacturing the same, and an optoelectronic integrated circuit including the same are provided. The light-receiving device includes a substrate; an intrinsic region formed on the substrate; a first region formed to a shallow depth in the intrinsic region; and a second region formed to a deep depth in the intrinsic region and distanced from the first region, wherein the first and second regions are doped with different conductivity types. The light-receiving device can shorten the transit time of holes with slow mobility. Therefore, no response delay occurs, and thus, a high response speed can be accomplished.
    Type: Grant
    Filed: February 18, 2004
    Date of Patent: March 21, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jun-young Kim, Byoung-lyong Choi, Eun-kyung Lee
  • Patent number: 7012314
    Abstract: A method of making a semiconductor device having a predetermined epitaxial region, such as an active region, with reduced defect density includes the steps of: (a) forming a dielectric cladding region on a major surface of a single crystal body of a first material; (b) forming a first opening that extends to a first depth into the cladding region; (c) forming a smaller second opening, within the first opening, that extends to a second depth greater than the first depth and that exposes an underlying portion of the major surface of the single crystal body; (d) epitaxially growing regions of a second semiconductor material in each of the openings and on the top of the cladding region; (e) controlling the dimensions of the second opening so that defects are confined to the epitaxial regions grown within the second opening and on top of the cladding region, a first predetermined region being located within the first opening and being essentially free of defects; (D planarizing the top of the device to remove all
    Type: Grant
    Filed: June 3, 2003
    Date of Patent: March 14, 2006
    Assignee: Agere Systems Inc.
    Inventors: Jeffrey Devin Bude, Malcolm Carroll, Clifford Alan King
  • Patent number: 6975012
    Abstract: Disclosed is a semiconductor radiation detector element of Schottky barrier type, comprising: a compound semiconductor crystal including cadmium and tellurium as main components; and voltage application means for applying voltage to the compound semiconductor crystal. According to the present invention, said voltage application means includes a compound of indium, cadmium and tellurium: InxCdyTez formed on one surface of the compound semiconductor crystal. Preferably, the rate ā€œzā€ of occupation of tellurium in the compound InxCdyTez is in the range of not less than 42.9%, but not greater than 50% by ratio of number of atoms. Furthermore, preferably, the rate ā€œyā€ of occupation of cadmium in the compound InxCdyTez is in the range of not less than 0%, but not greater than 10% by ratio of number of atoms.
    Type: Grant
    Filed: October 29, 2003
    Date of Patent: December 13, 2005
    Assignee: Acrorad Co., Ltd.
    Inventors: Miki Moriyama, Masaki Murakami, Atsushi Kyan, Ryoichi Ohno
  • Patent number: 6956163
    Abstract: An apparatus and method for solar energy production comprises a multi-layer solid-state structure including a photosensitive layer, a thin conductor, a charge separation layer, and a back ohmic conductor, wherein light absorption occurs in a photosensitive layer and the charge carriers produced thereby are transported through the thin conductor through the adjacent potential energy barrier. The open circuit voltage of the solar cell can be manipulated by choosing from among a wide selection of materials making up the thin conductor, the charge separation layer, and the back ohmic layer.
    Type: Grant
    Filed: August 20, 2003
    Date of Patent: October 18, 2005
    Assignee: Adrena, Inc.
    Inventor: Eric W. McFarland
  • Patent number: 6946717
    Abstract: A compound semiconductor device is comprising a compound semiconductor substrate (219) having a ground plane (205); an active element (201) disposed on the substrate; a passive element (211) disposed on the substrate and electrically coupled to the active element; and an insulating layer (202) adjacent the substrate and interposed between the passive device and ground surface such that there is no resistive ground path from the passive device to the ground surface.
    Type: Grant
    Filed: January 30, 2002
    Date of Patent: September 20, 2005
    Assignee: M/A-Com, Inc.
    Inventors: David Russell Hoag, Timothy Edward Boles, Daniel G. Curcio
  • Patent number: 6940097
    Abstract: Optical property normalization for a transparent electrical device is described. In an embodiment, an electrical device includes a plurality of laterally displaced regions that are substantially transparent. Each region of the plurality of regions includes a normalized surface that has an optical property that has a normalized value that is substantially the same, one to another. One of the regions includes a portion of an electrical component. Additionally, at least one of the regions includes beneath the normalized surface an additional surface and a spectral normalization structure. The additional surface has a value for the optical property that is not substantially the same as the normalized value. The spectral normalization structure is disposed with the additional surface such that the normalized surface of the at least one region exhibits the normalized value.
    Type: Grant
    Filed: August 19, 2003
    Date of Patent: September 6, 2005
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: David Champion, Randy Hoffman, Michael A. Pate
  • Patent number: 6881979
    Abstract: This disclosure describes one-chip micro-integrated optoelectronic sensors and methods for fabricating and using the same. The sensors may include an optical emission source, optical filter and a photodetector fabricated on the same transparent substrate using the same technological processes. Optical emission may occur when a bias voltage is applied across a metal-insulator-semiconductor Schottky contact or a p-n junction. The photodetector may be a Schottky contact or a p-n junction in a semiconductor. Some sensors can be fabricated on optically transparent substrate and employ back-side illumination. In the other sensors provided, the substrate is not transparent and emission occurs from the edge of a p-n junction or through a transparent electrode. The sensors may be used to measure optical absorption, optical reflection, scattering or fluorescence.
    Type: Grant
    Filed: August 18, 2003
    Date of Patent: April 19, 2005
    Assignee: University of Houston
    Inventors: David Starikov, Igor Berishev, Abdelhak Bensaoula
  • Patent number: 6879014
    Abstract: Materials suitable for fabricating optical monitors include amorphous, polycrystalline and microcrystalline materials. Semitransparent photodetector materials may be based on silicon or silicon and germanium alloys. Conductors for connecting to and contacting the photodetector may be made from various transparent oxides, including zinc oxide, tin oxide and indium tin oxide. Optical monitor structures based on PIN diodes take advantage of the materials disclosed. Various contact, lineout, substrate and interconnect structures optimize the monitors for integration with various light sources, including vertical cavity surface emitting laser (VCSEL) arrays. Complete integrated structures include a light source, optical monitor and either a package or waveguide into which light is directed.
    Type: Grant
    Filed: March 20, 2001
    Date of Patent: April 12, 2005
    Assignee: Aegis Semiconductor, Inc.
    Inventors: Sigurd Wagner, Matthias Wagner, Eugene Y. Ma, Adam M. Payne
  • Patent number: 6846731
    Abstract: In the present invention, there is provided semiconductor devices such as a Schottky UV photodetector fabricated on n-type ZnO and MgxZn1-xO epitaxial films. The ZnO and MgxZn1-xO films are grown on R-plane sapphire substrates and the Schottky diodes are fabricated on the ZnO and MgxZn1-xO films using silver and aluminum as Schottky and ohmic contact metals, respectively. The Schottky diodes have circular patterns, where the inner circle is the Schottky contact, and the outside ring is the ohmic contact. Ag Schottky contact patterns are fabricated using standard liftoff techniques, while the Al ohmic contact patterns are formed using wet chemical etching. These detectors show low frequency photoresponsivity, high speed photoresponse, lower leakage current and low noise performance as compared to their photoconductive counterparts. This invention is also applicable to optical modulators, Metal Semiconductor Field Effect Transistors (MESFETs) and more.
    Type: Grant
    Filed: May 30, 2002
    Date of Patent: January 25, 2005
    Assignee: Rutgers, The State University of New Jersey
    Inventors: Yicheng Lu, Haifeng Sheng, Sriram Muthukumar, Nuri William Emanetoglu, Jian Zhong
  • Patent number: 6838743
    Abstract: This invention relates an optoelectronic material comprising a uniform medium with a controllable electric characteristic; and semiconductor ultrafine particles dispersed in the medium and having a mean particle size of 100 nm or less, and an application device using the same.
    Type: Grant
    Filed: February 25, 2003
    Date of Patent: January 4, 2005
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Yuka Yamada, Takehito Yoshida, Shigeru Takeyama, Yuji Matsuda, Katsuhiko Mutoh
  • Patent number: 6831309
    Abstract: A unipolar photodiode and methods of making and using employ a Schottky contact as a cathode contact. The Schottky cathode contact is created directly on a carrier traveling or collector layer of the unipolar photodiode resulting in a simpler overall structure to use and make. The unipolar photodiode comprises a light absorption layer, the collector layer adjacent to the light absorption layer, the Schottky cathode contact in direct contact with the collector layer, and an anode contact either directly or indirectly interfaced to the light absorption layer. The light absorption layer has a doping concentration that is greater than a doping concentration of the collector layer. The light absorption layer has a band gap energy that is less than that of the collector layer. The light absorption layer and the collector layer may be of the same or opposite conduction type.
    Type: Grant
    Filed: December 18, 2002
    Date of Patent: December 14, 2004
    Assignee: Agilent Technologies, Inc.
    Inventor: Kirk S. Giboney
  • Publication number: 20040201009
    Abstract: An infrared photodetector formed of a MOS tunneling diode is disclosed. The infrared photodetector comprises a conducting layer, a semiconductor layer comprising at least one layer of quantum structure for confining a carrier in a barrier, an insulating layer formed between the conducting layer and the semiconductor layer, and a voltage source connected to the conducting layer and the semiconductor layer for providing a bias voltage to generate a quantum tunneling effect, such that the carrier penetrates through the insulating layer to form a current, wherein when irradiated by an infrared, the carrier in the barrier absorbs the energy of the infrared to jump out of the barrier and is collected by an electrode to form a photocurrent.
    Type: Application
    Filed: April 1, 2004
    Publication date: October 14, 2004
    Applicant: National Taiwan University
    Inventors: Buo-Chin Hsu, Shu-Tong Chang, Shi-Hao Huang, Chee-Wee Liu
  • Patent number: 6798034
    Abstract: A passive mechanism suppresses injection, into any active guard regions interposed between the edge of a photodiode array chip and the outer photodiode pixels or into the outer pixels themselves, of minority carrier current generated in the physically disrupted region at the edge of the semiconductor die created by cleaving, sawing or otherwise separating the chip from the remainder of the wafer on which the die was fabricated. A thin metallic layer covers all or part of the edge region, thereby creating a Schottky barrier. This barrier generates a depletion region in the adjacent semiconductor material. The depletion region inherently creates an energy band distribution which preferentially accelerates minority carriers generated or near the metal-semiconductor interface towards the metal, thereby suppressing collection of these carriers by any active regions of the guard structure or by the photodiode pixels.
    Type: Grant
    Filed: August 7, 2002
    Date of Patent: September 28, 2004
    Assignee: Diglrad Corporation
    Inventor: Lars S. Carlson
  • Publication number: 20040173865
    Abstract: A Schottky barrier photodetector comprises a waveguide structure formed by a thin strip of material having a relatively high free charge carrier density, for example a conductor or certain classes of highly-doped semiconductor, surrounded by material having a relatively low free charge carrier density, the material on at least one side of the strip comprising a semiconductor, the strip having finite width and thickness with dimensions such that optical radiation couples to the strip and propagates along the length of the strip as a plasmon-polariton wave, light for detection being coupled to one end of the strip to propagate along the strip as said plasmon-polariton wave, ohmic contact means applied to the semiconductor material and at least one electrode means connected to the strip for applying bias to the Schottky barrier and extracting a photodetector current corresponding to the light applied to the photodetector.
    Type: Application
    Filed: March 4, 2004
    Publication date: September 9, 2004
    Inventors: Christine Ann Scales, Pierre Simon Joseph Berini
  • Patent number: 6787871
    Abstract: An integrated Schottky barrier diode chip includes a compound semiconductor substrate, a plurality of Schottky barrier diodes formed on the substrate and an insulating region formed on the substrate by an on implantation. The insulating region electrically separates a portion of a diode at a cathode voltage from a portion of the diode at an anode voltage. Because of the absence of a polyimide layer and trench structures, this planar device configuration results in simpler manufacturing method and improved device characteristics.
    Type: Grant
    Filed: October 30, 2002
    Date of Patent: September 7, 2004
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Tetsuro Asano, Katsuaki Onoda, Yoshibumi Nakajima, Shigeyuki Murai, Hisaaki Tominaga, Koichi Hirata, Mikito Sakakibara, Hidetoshi Ishihara
  • Patent number: 6784514
    Abstract: A preferred embodiment of the present invention provides a Schottky diode formed from a conductive anode contact, a semiconductor junction layer supporting the conductive contact and a base layer ring formed around at least a portion of the conductive anode contact. In particular, the base layer ring has material removed to form layer material gap (e.g., a vacuum gap) adjacent to the conductive anode contact. A dielectric layer is also provided to form one boundary of the base layer material gap.
    Type: Grant
    Filed: October 14, 2003
    Date of Patent: August 31, 2004
    Assignee: Northrop Grumman Corporation
    Inventors: Donald J. Sawdai, Augusto L. Gutierrez-Aitken
  • Publication number: 20040155312
    Abstract: An optical component, in particular an eye implant of a transparent material, to which there is added at least one transparent filler having a higher refractive index than that of the component material and of a particle size at which substantially no light scatter occurs in the component material.
    Type: Application
    Filed: December 22, 2003
    Publication date: August 12, 2004
    Inventor: Wolfgang Muller-Lierheim
  • Publication number: 20040155311
    Abstract: The invention relates to an opto-electronic component for converting electromagnetic radiation into an intensity-dependent photocurrent, comprising a substrate (1) with a microelectronic circuit whose surface is provided with a first layer (7) which is electrically contacted thereto and made of amorphous silicon a-i:H or alloys thereof, and at least one other optically active layer (8) is disposed upstream from said first layer in the direction of incident light thereof (7). The invention also relates to the production thereof. The aim of the invention is to improve upon an opto-electronic component of tho above-mentioned variety in order to obtain high spectral sensitivity within the visible light range and, correspondingly, significantly reduce sensitivity to radiation in the infrared range without incurring any additional construction costs.
    Type: Application
    Filed: April 12, 2004
    Publication date: August 12, 2004
    Inventors: Peter Rieve, Jens Prima, Konstantin Seibel, Marcus Walder
  • Patent number: 6774300
    Abstract: An apparatus and method for solar energy production comprises a multi-layer solid-state structure including a photosensitive layer, a thin conductor, a charge separation layer, and a back ohmic conductor, wherein light absorption occurs in a photosensitive layer and the charge carriers produced thereby are transported through the thin conductor through the adjacent potential energy barrier. The open circuit voltage of the solar cell can be manipulated by choosing from among a wide selection of materials making up the thin conductor, the charge separation layer, and the back ohmic layer.
    Type: Grant
    Filed: January 25, 2002
    Date of Patent: August 10, 2004
    Assignee: Adrena, Inc.
    Inventor: Eric W. McFarland
  • Patent number: 6774451
    Abstract: This invention relates to a MOS transistor made in the thin film of silicon of an SOI chip (10), said thin film (13) being slightly doped and of less than 30 nm in thickness, the source (14) and drain (15) contacts being of the Schottky type at the lowest level of Schottky barrier possible for majority carriers, with an accumulation type transistor operation.
    Type: Grant
    Filed: January 6, 2003
    Date of Patent: August 10, 2004
    Assignee: Centre National de la Recherche Scientifique
    Inventor: Emmanuel Dubois
  • Patent number: 6774449
    Abstract: The semiconductor device of the present invention includes: a gallium nitride (GaN) compound semiconductor layer; and a Schottky electrode formed on the GaN compound semiconductor layer, wherein the Schottky electrode contains silicon.
    Type: Grant
    Filed: September 18, 2000
    Date of Patent: August 10, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Katsunori Nishii, Yoshito Ikeda, Hiroyuki Masato, Kaoru Inoue
  • Patent number: 6770945
    Abstract: In a semiconductor photo-detector of the present invention, a first semiconductor layer, a second semiconductor layer having, and a photo-absorption part composed of a photo-absorption layer sandwiched between these layers are disposed on a substrate, at least the photo-absorption layer is formed at a position apart inwardly by a finite length from an end surface of the substrate, an end surface of the second semiconductor layer and the substrate or the end surface of the substrate is provided with a light incident facet angled inwardly as it separates from the surface of the second semiconductor or the surface of the substrate.
    Type: Grant
    Filed: December 4, 2001
    Date of Patent: August 3, 2004
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventor: Hideki Fukano
  • Patent number: 6756651
    Abstract: A novel photodetector CMOS-compatible photodetector is disclosed in which photo-generation of carriers (electrons) is carried out in the metal of the electrodes, rather than as electron-hole pairs in the semiconductor on which the metal electrodes are deposited. The novel photo detector comprises a silicon or other semiconductor substrate material characterized by an electron energy bandgap, and a pair of metal electrodes disposed upon a surface of the silicon to define therebetween a border area of the surface. One of the two electrodes being exposed to the incident radiation and covering an area of said surface which is larger than the aforesaid border area, the aforesaid metal of the electrodes being characterized by a Fermi level which is within said electron energy bandgap.
    Type: Grant
    Filed: September 26, 2001
    Date of Patent: June 29, 2004
    Assignee: International Business Machines Corporation
    Inventors: Ferenc M. Bozso, Fenton Read McFeely, John Jacob Yurkas
  • Publication number: 20040094816
    Abstract: In a semiconductor photo-detector of the present invention, a first semiconductor layer, a second semiconductor layer having, and a photo-absorption part composed of a photo-absorption layer sandwiched between these layers are disposed on a substrate, at least the photo-absorption layer is formed at a position apart inwardly by a finite length from an end surface of the substrate, an end surface of the second semiconductor layer and the substrate or the end surface of the substrate is provided with a light incident facet angled inwardly as it separates from the surface of the second semiconductor or the surface of the substrate.
    Type: Application
    Filed: November 5, 2003
    Publication date: May 20, 2004
    Applicants: Nippon Telegraph, Telephone Corporation
    Inventor: Hideki Fukano
  • Patent number: 6734515
    Abstract: A semiconductor light receiving element having a light receiving layer (1) formed from a GaN group semiconductor, and an electrode (2) formed on one surface of the light receiving layer as a light receiving surface (1a) in such a way that the light (L) can enter the light receiving layer is provided. When the light receiving element is of a Schottky barrier type, the aforementioned electrode (2) contains at least a Schottky electrode, which is formed in such a way that, on the light receiving surface (1a), the total length of the boundary lines between areas covered with the Schottky electrode and exposed areas is longer than the length of the outer periphery of the light receiving surface (1a).
    Type: Grant
    Filed: March 16, 2001
    Date of Patent: May 11, 2004
    Assignees: Mitsubishi Cable Industries, Ltd., Nikon Corporation
    Inventors: Kazuyuki Tadatomo, Hiroaki Okagawa, Youichiro Ohuchi, Masahiro Koto, Kazumasa Hiramatsu, Yutaka Hamamura, Sumito Shimizu
  • Patent number: 6724039
    Abstract: A semiconductor device includes a semiconductor substrate having a first conductivity and a semiconductor layer disposed on the substrate and also having the first conductivity. A recess is disposed in the layer and has a sidewall and a bottom. A gate insulator is disposed on the layer and extends to the sidewall of the recess, and a gate is disposed on the gate insulator. A body region is disposed in the semiconductor layer beneath the gate, has a second conductivity, and is contiguous with the sidewall of the recess. A source region is disposed in the body region, has the first conductivity, and is contiguous with the sidewall. A Schottky contact is disposed on the bottom of the recess, and a source metallization is disposed on the Schottky contact and on the sidewall of the recess.
    Type: Grant
    Filed: August 31, 1998
    Date of Patent: April 20, 2004
    Assignee: STMicroelectronics, Inc.
    Inventor: Richard Austin Blanchard
  • Patent number: 6683361
    Abstract: The solar cell of the present invention includes a titanium dioxide semiconductor that is held between a pair of electrodes so that the titanium dioxide semiconductor and at least one of the electrodes form a rectification barrier.
    Type: Grant
    Filed: November 6, 2001
    Date of Patent: January 27, 2004
    Assignee: Seiko Epson Corporation
    Inventors: Yuji Fujimori, Tsutomu Miyamoto
  • Patent number: 6680432
    Abstract: Apparatus and Method for Optimizing the Efficiency of a Bypass Diode in Solar Cells. In a preferred embodiment, a layer of TiAu is placed in an etch in a solar cell with a contact at a doped layer of GaAs. Electric current is conducted through a diode and away from the main cell by passing through the contact point at the GaAs and traversing a lateral conduction layer. These means of activating, or “turning on” the diode, and passing the current through the circuit results in greater efficiencies than in prior art devices. The diode is created during the manufacture of the other layers of the cell and does not require additional manufacturing.
    Type: Grant
    Filed: October 24, 2001
    Date of Patent: January 20, 2004
    Assignee: Emcore Corporation
    Inventors: Paul R. Sharps, Marvin Brad Clevenger, Mark A. Stan
  • Patent number: 6664567
    Abstract: A photoelectric conversion device is provided, which comprises: a substrate serving as an electrode; numerous crystalline semiconductor particles containing a first conductivity-type impurity deposited on the substrate to join thereto; an insulator provided among the crystalline semiconductor particles; and a semiconductor layer containing an impurity of the opposite conductivity-type to which another electrode is connected, which semiconductor layer being provided over the crystalline semiconductor particles, wherein the crystalline semiconductor particles comprise silicon, and the insulator comprises a glass material which contains at least 1 wt % and at most 20 wt % tin oxide. By this arrangement, it is possible to form a good insulator capable of filling spaces among the crystalline semiconductor particles and preventing defects such as cracking, bubbling and abnormal deposition from occurring, and consequently to provide a photoelectric conversion device with high reliability at low cost.
    Type: Grant
    Filed: June 26, 2002
    Date of Patent: December 16, 2003
    Assignee: Kyocera Corporation
    Inventors: Takeshi Kyoda, Jun Fukuda, Shinya Kawai, Hisao Arimune
  • Patent number: 6608360
    Abstract: This disclosure describes one-chip micro-integrated optoelectronic sensors and methods for fabricating and using the same. The sensors may include an optical emission source, optical filter and a photodetector fabricated on the same transparent substrate using the same technological processes. Optical emission may occur when a bias voltage is applied across a metal-insulator-semiconductor Schottky contact or a p-n junction. The photodetector may be a Schottky contact or a p-n junction in a semiconductor. Some sensors can be fabricated on optically transparent substrate and employ back-side illumination. In the other sensors provided, the substrate is not transparent and emission occurs from the edge of a p-n junction or through a transparent electrode. The sensors may be used to measure optical absorption, optical reflection, scattering or fluorescence.
    Type: Grant
    Filed: December 15, 2000
    Date of Patent: August 19, 2003
    Assignee: University of Houston
    Inventors: David Starikov, Igor Berishev, Abdelhak Bensaoula
  • Publication number: 20030151117
    Abstract: Layered germanium polymers that are semiconductive and demonstrate a strong red or infrared luminescence are produced through the topochemical conversion of calcium digermanide. Furthermore, silicon/germanium layer polymers can also be produced in this manner. These layer polymers can be produced epitaxially on substrates comprising crystalline germanium, and can be used to construct light-emitting optoelectronic components such as light-emitting diodes or lasers.
    Type: Application
    Filed: January 13, 2003
    Publication date: August 14, 2003
    Inventors: Gunther Vogg, Martin Brandt, Martin Stutzmann
  • Patent number: 6597023
    Abstract: A semiconductor light-detecting element includes a given substrate, an underlayer and a light-detecting element structure which are formed on said substrate in turn. The underlayer is made of a nitride semiconductor including Al element with a dislocation density of 1011/cm2 or below. The light-detecting element structure is made of a nitride semiconductor layer group including Al element at a larger content than the nitride semiconductor making the underlayer with a dislocation density of 1010/cm2 or below.
    Type: Grant
    Filed: May 17, 2002
    Date of Patent: July 22, 2003
    Assignee: NGK Insulators, Ltd.
    Inventors: Tomohiko Shibata, Keiichiro Asai, Shigeaki Sumiya, Mitsuhiro Tanaka
  • Publication number: 20030132496
    Abstract: On an In-containing compound semiconductor are sequentially formed Zn (p-type dopant-containing layer), Ta (high-melting metal layer) and a low-resistance conductor layer in this order as a Schottky electrode, and the resulting assemblage is annealed to diffuse Zn into the semiconductor to thereby convert the surface of the semiconductor layer only in a region in contact with the Schottky electrode metal into a p-type layer. The p-type dopant-containing layer can be, instead of Zn, a compound between Zn and an element constituting the In-containing compound semiconductor or a Zn—Ta alloy. The high-melting metal layer can be, instead of Ta, an intermetallic compound between Ta and an element constituting the In-containing compound semiconductor or a Zn—Ta alloy.
    Type: Application
    Filed: November 19, 2002
    Publication date: July 17, 2003
    Applicant: Hitachi, Ltd.
    Inventors: Akihisa Terano, Hiroshi Ohta, Kiyoshi Ouchi, Tomoyoshi Mishima
  • Publication number: 20030132498
    Abstract: The prevention of the deterioration of the minority carrier lifetime of a semiconductor substrate can be achieved by patterning the material of an impurity diffusion protecting layer on the surface of a semiconductor substrate by a making except a thermal oxidation process of the semiconductor substrate, for example by printing and firing paste material or by depositing paste material using a mask by CVD and forming a diffusion layer in the shape of an inverted pattern of the impurity diffusion protecting layer. Also, a low-priced photovoltaic device the photo-electric conversion efficiency of which is high can be manufactured by patterning and forming them.
    Type: Application
    Filed: July 15, 2002
    Publication date: July 17, 2003
    Applicant: Hitachi, Ltd.
    Inventors: Tsuyoshi Uematsu, Ken Tsutsui, Toshio Johge
  • Publication number: 20030129813
    Abstract: In the present invention, there is provided semiconductor devices such as a Schottky UV photodetector fabricated on n-type ZnO and MgxZn1-xO epitaxial films. The ZnO and MgxZn1-xO films are grown on R-plane sapphire substrates and the Schottky diodes are fabricated on the ZnO and MgxZn1-xO films using silver and aluminum as Schottky and ohmic contact metals, respectively. The Schottky diodes have circular patterns, where the inner circle is the Schottky contact, and the outside ring is the ohmic contact. Ag Schottky contact patterns are fabricated using standard liftoff techniques, while the Al ohmic contact patterns are formed using wet chemical etching. These detectors show low frequency photoresponsivity, high speed photoresponse, lower leakage current and low noise performance as compared to their photoconductive counterparts. This invention is also applicable to optical modulators, Metal Semiconductor Field Effect Transistors (MESFETs) and more.
    Type: Application
    Filed: May 30, 2002
    Publication date: July 10, 2003
    Applicant: Rutgers, The State University Of New Jersey
    Inventors: Yicheng Lu, Haifeng Sheng, Sriram Muthukumar, Nuri William Emanetoglu, Jian Zhong
  • Publication number: 20030107101
    Abstract: The semiconductor device of the present invention includes: a gallium nitride (GaN) compound semiconductor layer; and a Schottky electrode formed on the GaN compound semiconductor layer, wherein the Schottky electrode contains silicon.
    Type: Application
    Filed: December 27, 2002
    Publication date: June 12, 2003
    Applicant: MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.
    Inventors: Katsunori Nishii, Yoshito Ikeda, Hiroyuki Masato, Kaoru Inoue
  • Patent number: 6498381
    Abstract: In some embodiments, a circuit structure comprises a semiconductor substrate, an opening passing through the substrate between a first side of the substrate and a second side of the substrate, and a plurality of conductive layers in the opening. In some embodiments, one conductive layer provides an electromagnetic shield that shields the substrate from AC signals carried by a contact pad made from another conductive layer on a backside of the substrate. The conductive layers can also be used to form capacitor/rectifier networks. Manufacturing methods are also provided.
    Type: Grant
    Filed: February 22, 2001
    Date of Patent: December 24, 2002
    Assignee: Tru-Si Technologies, Inc.
    Inventors: Patrick B. Halahan, Oleg Siniaguine
  • Publication number: 20020158297
    Abstract: A conventional dye-sensitized solar cell is a wet cell employing an electrolyte such as an iodine solution or the like, it is necessary to seal the solar cell with a sealing compound or the like in order to contain the iodine solution therein. Therefore, there are many problems in that, for example, leakage of electrolyte solution occurs when the sealing is broken. Furthermore, when only a flat-shaped titanium electrode is used, current and voltage of practically required levels can not be secured because the absorption area of solar rays is small. The solar cell of the present invention, employing a porous titanium dioxide semiconductor, is characterized in that the titanium dioxide semiconductor is held between a pair of electrodes so that the titanium dioxide semiconductor and at least one of the electrodes form a rectification barrier.
    Type: Application
    Filed: November 6, 2001
    Publication date: October 31, 2002
    Inventors: Yuji Fujimori, Suwa-Shi, Tsutomu Miyamoto, Shiojiri-shi
  • Patent number: 6403874
    Abstract: A heterostructure thermionic cooler and a method for making thermionic coolers, employing a barrier layer of varying conduction bandedge for n-type material, or varying valence bandedge for p-type material, that is placed between two layers of material. The barrier layer bandedge is at least kBT higher than the Fermi level of the semiconductor layer, which allows only selected, “hot” electrons, or electrons of high enough energy, across the barrier. The barrier layer is constructed to have an internal electric field such that the electrons that make it over the initial barrier are assisted in travel to the anode. Once electrons drop to the energy level of the anode, they lose energy to the lattice, thus heating the lattice at the anode. The barrier height of the barrier layer is high enough to prevent the electrons from traveling in the reverse direction.
    Type: Grant
    Filed: November 17, 1999
    Date of Patent: June 11, 2002
    Assignee: The Regents of the University of California
    Inventors: Ali Shakouri, John E. Bowers
  • Patent number: 6396115
    Abstract: A detector layer for an optics module includes at least one diode having at least one sloped sidewall. At least one isolation region may be formed adjacent to the at least one sloped sidewall to isolate the at least one diode. Conducting material is disposed on at least a portion of the top surface of the diode. An insulating material is disposed on at least a portion of the diode and extends to the conducting material. A metal is disposed on at least a portion of the insulating material and at least a portion of the conducting material such that the metal is coupled to the conducting material.
    Type: Grant
    Filed: May 21, 1999
    Date of Patent: May 28, 2002
    Assignee: Seagate Technology LLC
    Inventors: Edward C. Gage, Ronald E. Gerber, George R. Gray, Steve C. Dohmeier, James E. Durnin, Daniel E. Glumac, Tim Gardner, Jill D. Berger, John H. Jerman, John F. Heanue, Ghamin A. Al-Jumaily
  • Patent number: 6373117
    Abstract: A multiple-photosensor structure. The multiple-photosensor structure includes a substrate. A first photosensor is formed adjacent to the substrate. A first pixel electrode of the first photosensor is electrically connected to the substrate. A first transparent conductive layer is formed adjacent to the first photosensor. The first transparent conductive layer electrically connects a first outer electrode of the first photosensor to the substrate. A second photosensor is adjacent to the first transparent conductive layer. A second pixel electrode of the second photosensor is electrically connected to the substrate through the first transparent conductive layer. A second transparent conductive layer is adjacent to the second photosensor. The second transparent conductive layer electrically connects a second outer electrode of the second photosensor to the substrate. The multiple-photosensor structure can further include a third photosensor formed adjacent to the second transparent conductive layer.
    Type: Grant
    Filed: May 3, 1999
    Date of Patent: April 16, 2002
    Assignee: Agilent Technologies, Inc.
    Inventor: Jeremy A Theil
  • Patent number: RE39445
    Abstract: The solar cell of the present invention includes a titanium dioxide semiconductor that is held between a pair of electrodes so that the titanium dioxide semiconductor and at least one of the electrodes form a rectification barrier.
    Type: Grant
    Filed: December 26, 2000
    Date of Patent: December 26, 2006
    Assignee: Seiko Epson Corporation
    Inventors: Yuji Fujimori, Tsutomu Miyamoto