Plural Metals Or Metal And Ammonium Containing Patents (Class 423/593.1)
  • Patent number: 7879303
    Abstract: Described is a method for the production of metal salts, wherein the cationic metal is preferably selected from Group I to IV metals and mixtures thereof and the anionic group is selected from phosphates, silicates, sulfates, carbonates, hydroxides, fluorides and mixtures thereof, and wherein said method comprises forming a mixture of at least one metal source that is a metal carboxylate with a mean carbon value per carboxylate group of at least 3 and at least one anion source into droplets and oxiding said droplets in a high temperature environment, preferably a flame. This method is especially suited for the production of calcium phosphate biomaterials such as hydroxyapatite (HAp,Cal0(P04)6(OH)2) and tricalcium phosphate (TCP,Ca3(P04)2) that exhibit excellent biocompatibility and osteoconductivity and therefore are widely used for reparation of bony or periodontal defects, coating of metallic implants and bone space fillers.
    Type: Grant
    Filed: March 15, 2004
    Date of Patent: February 1, 2011
    Assignee: Eidgenossische Technische Hochschule Zurich
    Inventors: Wendelin Jan Stark, Sotiris-Emmanuel Pratsinis, Marek Maciejewski, Stefan Fridolin Loher, Alfons Baiker
  • Patent number: 7879757
    Abstract: A photocatalytic titanium oxide sol presents antibacterial properties in a dark place, and, in particular, relates to a photocatalytic titanium oxide sol which is stable and causes no discoloration by light even though containing silver, and relates to a coating composition and a member using the same. The photocatalytic titanium oxide sol includes silver, copper and a quaternary ammonium hydroxide, may be dispersed in a binder, and may be coated on the surface of a substrate.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: February 1, 2011
    Assignees: Taki Chemical Co., Ltd., Toto Ltd.
    Inventors: Taketoshi Kuroda, Hiroyuki Izutsu, Isamu Yamaguchi, Yoshiyuki Nakanishi
  • Patent number: 7879265
    Abstract: It is an object of the present invention to provide an active material for lithium ion battery capable of producing a lithium ion battery having an excellent high rate charge and discharge performance and a lithium ion battery having an excellent high rate charge and discharge performance. The present invention provides an active material for lithium ion battery represented by a composition formula: Li[Li(1-x)/3AlxTi(5-2x)/3]O4 (??x<1) lithium titanate is substituted with Al, and a lithium ion battery using this active material as a negative electrode active material.
    Type: Grant
    Filed: March 22, 2006
    Date of Patent: February 1, 2011
    Assignee: GS Yuasa Corporation
    Inventors: Daisuke Endo, Tokuo Inamasu, Toshiyuki Nukuda, Yoshihiro Katayama
  • Patent number: 7871956
    Abstract: This invention relates to a cerium-zirconium-base composite oxide, which is useful, e.g., for the purification of exhaust gas discharged from combustion engines such as internal combustion engines and boilers and can release a high level of oxygen in a low temperature region, a method for producing the same, an oxygen storage/release component using the same, an exhaust gas purification catalyst, and an exhaust gas purification method. The cerium-zirconium-base composite oxide satisfies requirements (1) that the oxygen release initiation temperature is 380° C. or below, (2) that the oxygen release amount is not less than 485 ?mol/g, and further (3) that the oxygen release amount at 400° C. is not less than 15 ?mol/g.
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: January 18, 2011
    Assignees: Daiichi Kigenso Kagaku Kogyo Co., Ltd., N.E. Chemcat Corporation
    Inventors: Takahiro Wakita, Akira Kohara, Yasuharu Kanno, Hiroaki Omoto
  • Publication number: 20110006269
    Abstract: Methods for preparing high quality and high yields of nanocrystals, i.e., metal-oxide-based nanocrystals, using a novel solvent-free method. The nanocrystals advantageously comprise organic alkyl chain capping groups and are stable in air and in nonpolar solvents.
    Type: Application
    Filed: November 14, 2008
    Publication date: January 13, 2011
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Melissa A. Petruska, Guiquan Pan
  • Patent number: 7867471
    Abstract: A process of producing a ceramic powder including providing a plurality of precursor materials in solution, wherein each of the plurality of precursor materials in solution further comprises at least one constituent ionic species of a ceramic powder, combining the plurality of precursor materials in solution with an onium dicarboxylate precipitant solution to cause co-precipitation of the ceramic powder precursor in a combined solution; and separating the ceramic powder precursor from the combined solution. The process may further include calcining the ceramic powder precursor.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: January 11, 2011
    Assignee: SACHEM, Inc.
    Inventor: Wilfred Wayne Wilson
  • Publication number: 20110002831
    Abstract: A sol-gel process for preparing a mixture of metal-oxide-metal compounds wherein at least one metal oxide precursor is subjected to a hydrolysis treatment to obtain one or more corresponding metal oxide hydroxides, the metal oxide hydroxides so obtained are subjected to a condensation treatment to form the metal-oxide-metal compounds, which process is carried out in the presence of an encapsulated catalyst, whereby the catalytically active species is released from the encapsulating unit by exposure to an external stimulus, and wherein the catalytically active species released after exposure to such external stimulus is capable of catalyzing the condensation of the metal-hydroxide groups that are present in the metal oxide hydroxides so obtained.
    Type: Application
    Filed: December 15, 2008
    Publication date: January 6, 2011
    Inventors: Nanning Joerg Arfsten, Pascal Jozef Paul Buskens, Jens Christoph Thies
  • Patent number: 7862797
    Abstract: Alkali metal oxide-metal oxide mixed oxide powder in the form of aggregates of pore-free primary particles, comprising from 0.005 to 5% by weight of at least one alkali metal oxide, which has a BET surface area of from 100 to 350 m2/g, has a specific DBP number, expressed as DBP number per square meter of specific surface area, greater than or equal to that of a powder which has only the metal oxide component, has the alkali metal oxide distributed in the core and on the surface of the primary particles. Silicone rubber comprising the alkali metal oxide-metal oxide mixed oxide powder.
    Type: Grant
    Filed: May 23, 2006
    Date of Patent: January 4, 2011
    Assignee: EVONIK DEGUSSA GmbH
    Inventors: Kai Schumacher, Helmut Roth, Rainer Golchert, Helmut Mangold, Mario Scholz
  • Publication number: 20100316560
    Abstract: The invention relates to the production of mixed-metal-oxide inorganic pigments, using industrial waste as raw materials, comprising the following steps: (i) characterization and selection of wastes; (ii) their treatment, if required; (iii) formulation+dosing+mixing of components; (iv) drying+calcination; and (v) washing+milling. Selected wastes might be used in the as-received condition or after drying or calcination. The present invention deals with materials that are produced by colorants or pigments producers mainly for use in the ceramic sector, since formulations are stable at high temperatures and act as colorants of glazes or ceramic bodies. The use of high temperatures might also assure the desirable inertization of possible hazardous species.
    Type: Application
    Filed: December 27, 2007
    Publication date: December 16, 2010
    Inventors: João António Labrincha Batista, Manuel Joaquim Peixoto Marques Ribeiro, Marla Grácia Cordeiro da costa
  • Patent number: 7838460
    Abstract: A nanoporous metal oxide material comprising two or more metal oxides, wherein the nanoporous metal oxide material has ceria content of 10 to 60 weight %, zirconia content of 20 to 90 weight %, and alumina content of 70 weight % or less, and has nanopores whose diameters are 10 nm or less, and the metal oxides are homogeneously dispersed in a wall constituting the nanopores.
    Type: Grant
    Filed: January 30, 2006
    Date of Patent: November 23, 2010
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Takashi Shimazu, Ryusuke Tsuji, Hideo Sobukawa, Yoshiki Seno
  • Patent number: 7837781
    Abstract: A pigment of empirical composition (TiO2)a(ZnO)b(SnO)c(SnO2)d(RExOy)e(AEO)f(MuOv)g wherein RE is a metal from transition group 3 or a rare earth metal, AE is an alkaline earth metal, and M is any other metal, where a=0.8-3; b=0.5-1.3; c=0.5-1.3; d=0-0.5; e=0-0.3; f=0-0.3; and g=0-0.1, and e+f?0.01. Preferably RE is selected from the elements Y, La, Ce, and Pr. The pigments are used as colorants for coloring paints, inks, plastics, and rubber.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: November 23, 2010
    Assignee: BASF SE
    Inventors: Norbert Mronga, Kirill Bramnik
  • Patent number: 7824633
    Abstract: A system and method for producing molybdenum oxide(s) from molybdenum sulfide are disclosed. The system includes a pressure leach vessel, a solid-liquid separation stage coupled to the pressure leach vessel, a solvent-extraction stage coupled to the solid-liquid separation stage, and a base stripping stage coupled to the solvent-extraction stage. The method includes providing a molybdenum sulfide feed, subjecting the feed to a pressure leach process, subjecting pressure leach process discharge to a solid-liquid separation process to produce a discharge liquid stream and a discharge solids stream, and subjecting the discharge liquid stream to a solvent extraction and a base strip process.
    Type: Grant
    Filed: July 20, 2007
    Date of Patent: November 2, 2010
    Assignee: Freeport-McMoran Corporation
    Inventors: Peter Amelunxen, John C. Wilmot, Chris Easton, Wayne W. Hazen
  • Patent number: 7820136
    Abstract: To provide a process for production of compound oxides having homogeneously diffused and mixed elements, there is provided a process for production of compound oxides, comprising contacting an organic phase having dissolved therein an organic compound which produces the hydroxide of a first element when hydrolyzed, with an aqueous phase containing a second element as an ion, to produce the hydroxide of the first element by hydrolysis reaction of the organic compound at the interface while incorporating the second element in the product, and firing the resulting product to produce a compound oxide of the first element and second element. Third or additional elements may be included in the aqueous phase to produce compound oxides comprising third or additional elements.
    Type: Grant
    Filed: February 26, 2004
    Date of Patent: October 26, 2010
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Shinichi Takeshima
  • Publication number: 20100266485
    Abstract: A process comprises (a) combining (1) at least one base and (2) at least one metal carboxylate salt comprising (i) a metal cation selected from metal cations that form amphoteric metal oxides or oxyhydroxides and (ii) a lactate or thiolactate anion, or metal carboxylate salt precursors comprising (i) at least one metal salt comprising the metal cation and a non-interfering anion and (ii) lactic or thiolactic acid, a lactate or thiolactate salt of a non-interfering, non-metal cation, or a mixture thereof; and (b) allowing the base and the metal carboxylate salt or metal carboxylate salt precursors to react.
    Type: Application
    Filed: December 16, 2008
    Publication date: October 21, 2010
    Inventor: Timothy D. Dunbar
  • Patent number: 7815888
    Abstract: Disclosed is a process for producing a secondary battery cathode material by calcining raw materials. The process is characterized by calcining the raw materials together with one or more substances, which are selected from the group consisting of hydrogen, water and water vapor, and conductive carbon and/or a substance, which can form conductive carbon by pyrolysis, added thereto. As crystals of the secondary battery cathode material obtained by this process have been controlled fine sizes, the secondary battery cathode material promotes movements of ions of an alkali metal led by lithium between the interiors of grains of the cathode material and an electrolyte to suppress polarization in an electrode reaction, and further, increases an area of contact between the positive material and a conductivity-imparting material to provide improved conductivity so that improvements are assured in voltage efficiency and specific battery capacity.
    Type: Grant
    Filed: July 31, 2002
    Date of Patent: October 19, 2010
    Assignees: Mitsui Engineering & Shipbuilding Co., Ltd.
    Inventors: Naoki Hatta, Shigeto Okada, Jun-Ichi Yamaki
  • Patent number: 7811545
    Abstract: The present invention is directed to a process for making nanoparticles of metals, metal alloys, metal oxides and multi-metallic oxides, which comprises the steps of reacting a metal salt dissolved in water with an alkali metal salt of C4-25 carboxylic acid dissolved in a first solvent selected from the group consisting of C5-10 aliphatic hydrocarbon and C6-10 aromatic hydrocarbon to form a metal carboxylate complex; and heating the metal carboxylate complex dissolved in a second solvent selected from the group consisting of C6-25 aromatic, C6-25 ether, C6-25 aliphatic hydrocarbon and C6-25 amine to produce the nanoparticles.
    Type: Grant
    Filed: November 23, 2005
    Date of Patent: October 12, 2010
    Assignee: Seoul National University Industry Foundation
    Inventors: Taeg-Hwan Hyeon, Jong-Nam Park
  • Patent number: 7803348
    Abstract: Oxygen is reduced in the presence of a catalyst at the cathode of an alkaline-electrolyte fuel cell. Catalysts of the formula Sr3?xA1+xCo4?yByO10.5?z wherein ?0.6?x?1.0; 0?y?3; and ?1.5?z?0.5; wherein A represents Eu, Gd, Tb, Dy, Ho, or Y; and wherein B represents Fe, Ga, Cu, Ni, Mn, and Cr, demonstrate high catalytic activity and high chemical stability when used as the oxygen-reduction catalyst in alkaline fuel cells.
    Type: Grant
    Filed: February 10, 2006
    Date of Patent: September 28, 2010
    Assignee: Horizon Fuel Cells, LLC
    Inventors: Evgeny V. Antipov, Galina A. Tsirlina, Sergey Y. Istomin, Oleg A. Drozhzhin, Eduard E. Levin
  • Patent number: 7803347
    Abstract: A technique for bonding an organic group with the surface of fine particles such as nanoparticles through strong linkage is provided, whereas such fine particles are attracting attention as materials essential for development of high-tech products because of various unique excellent characteristics and functions thereof. Organically modified metal oxide fine particles can be obtained by adapting high-temperature, high-pressure water as a reaction field to bond an organic matter with the surface of metal oxide fine particles through strong linkage. The use of the same condition enables not only the formation of metal oxide fine particles but also the organic modification of the formed fine particles. The resulting organically modified metal oxide fine particles exhibit excellent properties, characteristics and functions.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: September 28, 2010
    Assignee: Tohoku Techno Arch Co., Ltd.
    Inventor: Tadafumi Ajiri
  • Patent number: 7794686
    Abstract: A method for producing ammonium metatungstate from ammonium paratungstate includes preparing an ammonium paratungstate mixture including solid ammonium paratungstate and water. The mixture is contacted with a cation exchange material to lower a pH of the mixture to a pH range wherein metatungstate ion is stable and an insoluble tungstic acid is not formed. The pH of the mixture may be maintained in the pH range until the ammonium paratungstate mixture is converted into an ammonium metatungstate solution.
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: September 14, 2010
    Assignee: TDY Industries, Inc.
    Inventor: John R. White
  • Patent number: 7780943
    Abstract: A compound oxide powder producing method for producing compound oxide powder made of at least two kinds of metals. A solution, in which a first metal compound for producing, when hydrolyzed, a hydroxide or oxide is dissolved in an organic solvent, and an emulsion, which contains another metal in the form of ions in an aqueous phase inside of inverse micelles formed by a surfactant in an organic solvent, are individually mixed in flowing states. The mixed liquid is stirred while being continuously caused to flow to the downstream side of a mixing portion of the first solution and the emulsion. Primary particles are formed by the hydrolysis of the first metal compound inside or in the interface of the inverse micelles whereas secondary particles are formed by the agglomeration of the primary particles.
    Type: Grant
    Filed: October 4, 2006
    Date of Patent: August 24, 2010
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Shinichi Takeshima
  • Patent number: 7781365
    Abstract: The present invention provides a zirconia-based mixed oxide which, together with improving the heat resistance of specific surface area at a high temperature (1000° C. for 3 hours), has a ceria reduction rate of 80% or more, or in other words, improves the heat resistance of specific surface area and the reduction rate of ceria. The zirconia-based mixed oxide has zirconia for the main component thereof and contains 5% or more of ceria and 1 to 30% of a rare earth metal oxide other than ceria, wherein the specific surface area after heat treating for 3 hours at 1000° C. is 50 m2/g or more, the reduction rate of the ceria contained in the mixed oxide is 80% or more, and preferably the specific surface area after heat treating for 3 hours at 1100° C. is 20 m2/g or more.
    Type: Grant
    Filed: June 14, 2007
    Date of Patent: August 24, 2010
    Assignee: Daiichi Kigenso Kagaku Kogyo Co., Ltd.
    Inventor: Hiroshi Okamoto
  • Publication number: 20100207075
    Abstract: Disclosed is a low-cost metal complex oxide material which has excellent stability at high temperatures and good crystallinity, while placing only a little burden on the environment. Specifically disclosed is a method for producing a metal complex oxide powder represented by the following general formula: ABO3 (wherein A represents an oxygen 12 coordinated metal element and B represents an oxygen 6 coordinated metal element). This method for producing a metal complex oxide powder is characterized in that a chloride containing the element A, a chloride containing the element B and an aqueous solution containing an alkali carbonate are reacted as represented by the reaction formula below for producing a precipitate, and then the thus-produced precipitate is fired. (1?x)CaCl2+x.MCl3+(2+0.5x)Na2Co3?(1?x)CaCO3?+0.5x.
    Type: Application
    Filed: August 27, 2008
    Publication date: August 19, 2010
    Applicant: Universal Entertainment Corporation
    Inventor: Koh Takahashi
  • Patent number: 7767189
    Abstract: A method for preparing lithium transitional metal oxides, comprises the steps of: preparing a carbonate precursor using the following substeps: forming a first aqueous solution containing a mixture of at least two of the ions of the following metal elements (“Men+”): cobalt (Co), nickel (Ni), and manganese (Mn); forming a second aqueous solution containing ions of CO32?; and mixing and reacting the first solution and the second solution to produce the carbonate precursor, Ni1-x-yCoxMnyCO3; and preparing the lithium transition metals oxide from the carbonate precursors using the following substeps: evenly mixing Li2CO3 and the carbonate precursor; calcinating the mixed material in high temperature; and cooling and pulverizing the calcinated material to obtain the lithium transition metal oxide, Li Ni1-x-yCoxMnyO2.
    Type: Grant
    Filed: November 19, 2003
    Date of Patent: August 3, 2010
    Assignee: BYD Company Limited
    Inventors: Huiquan Liu, Chuanfu Wang
  • Patent number: 7759006
    Abstract: Disclosed is a compound represented by the following formula 1. A lithium secondary battery using the same compound as electrode active material, preferably as cathode active material, is also disclosed. LiMP1-xAxO4??[Formula 1] wherein M is a transition metal, A is an element having an oxidation number of +4 or less and 0<x<1. The electrode active material comprising a compound represented by the formula of LiMP1-xAxO4 shows excellent conductivity and charge/discharge capacity compared to LiMPO4.
    Type: Grant
    Filed: July 14, 2005
    Date of Patent: July 20, 2010
    Assignee: LG Chem, Ltd.
    Inventors: Sung Kyun Chang, Jeong Ju Cho
  • Patent number: 7754651
    Abstract: Disclosed is an Cu/Zn/Al-catalyst containing copper oxide and zinc oxide as catalytically active components and aluminium oxide as thermostabilising component. The catalyst is characterized in that the Cu/Zn atomic ratio is <2.8 and the aluminium oxide component is obtained from an aluminium hydroxide sol.
    Type: Grant
    Filed: November 6, 2002
    Date of Patent: July 13, 2010
    Assignee: Süd -Chemie AG
    Inventors: Jurgen Ladebeck, Jurgen Koy, Tiberius Regula
  • Patent number: 7749321
    Abstract: The present invention is directed to pigment compositions, thick film black pigment compositions, conductive single layer thick film compositions, black electrodes made from such black conductive compositions and methods of forming such electrodes, and to the uses of such compositions, electrodes, and methods in flat panel display applications, including alternating-current plasma display panel devices (AC PDP).
    Type: Grant
    Filed: June 28, 2007
    Date of Patent: July 6, 2010
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Jerome D. Smith, Pedro A. Jimenez, Tony Jackson
  • Publication number: 20100135937
    Abstract: Nanocrystalline forms of metal oxides, including binary metal oxide, perovskite type metal oxides, and complex metal oxides, including doped metal oxides, are provided. Methods of preparation of the nanocrystals are also provided. The nanocrystals, including uncapped and uncoated metal oxide nanocrystals, can be dispersed in a liquid to provide dispersions that are stable and do not precipitate over a period of time ranging from hours to months. Methods of preparation of the dispersions, and methods of use of the dispersions in forming films, are likewise provided. The films can include an organic, inorganic, or mixed organic/inorganic matrix. The films can be substantially free of all organic materials. The films can be used as coatings, or can be used as dielectric layers in a variety of electronics applications, for example as a dielectric material for an ultracapacitor, which can include a mesoporous material. Or the films can be used as a high-K dielectric in organic field-effect transistors.
    Type: Application
    Filed: September 24, 2009
    Publication date: June 3, 2010
    Applicant: The Trustees of Columbia University in the City of New York
    Inventors: Stephen O'Brien, Limin Huang, Zhuoying Chen, Ioannis Kymissis, Zhang Jia
  • Patent number: 7727322
    Abstract: A method for manufacturing a precursor solution for forming a PZTN compound oxide with Pb, Zr, Ti and Nb as constituent elements by a sol-gel method includes: a step of dissolving at least lead carboxylate with an organic solvent having an alkoxy group, to thereby form a first solution; a step of heat treating the first solution to remove crystallization water of the lead carboxylate and to form lead alkoxide by a ligand replacement reaction between the lead carboxylate and the organic solvent having the alkoxy group, to thereby form a second solution including the lead alkoxide; a step of mixing an alkoxide of a metal selected from at least one of Zr, Ti and Nb excluding Pb with the second solution, to thereby form a third solution including metal alkoxides of Pb, Zr, Ti and Nb, respectively; and a step of adding water to the third solution to cause hydrolysis-condensation of the metal alkoxides, to thereby form a fourth solution including a precursor of PZTN compound oxide.
    Type: Grant
    Filed: September 12, 2005
    Date of Patent: June 1, 2010
    Assignee: Seiko Epson Corporation
    Inventor: Motohisa Noguchi
  • Patent number: 7727909
    Abstract: A method for producing complex metal oxide having nano-sized grains that includes the steps of forming a mixture containing at least one metal cation dissolved in a solution and particulate material containing at least one further metal in the form of metal(s) or metal compound(s) and treating the mixture to form the complex metal oxide having nano-sized grains. The at least one further metal from the particulate material becomes incorporated into the complex metal oxide.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: June 1, 2010
    Assignee: Very Small Particle Company Limited
    Inventors: Jose Antonio Alarco, Geoffrey Alan Edwards, Peter Cade Talbot
  • Patent number: 7704483
    Abstract: A zirconia-containing composition and processes for synthesizing same. The composition comprises least about 99.9 percent tetragonal phase zirconia, based on the total crystalline zirconia in the zirconia-containing composition as determined by x-ray diffraction (XRD). The composition also has a substantially spherical morphology and comprises less than 100 wppm chlorine, based on the total weight of the zirconia-containing composition. The zirconia-containing composition has an average surface area of at least 80 m2/g and an average particle size of less than about 10 microns.
    Type: Grant
    Filed: April 29, 2005
    Date of Patent: April 27, 2010
    Assignee: Cabot Corporation
    Inventors: Jian-Ping Shen, Qi Fu, Jian Zheng, Paolina Atanassova, Mark J. Hampden-Smith
  • Patent number: 7700059
    Abstract: Disclosed is a method for preparing a metal oxide solid solution in nano size. The metal oxide solid solution is prepared by reacting a reactant mixture containing water and at least two water-soluble metal compounds at 200 to 700° C. under a pressure of 180 to 550 bar in a continuous manner, wherein the reactant mixture contains the metal compounds at an amount of 0.01 to 30% by weight in total and the solid solution has a crystallite size of 1 to 1,000 nm. The metal oxide solid solution is, in particular suitable as a UV light shielding agent or as an oxygen storage component.
    Type: Grant
    Filed: May 21, 2004
    Date of Patent: April 20, 2010
    Assignee: Hanwha Chemical Corporation
    Inventors: Wan-Jae Myeong, Kyu-Ho Song, Se-Woong Park, Joo-Hyeong Lee, Jin-Soo Baik, Chang-Mo Chung
  • Patent number: 7700067
    Abstract: A crystallographically-oriented ceramic including first regions, in which crystal nuclei remain and which contain a specific element in a predetermined concentration range and extend at least partially in a layered shape along a crystal plane, and second regions, which contain the specific element in a different concentration range from the first regions and extend at least partially in a layered shape along the crystal plane. The regions are alternately repeated, and a compositional distribution exists in a direction orthogonal to the crystal plane. In the first region, the concentration of Na is higher, the concentration of K is lower, the concentration of Nb is lower, and the concentration of Ta is higher than the second region, and in the second region, the concentration of Na is lower, the concentration of K is higher, the concentration of Nb is higher, and the concentration of Ta is lower than the first region.
    Type: Grant
    Filed: February 22, 2008
    Date of Patent: April 20, 2010
    Assignee: NGK Insulators, Ltd.
    Inventors: Shohei Yokoyama, Nobuyuki Kobayashi, Tsutomu Nanataki
  • Patent number: 7695866
    Abstract: Material for the positive electrode of batteries is provided that has good conductivity and can be manufactured more cheaply than AgNiO2. The battery positive electrode material is a conductive chemical compound represented by the general formula AgxNiyO2 (wherein X/Y is smaller than 1 and not smaller than 0.25). The conductive chemical compound is constituted of a crystal that has an X-ray diffraction main peak that is the same as that of AgNiO2 (wherein X=Y=1), and does not exhibit a Ag2O or AgO peak. This conductive compound can be used as an additive to impart conductivity to the silver oxide (Ag2O) of the positive electrode material.
    Type: Grant
    Filed: March 24, 2006
    Date of Patent: April 13, 2010
    Assignee: Dowa Electronics Materials Co., Ltd.
    Inventor: Koji Tanoue
  • Patent number: 7682747
    Abstract: The present invention provides a high-capacity and low-cost non-aqueous electrolyte secondary battery, comprising: a negative electrode containing, as a negative electrode active material, a substance capable of absorbing/desorbing lithium ions and/or metal lithium; a separator; a positive electrode; and an electrolyte, wherein the positive electrode active material contained in the positive electrode is composed of crystalline particles of an oxide containing two kinds of transition metal elements, the crystalline particles having a layered crystal structure, and oxygen atoms constituting the oxide forming a cubic closest packing structure.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: March 23, 2010
    Assignee: Panasonic Corporation
    Inventors: Tsutomu Ohzuku, Hiroshi Yoshizawa, Masatoshi Nagayama
  • Patent number: 7682528
    Abstract: An La2O3 powder and an SiO2 powder are mixed with each other, and then heated. By heating, a porous material of LaXSi6O1.5X+12 (8?X?10) as a composite oxide is produced. Subsequently, the porous material is pulverized to obtain a powder, and the powder is added to a solvent to prepare a slurry. The slurry is solidified in a magnetic field to prepare a compact. After that, the compact is sintered, and an oxide ion conductor is obtained thereby.
    Type: Grant
    Filed: September 18, 2006
    Date of Patent: March 23, 2010
    Assignee: Honda Motor Co., Ltd.
    Inventors: Yoshikatsu Higuchi, Masayuki Sugawara, Kagehisa Hamazaki, Keizo Uematsu, Susumu Nakayama
  • Patent number: 7682494
    Abstract: Materials for use in proton transport characterized by several formulas are disclosed. Mixed ion and electron conductors may include metals and/or ceramic electron conductors and a proton conducting material. Hydrogen separation membranes may include porous layers and an electrolyte layer including a proton conducting material and an electron conductor. Hydrogen separation membranes may be formed by thermal spray techniques. Hydrogen separation membranes may include a catalyst layer. A method of separating hydrogen from a mixed gas stream includes passing the mixed gas through a first porous layer to an electrolyte layer, dissociating protons and electrons, diffusing the protons and electrons through the electrolyte layer, recombining them, and passing molecular hydrogen through a second porous layer.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: March 23, 2010
    Assignee: ITN Energy Systems, Inc.
    Inventors: Brian S. Berland, Sabina Gade, Ronald W. Schaller, Michael Schwartz
  • Patent number: 7670585
    Abstract: Provided is a method for preparing an electroconductive mayenite type compound with good properties readily and stably at low cost without need for expensive facilities, a reaction at high temperature and for a long period of time, or complicated control of reaction. A method for preparing an electroconductive mayenite type compound comprises a step of subjecting a precursor to heat treatment, wherein the precursor contains Ca and/or Sr, and Al, a molar ratio of (a total of CaO and SrO:Al2O3) is from (12.6:6.4) to (11.7:7.3) as calculated as oxides, a total content of CaO, SrO and Al2O3 in the precursor is at least 50 mol %, and the precursor is a vitreous or crystalline material; and the method comprises a step of mixing the precursor with a reducing agent and performing the heat treatment of holding the mixture at 600-1,415° C. in an inert gas or vacuum atmosphere with an oxygen partial pressure of at most 10 Pa.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: March 2, 2010
    Assignees: Asahi Glass Company, Limited, Tokyo Institute of Technology
    Inventors: Hideo Hosono, Katsuro Hayashi, Sung Wng Kim, Masahiro Hirano, Satoru Narushima, Setsuro Ito
  • Patent number: 7666387
    Abstract: The present invention is directed to a thermochemical method for the production of hydrogen from water. The method includes reacting a multi-valent metal oxide, water and a carbonate to produce an alkali metal-multi-valent metal oxide compound, carbon dioxide, and hydrogen.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: February 23, 2010
    Assignee: UT-Battelle, LLC
    Inventors: Jack L Collins, Leslie R Dole, Juan J Ferrada, Charles W Forsberg, Marvin J Haire, Rodney D Hunt, Benjamin E Lewis, Jr., Raymond G Wymer
  • Publication number: 20100040531
    Abstract: A non-lead composition for use as a thick-film resistor paste in electronic applications. The composition comprises particles of Li2RuO3 of diameter between 0.5 and 5 microns and a lead-free frit. The particles have had the lithium at or near primarily the surface of the particle at least partially exchanged for atoms of other metals.
    Type: Application
    Filed: October 23, 2009
    Publication date: February 18, 2010
    Applicant: E. I. DU PONT DE NEMOURS AND COMPANY
    Inventors: PAUL DOUGLAS VERNOOY, ALFRED T. WALKER, KENNETH WARREN HANG
  • Patent number: 7651816
    Abstract: A positive electrode active material powder for a non-aqueous electrolyte secondary battery, wherein an amount of a liquid reagent absorbed by the powder is 20 to 40 ml per 100 g of the powder when the liquid reagent is dibutyl phthalate, and the amount is 20 to 50 ml per 100 g of the powder when the liquid reagent is N-methyl-2-pyrrolidone or water, the absorption amount is a value measured using a device according to test method A or B regarding DBP absorption based on JIS K6217 (1997), and the measured value is an amount of the liquid reagent added until the viscosity of a mixture of the powder and the liquid reagent reaches a level corresponding to 70% of a maximum torque which is recorded when a change in the viscosity of a mixture of the powder and the liquid reagent is measured by a torque detecting device.
    Type: Grant
    Filed: March 22, 2005
    Date of Patent: January 26, 2010
    Assignee: Panasonic Corporation
    Inventors: Shozo Fujiwara, Hideya Asano, Hajime Konishi
  • Publication number: 20100009157
    Abstract: The oxide sintered body mainly consists of gallium, indium, and oxygen, and a content of the gallium is more than 65 at. % and less than 100 at. % with respect to all metallic elements, and the density of the sintered body is 5.0 g/cm3 or more. The oxide film is obtained using the oxide sintered body as a sputtering target, and the shortest wavelength of the light where the light transmittance of the film itself except the substrate becomes 50% is 320 nm or less. The transparent base material is obtained by forming the oxide film on one surface or both surfaces of a glass plate, a quartz plate, a resin plate or resin film where one surface or both surfaces are covered by a gas barrier film, or on one surface or both surfaces of a transparent plate selected from a resin plate or a resin film where the gas barrier film is inserted in the inside.
    Type: Application
    Filed: September 16, 2009
    Publication date: January 14, 2010
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Tokuyuki NAKAYAMA, Yoshiyuki ABE
  • Publication number: 20100008846
    Abstract: A method for preparing ammonium heptamolybdate with the steps of: i) adding a molybdenum-containing organic phase to a liquid-liquid reextraction apparatus or to a desorption apparatus and adding an ammonia-containing aqueous solution to this reextraction or desorption apparatus, and ii) directly cold-crystallizing ammonium heptamolybdate by cooling the resulting reextraction or desorption solution.
    Type: Application
    Filed: January 29, 2008
    Publication date: January 14, 2010
    Applicant: H.C. Starck GbmJ
    Inventors: Viktor Stoller, Michael Erb, Juliane Meese-Marktscheffel, Benno Decker
  • Patent number: 7625836
    Abstract: To provide a heat-resistant oxide which is excellent in heat resistance and durability at high temperature and has high activity, a heat-resistant oxide which has an oxide crystal structure and in which a rate of a solid solution of a noble metal in the oxide crystal structure is 50% or more is obtained by heat-treating (secondarily baking) a precursor composition comprising zirconia, at least one coordinative element selected from the group consisting of rare earth elements, alkaline earth elements, aluminum and silicon, and at least one noble metal selected from the group consisting of platinum, rhodium and palladium at 650° C. or higher.
    Type: Grant
    Filed: December 13, 2005
    Date of Patent: December 1, 2009
    Assignees: Cataler Corporation, Daihatsu Motor Co., Ltd.
    Inventors: Satoshi Matsueda, Mareo Kimura, Naoto Miyoshi, Yoshinori Ishii, Hirohisa Tanaka, Isao Tan, Mari Uenishi, Masashi Taniguchi
  • Patent number: 7604789
    Abstract: The present invention provides a porous composite oxide comprising an aggregate of secondary particles in the form of aggregates of primary particles of a composite oxide containing two or more types of metal elements, and having mesopores having a pore diameter of 2-100 nm between the secondary particles; wherein, the percentage of the mesopores between the secondary particles having a diameter of 10 nm or more is 10% or more of the total mesopore volume after firing for 5 hours at 600° C. in an oxygen atmosphere.
    Type: Grant
    Filed: May 19, 2004
    Date of Patent: October 20, 2009
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shinichi Takeshima, Kohei Yoshida, Akio Koyama
  • Patent number: 7605110
    Abstract: A ceramic body, a ceramic catalyst body, a ceramic catalyst body and related manufacturing methods are disclosed wherein a cordierite porous base material has a surface, formed with acicular particles made of a component different from that of cordierite porous base material, which has an increased specific surface area with high resistance to a sintering effect. The ceramic body is manufactured by preparing a slurry containing an acicular particle source material, preparing a porous base material, applying the slurry onto a surface of the porous base material and firing the porous base material, whose surface is coated with the slurry, to cause acicular particles to develop on the surface of the porous base material. A part of or a whole of surfaces of the acicular particles is coated with a constituent element different from that of the acicular particles.
    Type: Grant
    Filed: April 5, 2007
    Date of Patent: October 20, 2009
    Assignees: Denso Corporation, Nippon Soken, Inc.
    Inventors: Keiichi Yamada, Kazuhiko Koike, Katsumi Yoshida, Hideki Kita, Naoki Kondo, Hideki Hyuga
  • Patent number: 7601325
    Abstract: To provide a perovskite-type composite oxide which has stable quality in which a solid solution of Pd is formed at a high rate, a method for producing the perovskite-type composite oxide, and a catalyst composition containing the perovskite-type composite oxide, the perovskite-type composite oxide is produced by formulating materials in accordance with each atomic ratio of a perovskite-type composite oxide represented by the following general formula (1): AxB(1-y)PdyO3+???(1) wherein A represents at least one element selected from rare earth elements and alkaline earth metals; B represents at least one element selected from transition elements (excluding rare earth elements, and Pd), Al and Si; x represents an atomic ratio satisfying the following condition: 1<x; y represents an atomic ratio satisfying the following condition: 0<y?0.5; and ? represents an oxygen excess.
    Type: Grant
    Filed: March 18, 2005
    Date of Patent: October 13, 2009
    Assignees: Daihatsu Motor Co., Ltd., Hokko Chemical Industry Co., Ltd., Cataler Corporation
    Inventors: Hirohisa Tanaka, Isao Tan, Mari Uenishi, Nobuhiko Kajita, Masashi Taniguchi, Kimiyoshi Kaneko, Senshu Mitachi, Mareo Kimura, Keiichi Narita, Noboru Sato
  • Patent number: 7598194
    Abstract: It is aimed at providing an oxynitride powder, which is suitable for usage as a phosphor, is free from coloration due to contamination of impurities, and mainly includes a fine ?-sialon powder. An oxynitride powder is produced by applying a heat treatment in a reducing and nitriding atmosphere, to a precursor compound including at least constituent elements M, Si, Al, and O (where M is one element or mixed two or more elements selected from Li, Mg, Ca, Sr, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu), thereby decreasing an oxygen content and increasing a nitrogen content of the precursor.
    Type: Grant
    Filed: April 22, 2005
    Date of Patent: October 6, 2009
    Assignee: National Institute for Materials Science
    Inventors: Naoto Hirosaki, Takayuki Suehiro
  • Patent number: 7585474
    Abstract: A single crystalline ternary nanostructure having the formula AxByOz, wherein x ranges from 0.25 to 24, and y ranges from 1.5 to 40, and wherein A and B are independently selected from the group consisting of Ag, Al, As, Au, B, Ba, Br, Ca, Cd, Ce, Cl, Cm, Co, Cr, Cs, Cu, Dy, Er, Eu, F, Fe, Ga, Gd, Ge, Hf, Ho, I, In, Ir, K, La, Li, Lu, Mg, Mn, Mo, Na, Nb, Nd, Ni, Os, P, Pb, Pd, Pr, Pt, Rb, Re, Rh, Ru, S, Sb, Sc, Se, Si, Sm, Sn, Sr, Ta, Tb, Tc, Te, Ti, Tl, Tm, U, V, W, Y, Yb, and Zn, wherein the nanostructure is at least 95% free of defects and/or dislocations.
    Type: Grant
    Filed: October 13, 2006
    Date of Patent: September 8, 2009
    Assignee: The Research Foundation of State University of New York
    Inventors: Stanislaus S. Wong, Tae-Jin Park
  • Patent number: 7582276
    Abstract: The invention relates to nanoscale rutile or oxide powder that is obtained by producing amorphous TiO2 by mixing an alcoholic solution with a titanium alcoholate and with an aluminum alcohalate and adding water and acid. The amorphous, aluminum-containing TiO2 is isolated by removing the solvent, and is redispersed in water in the presence of a tin salt. Thermal or hydrothermal post-processing yields rutile or oxide that can be redispersed to primary particle size. The n-rutile or the obtained oxide having a primary particle size ranging between 5 and 20 nm can be incorporated into all organic matrices so that they remain transparent. Photocatalytic activity is suppressed by lattice doping with trivalent ions. If the amorphous precursor is redispersed in alcohol, or not isolated, but immediately crystallized, an anatase is obtained that can be redispersed to primary particle size.
    Type: Grant
    Filed: August 30, 2002
    Date of Patent: September 1, 2009
    Assignee: ITN Nanovation AG
    Inventor: Ralph Nonninger
  • Publication number: 20090208404
    Abstract: An alloy generating hydrogen easily and safely for a long time is obtained. The alloy is obtained by melting in a blast furnace a first metal composed of one or more metals of Al, Zn and Mg and a second metal composed of one or more metals of Ga, Cd, In, Sn, Sb, Hg, Pb and Bi; and then placing the alloy in a molten state in water to cool the alloy.
    Type: Application
    Filed: June 15, 2007
    Publication date: August 20, 2009
    Applicants: CENTRAL GLASS COMPANY, LIMITED
    Inventor: Isao Itoh