Leads, I.e., Metallizations Or Lead Frames On Insulating Substrates, E.g., Chip Carriers (epo) Patents (Class 257/E23.06)

  • Publication number: 20130249117
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing a circuit substrate having an active side opposite to an inactive portion; attaching a nonconductive cover to the active side; forming a separation-gap partially cutting into the nonconductive cover and the circuit substrate to a kerf depth; attaching a back-grinding tape to the nonconductive cover; removing a portion of the inactive portion; and exposing the nonconductive cover by removing the back-grinding tape.
    Type: Application
    Filed: March 21, 2012
    Publication date: September 26, 2013
    Inventors: Hun Teak Lee, DaeWook Yang, Yeongbeom Ko
  • Patent number: 8531033
    Abstract: A contact plug structure formed on a contact hole of an insulating layer of a semiconductor device includes a metal silicide layer formed on a bottom part of the contact hole of the insulating layer, a manganese oxide layer formed on the metal silicide layer in the contact hole, and a buried copper formed on the manganese oxide layer which substantially fills the contact hole.
    Type: Grant
    Filed: September 7, 2010
    Date of Patent: September 10, 2013
    Assignee: Advanced Interconnect Materials, LLC
    Inventors: Junichi Koike, Akihiro Shibatomi, Kouji Neishi
  • Patent number: 8524607
    Abstract: An anisotropically conductive member has an insulating base material, and conductive paths composed of a conductive material which pass in a mutually insulated state through the insulating base material in a thickness direction thereof and which are provided in such a way that a first end of each conductive path is exposed on a first side of the insulating base material and a second end of each conductive path is exposed on a second side of the insulating base material. The conductive paths have a density of at least 2 million paths/mm2 and the insulating base material is a structure composed of an anodized aluminum film having micropores therein.
    Type: Grant
    Filed: November 14, 2011
    Date of Patent: September 3, 2013
    Assignee: FUJIFILM Corporation
    Inventors: Yoshinori Hotta, Takashi Touma, Yusuke Hatanaka
  • Publication number: 20130221542
    Abstract: A device includes a spacer, which includes a recess extending from a top surface of the spacer into the spacer, and a conductive feature including a first portion and a second portion continuously connected to the first portion. The first portion extends into the recess. The second portion is on the top surface of the spacer. A die is attached to the spacer, and a lower portion of the first die extends into the recess.
    Type: Application
    Filed: February 24, 2012
    Publication date: August 29, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Ru Chang, Chung-Kai Wang, Ming-Che Wu
  • Publication number: 20130221543
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing a base substrate; mounting a base integrated circuit over the base substrate; attaching a lead to the base integrated circuit and the base substrate, the lead having a lead attachment portion over the base integrated circuit; and forming a base encapsulation over the lead, the base encapsulation having a cavity exposing the lead attachment portion.
    Type: Application
    Filed: February 28, 2012
    Publication date: August 29, 2013
    Inventors: DaeSik Choi, JoonYoung Choi, YongHyuk Jeong
  • Patent number: 8513806
    Abstract: The laminated high melting point soldering layer includes: a laminated structure which laminated a plurality of three-layered structures, the respective three-layered structures including a low melting point metal thin film layer and a high melting point metal thin film layers disposed on a surface and a back side surface of the low melting point metal thin film layer; a first high melting point metal layer disposed on the surface of the laminated structure; and a second high melting point metal layer disposed on the back side surface of the laminated structure. The low melting point metal thin film layer and the high melting point metal thin film layer are mutually alloyed by TLP, and the laminated structure, and the first high melting point metal layer and the second high melting point metal layer are mutually alloyed by the TLP bonding.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: August 20, 2013
    Assignee: Rohm Co., Ltd.
    Inventors: Takukazu Otsuka, Keiji Okumura
  • Publication number: 20130187279
    Abstract: Methods of forming semiconductor device structures include forming trenches in an array region and in a buried digit line end region, forming a metal material in the trenches, filling the trenches with a mask material, removing mask material in the trenches to expose a portion of the metal material, and removing the exposed portion of the metal material. A plurality of conductive contacts are formed in direct contact with the metal material in the buried digit line end region. Methods of forming a buried digit line contact include forming conductive contacts physically contacting metal material in trenches in a buried digit line end region. Vertical memory devices and apparatuses include metallic connections disposed between a buried digit line and a conductive contact in a buried digit line end region.
    Type: Application
    Filed: January 20, 2012
    Publication date: July 25, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Shyam Surthi, Suraj Mathew
  • Publication number: 20130181342
    Abstract: A semiconductor package includes a substrate having first and second surfaces which face each other, a semiconductor chip mounted on the first surface, a first encapsulant formed on the first surface and at least partially encapsulating the semiconductor chip. A second encapsulant is formed on the second surface and first external connection terminals formed on the second surface to penetrate the second encapsulant. The external connection terminals have first ends in contact with the second surface. Second external connection terminals are attached to second ends of the first external connection terminals.
    Type: Application
    Filed: September 13, 2012
    Publication date: July 18, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Sung-Kyu Park
  • Publication number: 20130175563
    Abstract: An LED package structure includes: a substrate having a die attach pad; a first insulating layer formed on the die attach pad and having a plurality of openings; an LED chip having an active surface with a plurality of electrode pads and an inactive surface opposite to the active surface; a second insulating layer formed on the inactive surface and having a plurality of openings, wherein the LED chip is disposed on the substrate with the openings of the second insulating layer corresponding in position to the openings of the first insulating layer; and a plurality of metallic thermal conductive elements formed in the openings of the first insulating layer and the corresponding openings of the second insulating layer, thereby effectively alleviating the conventional problem of thermal stresses induced by a mismatch in CTEs of the LED chip and the substrate.
    Type: Application
    Filed: August 14, 2012
    Publication date: July 11, 2013
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Yuen-Han Wang, Sheng-Li Lu, Kuan-Yu Yang, Hsien-Wen Chen, Jih-Fu Wang
  • Patent number: 8482121
    Abstract: A semiconductor device is provided comprising: a semiconductor element including a plurality of electrodes; first wirings coupled to the electrodes and directed toward a center of the semiconductor element from a portion coupled to the electrodes; second wirings coupled between the first wirings and external terminals, the second wirings being directed to an outer area of the semiconductor element relative to the center; and at least one resin layer formed between the first wirings and the second wirings.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: July 9, 2013
    Assignee: Seiko Epson Corporation
    Inventor: Haruki Ito
  • Publication number: 20130154128
    Abstract: The present disclosure relates to an electromigration tolerant power distribution network generated by an automatic place and route (APR) methodology. In some embodiments, an automatic place and route tool constructs a local power network having multi-level power rails. The multi-level power rails have interleaved segments of vertically adjacent metal layers, wherein each interleaved segment is shorter than a predetermined characteristic length corresponding to a Blech length. By limiting the length of the interleaved metallization segments, electromigration within the multi-level power rails is alleviated, allowing for the maximum current density requirement (Jmax) for mean time to failures (MTTF) to be increased.
    Type: Application
    Filed: December 20, 2011
    Publication date: June 20, 2013
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chung-Hsing Wang, King-Ho Tam, Huang-Yu Chen
  • Publication number: 20130154116
    Abstract: A method of manufacture of an integrated circuit packaging system comprising: providing a package carrier; mounting an integrated circuit to the package carrier; and forming a perimeter antiwarpage structure on and along a perimeter of the package carrier.
    Type: Application
    Filed: December 15, 2011
    Publication date: June 20, 2013
    Inventor: DaeSik Choi
  • Publication number: 20130154118
    Abstract: A method of manufacture of an integrated circuit packaging system includes: forming an isolated contact having a contact protrusion; forming a die paddle, adjacent to the isolated contact, having a die paddle contour; depositing a contact pad on the contact protrusion; coupling an integrated circuit die to the contact protrusion; molding an encapsulation on the integrated circuit die; and depositing an organic filler on and between the isolated contact and the die paddle, the contact protrusion extended past the organic filler.
    Type: Application
    Filed: December 15, 2011
    Publication date: June 20, 2013
    Inventors: Byung Tai Do, Arnel Senosa Trasporto, Linda Pei Ee Chua
  • Publication number: 20130154127
    Abstract: In a system for providing temporary or permanent connection of an integrated circuit die to a base substrate using electrical microsprings, a thermal element is provided that assists with cooling of the pad structure during use. The thermal element may be formed of the same material and my similar processes as the microsprings. The thermal element may be one or more block structures or one or more thermal microsprings. The thermal element may be provided with channels to contain and/or direct the flow of a thermal transfer fluid. Cooling of components associated with the pad structure (e.g., ICs) may be provided.
    Type: Application
    Filed: December 19, 2011
    Publication date: June 20, 2013
    Applicant: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Eugene M. Chow, Eric J. Shrader, John S. Paschkewitz
  • Patent number: 8450852
    Abstract: A wiring substrate includes plural wiring layers and plural insulation layers being alternately stacked one on top of the other. The plural insulation layers are formed with insulation resin having the same composition. The plural insulation layers are formed with a filler having the same composition. The filler content of each of the plural insulation layers ranges from 30 vol % or more to 65 vol % or less. The thermal expansion coefficient of each of the plural insulation layers ranges from 12 ppm/° C. or more to 35 ppm/° C. or less.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: May 28, 2013
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventors: Hitoshi Kondo, Tomoyuki Shimodaira, Masako Sato
  • Patent number: 8446006
    Abstract: Structures and methods to reduce maximum current density in a solder ball are disclosed. A method includes forming a contact pad in a last wiring level and forming a plurality of wires of the contact pad extending from side edges of the contact pad to respective ones of a plurality of vias. Each one of the plurality of wires has substantially the same electrical resistance.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: May 21, 2013
    Assignee: International Business Machines Corporation
    Inventors: Raschid J. Bezama, Timothy H. Daubenspeck, Gary LaFontant, Ian D. Melville, Ekta Misra, George J. Scott, Krystyna W. Semkow, Timothy D. Sullivan, Robin A. Susko, Thomas A. Wassick, Xiaojin Wei, Steven L. Wright
  • Patent number: 8441127
    Abstract: A device includes a package component, and a metal trace on a surface of the package component. A first and a second dielectric mask cover a top surface and sidewalls of the metal trace, wherein a landing portion of the metal trace is located between the first and the second dielectric masks. The landing portion includes a first portion having a first width, and a second portion connected to an end of the first portion. The second portion has a second width greater than the first width, wherein the first and the second widths are measured in a direction perpendicular to a lengthwise direction of the metal trace.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: May 14, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Fu-Tsai Hou, Liang-Chen Lin
  • Publication number: 20130113118
    Abstract: A semiconductor device has a semiconductor die with bumps formed over a surface of the semiconductor die. A conductive layer is formed over a substrate. A patterning layer is formed over the substrate and conductive layer. A masking layer having an opaque portion and linear gradient contrast portion is formed over the patterning layer. The linear gradient contrast portion transitions from near transparent to near opaque. The patterning layer is exposed to ultraviolet light through the masking layer. The masking layer is removed and a portion of the patterning layer is removed to form an opening having a sloped surface to expose the conductive layer. The sloped surface in patterning layer can be formed by laser direct ablation. The semiconductor die is mounted to the substrate with the bumps electrically connected to the conductive layer and physically separated from the patterning layer.
    Type: Application
    Filed: November 4, 2011
    Publication date: May 9, 2013
    Applicant: STATS CHIPPAC, LTD.
    Inventors: MinJung Kim, JoungIn Yang, DaeSik Choi, KyungEun Kim
  • Publication number: 20130099369
    Abstract: A discrete semiconductor package includes a discrete semiconductor device disposed upon a non-conductive substrate, with via-connected upper and lower conductive ports. By utilizing a plurality of vias to connect the ports within the non-conductive substrate, and by depositing metals directly upon the surface of the substrate, manufacturing of such semiconductor packages is cheaper and more effective.
    Type: Application
    Filed: October 19, 2012
    Publication date: April 25, 2013
    Applicant: SEMICOA CORPORATION
    Inventor: Semicoa Corporation
  • Publication number: 20130099375
    Abstract: A semiconductor package substrate including a substrate body having a front surface configured for mounting a semiconductor chip on the front surface and a rear surface facing the front surface and comprising a window passing through the front and rear surfaces, the window having one or more surfaces inclined from the front surface toward the rear surface; and a conductive pattern arranged along an inclined surface of the window so as to extend from the front surface to the rear surface of the substrate body.
    Type: Application
    Filed: October 19, 2012
    Publication date: April 25, 2013
    Applicant: SK HYNIX INC.
    Inventor: SK hynix Inc.
  • Publication number: 20130093088
    Abstract: A microelectronic package can include wire bonds having bases bonded to respective conductive elements on a substrate and ends opposite the bases. A dielectric encapsulation layer extending from the substrate covers portions of the wire bonds such that covered portions of the wire bonds are separated from one another by the encapsulation layer, wherein unencapsulated portions of the wire bonds are defined by portions of the wire bonds which are uncovered by the encapsulation layer. Unencapsulated portions can be disposed at positions in a pattern having a minimum pitch which is greater than a first minimum pitch between bases of adjacent wire bonds.
    Type: Application
    Filed: February 24, 2012
    Publication date: April 18, 2013
    Applicant: INVENSAS CORPORATION
    Inventors: Ellis Chau, Reynaldo Co, Roseann Alatorre, Philip Damberg, Wei-Shun Wang, Se Young Yang, Zhijun Zhao
  • Patent number: 8415780
    Abstract: A manufacturing method of a package carrier is provided. A substrate having an upper and lower surface is provided. A first opening communicating the upper and lower surface of the substrate is formed. A heat conducting element is disposed inside the first opening, wherein the heat conducting element is fixed in the first opening via an insulating material. At least a through hole passing through the substrate is formed. A metal layer is formed on the upper and lower surface of the substrate and inside the through hole. The metal layer covers the upper and lower surface of the substrate, the heat conducting element and the insulating material. A portion of the metal layer is removed. A solder mask is formed on the metal layer. A surface passivation layer is formed and covers the metal layer exposed by the solder mask and the metal layer located inside the through hole.
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: April 9, 2013
    Assignee: Subtron Technology Co., Ltd.
    Inventor: Shih-Hao Sun
  • Patent number: 8402406
    Abstract: Methods, apparatuses, and computer program products are disclosed for controlling plating stub reflections in a chip package. In one embodiment, a resonance optimizer determines performance characteristics of a bond wire that connects a chip to a substrate of a semiconductor chip mount. In this embodiment, the resonance optimizer selects, based on the performance characteristics of the bond wire, a line width for an open-ended plating stub that extends from a signal interconnect of the substrate to a periphery of the substrate, The resonance optimizer also generates a design of signal traces for the substrate, where the signal traces include the open-ended plating stub with the selected line width.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: March 19, 2013
    Assignee: International Business Machines Corporation
    Inventors: Moises Cases, Bhyrav M. Mutnury, Nanju Na, Terence Rodrigues
  • Patent number: 8399967
    Abstract: A package structure including a circuit substrate, at least a chip, leads and an encapsulant is provided. The circuit substrate has a first surface, a second surface opposite to the first surface, and contacts disposed on the first surface. The chip is disposed on the second surface of the circuit substrate and electrically connected to the circuit substrate. The leads are disposed on the periphery of the second surface and surround the chip. Each lead has an inner lead portion and an outer lead portion and is electrically connected to the circuit substrate via the inner lead portion. The encapsulant encapsulates the circuit substrate, the chip and the inner lead portion and exposes the first surface of the circuit substrate and the outer lead portion, wherein the upper surface of the encapsulant and the first surface of the circuit substrate are coplanar with each other.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: March 19, 2013
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventor: Chih-Cheng Chien
  • Publication number: 20130062785
    Abstract: A transistor structure includes a chip package and two pins, wherein the chip package includes a transistor die and a molding compound encapsulating the transistor die. One of the pins is electrically connected to a first bonding pad and a second bonding pad of the transistor die, and another of the pins is electrically connected to a third bonding pad of the transistor die. The transistor structure may be employed in a snubber circuit to connect an active component or a load in parallel to absorb spikes or noise generated by the active component while the active component is switching at a high frequency. Therefore, the packaging of the transistor structure could simplify the process, reduce size, increase the withstanding voltage, and improve the efficiency and reduce the spike voltage of the power supply of the snubber circuit.
    Type: Application
    Filed: September 13, 2012
    Publication date: March 14, 2013
    Inventors: Kuo-Fan Lin, Chi-Shang Lin
  • Publication number: 20130062765
    Abstract: A multi-die package includes a first semiconductor die and a second semiconductor die each having an upper surface with a plurality of bond pads positioned thereon. The multi-die package also includes a plurality of bonding wires each coupling one of the bond pads on the upper surface of the first semiconductor die to a corresponding one of the bond pads on the upper surface of the second semiconductor die. A bonding wire of the plurality of bonding wires includes a first portion extending upward from one of the second plurality of bond pads substantially along a z-axis and curving outward substantially along x and y axes in a direction towards the first semiconductor die. The bonding wire also includes a second portion coupled to the first portion and extending from the first portion downward to one of the first plurality of bond pads on the upper surface of the first semiconductor die.
    Type: Application
    Filed: July 31, 2012
    Publication date: March 14, 2013
    Applicant: CARSEM (M) SDN. BHD.
    Inventors: Liew Siew Har, Law Wai Ling
  • Publication number: 20130056861
    Abstract: A method of forming a semiconductor device includes affixing a die to a heat sink to form a die and heat sink assembly and then placing the die and heat sink assembly on a support element. A semiconductor device includes a die and heat sink assembly disposed on a support element. The die and heat sink assembly is pre-assembled prior to being disposed on the support element.
    Type: Application
    Filed: February 16, 2012
    Publication date: March 7, 2013
    Applicant: FREESCALE SEMICONDUCTOR, INC
    Inventors: Wei Gao, Zhiwei Gong, Dehong Ye, Huchang Zhang
  • Publication number: 20130049232
    Abstract: A method of attaching a die to a carrier using a temporary attach material is disclosed. The method comprises attaching the temporary attach material between a surface of the die and a surface of the carrier. The temporary attach material attaches the die to the carrier. The method comprises bonding at least one connector to the die and the carrier. The connector includes a first end bonded to the carrier and a second end bonded to the die. The method further comprises encapsulating at least a portion of the die and at least a portion of the at least one connector by an encapsulation material.
    Type: Application
    Filed: August 23, 2011
    Publication date: February 28, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Elizabeth Anne Logan, Terry Lee Marvin Cookson, Sisira Kankanam Gamage, Ronald Almy Hollis
  • Publication number: 20130049203
    Abstract: A semiconductor device with a buried electrode is manufactured by forming a cavity within a semiconductor substrate, forming an active device region in an epitaxial layer disposed on the semiconductor substrate and forming the buried electrode below the active device region in the cavity. The buried electrode is formed from an electrically conductive material different than the material of the semiconductor substrate.
    Type: Application
    Filed: August 29, 2011
    Publication date: February 28, 2013
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Carsten Ahrens, Johannes Baumgartl, Francisco Javier Santos Rodriguez, Hans-Joachim Schulze
  • Publication number: 20130048983
    Abstract: Methods for forming structures to use in atomic force probing of a conductive feature embedded in a dielectric layer and structures for use in atomic force probing. An insulator layer is formed on the dielectric layer such that the conductive feature is covered. A contact hole penetrates from a top surface of the insulator layer through the insulator layer to the conductive feature. The contact hole is at least partially filled with a conductive stud that is in electrical contact with the conductive feature and exposed at the top surface of the insulator layer so as to define a structure. A probe tip of an atomic force probe tool is landed on a portion of the structure and used to electrically characterize a device structure connected with the conductive feature.
    Type: Application
    Filed: October 30, 2012
    Publication date: February 28, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: International business machines corporation
  • Publication number: 20130049191
    Abstract: A semiconductor device has a wiring substrate, a first semiconductor chip, a second semiconductor chip, and a sealing member. The second semiconductor chip has a chip-layered structure with a plurality of semiconductor chip components stacked in the height direction of the semiconductor device. The first semiconductor chip has an upper surface located at the same height from a surface of the wiring substrate as an upper surface of the second semiconductor chip.
    Type: Application
    Filed: December 15, 2011
    Publication date: February 28, 2013
    Inventor: Yumiko MIURA
  • Patent number: 8384229
    Abstract: A semiconductor device permitting the reduction of cost is disclosed. In a semiconductor package wherein electrode pads of a semiconductor chip and corresponding inner leads are electrically coupled with each other through a plurality of bonding wires, sensing wires (second and fourth bonding wires) are made thinner than other bonding wires (first and third bonding wires) coupled to inner leads same as those with the sensing wires coupled thereto, thereby reducing the cost of gold wires to attain the reduction in cost of the semiconductor package.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: February 26, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Kazuya Fukuhara, Kiyonori Yoshitomi, Takehiko Ikegami, Yujiro Kawasoe
  • Patent number: 8378467
    Abstract: Retaining regions 310a and 310b are added to a pad shaped portion 303a of leads and a die pad 302 that are electrically connected via a conductive ribbon 309, so that during the bonding of the ribbon, strong ultrasonic waves can be applied in a state in which the retaining regions 310a and 310b are pressed and fixed. It is therefore possible to reduce a resistance at a joint while firmly bonding the conductive ribbon 309. Further, the bonding strength of the conductive ribbon 309 increases and thus it is possible to eliminate the need for stacking the conductive ribbons 309 and easily reduce a stress caused by ultrasonic waves on a semiconductor chip 306.
    Type: Grant
    Filed: September 8, 2009
    Date of Patent: February 19, 2013
    Assignee: Panasonic Corporation
    Inventors: Chie Fujioka, Toshiyuki Yokoe, Daichi Kumano
  • Patent number: 8378468
    Abstract: By increasing the area of a source electrode 3a of a semiconductor element 3 and the area of a source terminal 2b of a lead frame 2, it is possible to extend a joint 8a of the source electrode 3a bonded to a conductive ribbon 6 and a joint 8b of the source terminal 2b. Thus it is possible to reduce an on resistance and easily reduce the number of times a bonding tool comes into contact with the joints to reduce a stress on the semiconductor element 3.
    Type: Grant
    Filed: September 17, 2009
    Date of Patent: February 19, 2013
    Assignee: Panasonic Corporation
    Inventors: Chie Fujioka, Toshiyuki Yokoe, Daichi Kumano
  • Patent number: 8368188
    Abstract: A method for manufacturing an integrated circuit package system includes: providing an integrated circuit; mounting a lead on the periphery of the integrated circuit; connecting the integrated circuit to the lead with an interconnect; and forming a conformable material by pressing the conformable material on the integrated circuit, the lead, and the interconnect.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: February 5, 2013
    Assignee: Stats Chippac Ltd.
    Inventors: Byung Tai Do, Heap Hoe Kuan, Rui Huang
  • Publication number: 20130026636
    Abstract: A circuit board that can decrease thermal stress acting between a semiconductor element and a board in association with temperature alteration and has high mechanical strength (rigidity) as a whole board (including a multilayer wiring layer) is provided. Ceramic base material having a coefficient of thermal expansion close to that of a semiconductor element and inner layer wiring are integrally sintered, and the circuit board is configured so that fine-lined conductor structure corresponding to a multilayer wiring layer in the inner layer wiring has predetermined width, intralayer interval and interlayer interval. Thereby, thermal stress acting between a semiconductor element and the board when the board is exposed to temperature alteration in a condition where it is joined with the semiconductor element is suppressed, rigidity of the board is maintained, and its reliability against temperature cycle is increased.
    Type: Application
    Filed: September 20, 2011
    Publication date: January 31, 2013
    Applicant: NGK Insulators, Ltd.
    Inventors: Makoto TANI, Takami HIRAI, Shinsuke YANO, Tsutomu NANATAKI
  • Publication number: 20130020647
    Abstract: Semiconductor devices are provided. The semiconductor device includes conductive patterns vertically stacked on a substrate to be spaced apart from each other, and pad patterns electrically connected to respective ones of the conductive patterns. Each of the pad patterns includes a flat portion extending from an end of the conductive pattern in a first direction parallel with the substrate and a landing sidewall portion upwardly extending from an end of the flat portion. A width of a portion of the landing sidewall portion in a second direction parallel with the substrate and perpendicular to the first direction is less than a width of the flat portion in the second direction. The related methods are also provided.
    Type: Application
    Filed: July 3, 2012
    Publication date: January 24, 2013
    Inventors: Sung-Min HWANG, In-Wook Oh, Woonkyung Lee, Aaron Park, Hoosung Cho
  • Publication number: 20130001769
    Abstract: A device includes a package component, and a metal trace on a surface of the package component. A first and a second dielectric mask cover a top surface and sidewalls of the metal trace, wherein a landing portion of the metal trace is located between the first and the second dielectric masks. The landing portion includes a first portion having a first width, and a second portion connected to an end of the first portion. The second portion has a second width greater than the first width, wherein the first and the second widths are measured in a direction perpendicular to a lengthwise direction of the metal trace.
    Type: Application
    Filed: June 29, 2011
    Publication date: January 3, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Fu-Tsai Hou, Liang-Chen Lin
  • Publication number: 20130001779
    Abstract: A stack package includes a first package having a first semiconductor chip and a first encapsulation member which seals the first semiconductor chip. A second package is stacked on the first package, and includes a second semiconductor chip and a second encapsulation member which seals the second semiconductor chip. Flexible conductors are disposed within the first encapsulation member of the first package in such a way as to electrically connect the first package and the second package.
    Type: Application
    Filed: September 12, 2012
    Publication date: January 3, 2013
    Applicant: SK HYNIX INC.
    Inventors: Tae Min KANG, You Kyung HWANG, Jae-hyun SON, Dae Woong LEE, Byoung Do LEE, Yu Hwan KIM
  • Publication number: 20130001767
    Abstract: A method for manufacturing a package, includes preparing a substrate having a first surface on which a connecting pad is formed, mounting a sacrificing material on the connecting pad, forming a package portion covering the first surface of the substrate, exposing the sacrificing material from a surface of the package portion, and removing the exposed sacrificing material from the side of the surface of the package portion, and forming an opening portion in the package portion on the connecting pad.
    Type: Application
    Filed: June 27, 2012
    Publication date: January 3, 2013
    Applicant: Shinko Electric Industries Co., Ltd.
    Inventor: Atsunori KAJIKI
  • Publication number: 20120313244
    Abstract: In one embodiment, a semiconductor package may include a semiconductor chip having a chip pad formed on a first surface thereof, a sealing member for sealing the semiconductor chip and exposing the first surface of the semiconductor chip, a conductive wiring overlying a part of the first surface of the semiconductor chip and directly contacting a part of an upper surface of the sealing member. The conductive wiring further contacts the pad. The semiconductor package may also include an encapsulant covering the conductive wiring and having openings for exposing parts of the conductive wiring.
    Type: Application
    Filed: August 26, 2012
    Publication date: December 13, 2012
    Inventors: Jong-gi Lee, Sang-wook Park, Ji-seok Hong
  • Publication number: 20120299181
    Abstract: A method of packaging includes placing a package component over a release film, wherein solder balls on a surface of the package component are in physical contact with the release film. Next, A molding compound filled between the release film and the package component is cured, wherein during the step of curing, the solder balls remain in physical contact with the release film.
    Type: Application
    Filed: May 27, 2011
    Publication date: November 29, 2012
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Meng-Tse Chen, Wei-Hung Lin, Sheng-Yu Wu, Chun-Cheng Lin, Kuei-Wei Huang, Yu-Peng Tsai, Chih-Wei Lin, Wen-Hsiung Lu, Hsiu-Jen Lin, Bor-Ping Jang, Ming-Da Cheng, Chung-Shi Liu
  • Patent number: 8314479
    Abstract: An LED package includes a die pad having a bottom surface, an upper surface and a centrally located recessed cavity. The recessed cavity has a chip attach surface between the bottom surface and upper surface and sidewalls that extend from the recessed chip attach surface to the upper surface. The package additionally has leads arranged on opposing sides of the die pad. The leads have a bottom surface that is coextensive with the bottom surface of the die pad and an upper surface coextensive with the upper surface of the die pad. An LED chip is attached to the chip attach surface. The package further includes a package body having an encapsulant which fills space between the die pad and leads forming a bottom encapsulant surface that is coextensive with the bottom surfaces of the die pad and leads.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: November 20, 2012
    Assignee: Carsem (M) SDN. BHD.
    Inventors: Yong Lam Wai, Chan Boon Meng, Phang Hon Keat
  • Patent number: 8304884
    Abstract: A semiconductor device includes a metal carrier and a spacer element attached to the metal carrier. The semiconductor device includes a first sintered metal layer on the spacer element and a semiconductor chip on the first sintered metal layer.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: November 6, 2012
    Assignee: Infineon Technologies AG
    Inventors: Ivan Nikitin, Joachim Mahler, Thomas Behrens
  • Patent number: 8304922
    Abstract: A semiconductor package system includes providing a substrate having a plurality of thermal vias extending through the substrate. A solder mask is positioned over the plurality of thermal vias. A plurality of thermally conductive bumps is formed on at least some of the plurality of thermal vias using the solder mask. An integrated circuit die is attached to the plurality of thermally conductive bumps. An encapsulant encapsulates the integrated circuit die.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: November 6, 2012
    Assignee: Stats Chippac Ltd.
    Inventors: Sangkwon Lee, Tae Keun Lee
  • Publication number: 20120273946
    Abstract: A semiconductor device entirely having a small height, which performs a fan-out operation for input/output signals and forms a short electrical path is provided. The semiconductor device includes a first semiconductor die having a first surface, a second surface opposed to the first surface, a third surface connecting the first and second surfaces to each other, a first bond pad disposed on the first surface, and a first through electrode passing between the first surface and second surface and electrically connected to the first bond pad. A first redistribution part is disposed under the second surface and includes a first redistribution layer electrically connected to the first through electrode. A second redistribution part is disposed over the first surface and includes a second redistribution layer electrically connected to the first bond pad.
    Type: Application
    Filed: April 25, 2012
    Publication date: November 1, 2012
    Inventors: Do Hyung Kim, Dae Byoung Kang, Seung Chul Han
  • Publication number: 20120273972
    Abstract: Mounting a power supply ring-shaped conductor and a ground ring-shaped conductor within the innermost circumferential ring-shaped area enclosing the semiconductor chip and within the ring-shaped region adjacent to the outer side of this innermost circumferential ring-shaped region when mounting the semiconductor chip on the substrate package, makes the chip more resistant to noise but also conversely causes the problem of increased cost and size for the entire semiconductor device. The power supply pad and ground pad are here clustered in the outermost ring-shaped area on the semiconductor chip. The power supply terminal and ground terminal are clustered on the innermost ring-shaped region enclosing the semiconductor chip. This placement reduces the size and manufacturing cost of the overall semiconductor device.
    Type: Application
    Filed: April 20, 2012
    Publication date: November 1, 2012
    Applicant: Renesas Electronics Corporation
    Inventor: Yosuke KAWAI
  • Publication number: 20120261821
    Abstract: In a semiconductor device package having a stress relief spacer, and a manufacturing method thereof, metal interconnect fingers extend from the body of a chip provide for chip interconnection. The metal fingers are isolated from the body of the chip by a stress-relief spacer. In one example, such isolation takes the form of an air gap. In another example, such isolation takes the form of an elastomer material. In either case, mismatch in coefficient of thermal expansion between the metal interconnect fingers and the body of the chip is avoided, alleviating the problems associated with cracking and delamination, and leading to improved device yield and device reliability.
    Type: Application
    Filed: June 29, 2012
    Publication date: October 18, 2012
    Inventors: Hyun-Soo Chung, Ho-Jin Lee, Dong-Hyun Jang, Dong-Ho Lee
  • Publication number: 20120256310
    Abstract: A semiconductor device includes a multi-level wiring structure that includes a first wring layer, a plurality of first patterns, and a first mark. The first wring layer is disposed at a first wiring level of the multi-level wiring structure. The plurality of first patterns is disposed over the first wring layer. The plurality of first patterns is disposed at a second wiring level of the multi-level wiring structure. The second wiring level is above the first wiring level. The plurality of first patterns is disposed over the first wring layer. The plurality of first patterns is disposed at a second wiring level of the multi-level wiring structure. The second wiring level is above the first wiring level. The first mark is disposed over the first wring layer. The first mark is disposed at a third wiring level. The third wiring level is above the second wiring level.
    Type: Application
    Filed: April 5, 2012
    Publication date: October 11, 2012
    Applicant: Elpida Memory, Inc.
    Inventor: Akira IDE
  • Patent number: 8283790
    Abstract: An electronic device includes a carrier, a surface mounting device, and solders. The carrier has a plurality of bonding pads, and at least one of the bonding pads has a notch, such that the bonding pad has a necking portion adjacent to the notch. The surface mounting device is disposed on the carrier. Besides, the surface mounting device has a plurality of leads, and each of the leads is connected to the necking portion of one of the bonding pads, respectively. The notch of each of the bonding pads is located under one of the leads. The solders connect the bonding pads and the leads.
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: October 9, 2012
    Assignee: Everlight Electronics Co., Ltd.
    Inventor: Wen-Chieh Tsou