Plural Metals Or Metal And Ammonium Containing Patents (Class 423/593.1)
  • Patent number: 7575735
    Abstract: The present invention includes pure single-crystalline metal oxide and metal fluoride nanostructures, and methods of making same. These nanostructures include nanorods and nanoarrays.
    Type: Grant
    Filed: November 2, 2006
    Date of Patent: August 18, 2009
    Assignee: The Research Foundation of State University of New York
    Inventors: Stanislaus S. Wong, Yuanbing Mao
  • Patent number: 7576035
    Abstract: A pillar-shaped honeycomb structure has a plurality of cells longitudinally placed in parallel with one another with a wall portion therebetween, wherein the honeycomb structure mainly includes inorganic fibers which form the honeycomb structure without lamination interfaces.
    Type: Grant
    Filed: April 7, 2008
    Date of Patent: August 18, 2009
    Assignee: Ibiden Co., Ltd.
    Inventors: Kazushige Ohno, Tomokazu Oya
  • Patent number: 7572423
    Abstract: The invention provides a process for producing fumed metal oxide particles comprising providing a stream of a liquid feedstock comprising a volatizable, non-halogenated metal oxide precursor, providing a stream of a combustion gas having a linear velocity sufficient to atomize and combust or pyrolyze the liquid feedstock, and injecting the stream of the liquid feedstock into the stream of combustion gas to form a reaction mixture such that the liquid feedstock is atomized and subjected to a sufficient temperature and residence time in the combination gas stream for fumed metal oxide particles to form before the combustion gas temperature is reduced below the solidifying temperature of the metal oxide particle. The invention further provides fumed silica particles having a relatively small aggregate size and/or narrow aggregate size distribution.
    Type: Grant
    Filed: November 24, 2003
    Date of Patent: August 11, 2009
    Assignee: Cabot Corporation
    Inventor: Yakov E. Kutsovsky
  • Patent number: 7566436
    Abstract: A mixing reactor for mixing efficiently streams of fluids of differing densities. In a preferred embodiment, one of the fluids is supercritical water, and the other is an aqueous salt solution. Thus, the reactor enables the production of metal oxide nanoparticles as a continuous process, without any risk of the reactor blocking due to the inefficient mixing inherent in existing reactor designs.
    Type: Grant
    Filed: February 11, 2005
    Date of Patent: July 28, 2009
    Assignee: The University of Nottingham
    Inventors: Edward Henry Lester, Barry James Azzopardi
  • Publication number: 20090185412
    Abstract: A phase-change material and a memory unit using the phase-change material are provided. The phase-change material is in a single crystalline state and includes a compound of a metal oxide or nitroxide, wherein the metal is at least one selected from a group consisting of indium, gallium and germanium. The memory unit includes a substrate; at least a first contact electrode formed on the substrate; a dielectric layer disposed on the substrate and formed with an opening for a layer of the phase-change material to be formed therein; and at least a second contact electrode disposed on the dielectric layer. As the phase-change material is in a single crystalline state and of a great discrepancy between high and low resistance states, the memory unit using the phase-changed material can achieve a phase-change characteristic rapidly by pulse voltage and avert any incomplete reset while with a low critical power.
    Type: Application
    Filed: July 30, 2008
    Publication date: July 23, 2009
    Applicant: NATIONAL TAIWAN UNIVERSITY
    Inventors: Lung-Han Peng, Sung-Li Wang, Meng-Kuei Hsieh, Chien-Yu Chen
  • Patent number: 7556792
    Abstract: Ba(OH)2.8H2O is fused by heating. The fused Ba(OH)2 is allowed to react with TiO2 powder having a specific surface area of 250 m2/g or more to prepare a cubic crystalline BaTiO3 having high crystallinity. The BaTiO3 is calcined to yield a fine, tetragonal crystalline BaTiO3 powder having high crystallinity. Thus, a high quality BaTiO3 having high crystallinity can be prepared at a low cost.
    Type: Grant
    Filed: December 30, 2002
    Date of Patent: July 7, 2009
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Atsuhiro Torii, Shinichi Kato, Tomohisa Tonogaki, Masaru Kojima, Kenji Tanaka
  • Patent number: 7556745
    Abstract: A sintered body for thermistor element of the invention is a sintered body for thermistor element containing Sr, Y, Mn, Al, Fe, and O, wherein not only respective liquid crystal phases of a perovskite type oxide and a garnet type oxide are contained, but also a liquid crystal phase of at least one of an Sr—Al based oxide and an Sr—Fe based oxide. FeYO3 and/or AlYO3 is selected as the foregoing perovskite type oxide, and at least one member selected from Y3Al5O12, Al2Fe3Y3O12, and Al3Fe2Y3O12 is selected as the foregoing garnet type oxide, respectively by the powder X-ray diffraction analysis.
    Type: Grant
    Filed: May 19, 2003
    Date of Patent: July 7, 2009
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Takaaki Chosokabe, Masaki Iwaya, Naoki Yamada, Wakako Takano
  • Patent number: 7547431
    Abstract: A method of producing high purity nanoscale powders in which the purity of powders produced by the method exceeds 99.99%. Fine powders produced are of size preferably less than 1 micron, and more preferably less than 100 nanometers. Methods for producing such powders in high volume, low-cost, and reproducible quality are also outlined. The fine powders are envisioned to be useful in various applications such as biomedical, sensor, electronic, electrical, photonic, thermal, piezo, magnetic, catalytic and electrochemical products.
    Type: Grant
    Filed: December 10, 2002
    Date of Patent: June 16, 2009
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Tapesh Yadav, Karl Pfaffenbach
  • Patent number: 7538068
    Abstract: A carbon dioxide gas absorbent includes a porous body containing a lithium complex oxide. The porous body includes pores having a pore diameter distribution such that main pores which consist of first pores with a diameter of 10 to 100 ?m and second pores with a diameter larger than 100 ?m and 500 ?m or smaller occupy 80 to 100%, third pores with a diameter smaller than 10 ?m occupy 0 to 10% and fourth pores with a diameter larger than 500 ?m occupy 0 to 10%, the main pores have a pore diameter distribution such that the first pores occupy 15 to 85% and second pores occupy 15 to 85%.
    Type: Grant
    Filed: March 16, 2006
    Date of Patent: May 26, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masahiro Kato, Toshihiro Imada, Kenji Essaki
  • Patent number: 7534528
    Abstract: An electrode material for an anode of a rechargeable lithium battery, containing a particulate comprising an amorphous Sn.A.X alloy with a substantially non-stoichiometric ratio composition. For said formula Sn.A.X , A indicates at least one kind of an element selected from a group consisting of transition metal elements, X indicates at least one kind of an element selected from a group consisting of O, F, N, Mg, Ba, Sr, Ca, La, Ce, Si, Ge, C, P, B, Pb, Bi, Sb, Al, Ga, In, Tl, Zn, Be, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, As, Se, Te, Li and S, where the element X is not always necessary to be contained. The content of the constituent element Sn of the amorphous Sn.A.X alloy is Sn/(Sn+A+X)=20 to 80 atomic %.
    Type: Grant
    Filed: October 10, 2006
    Date of Patent: May 19, 2009
    Assignee: Canon Kabushiki Kaisha
    Inventors: Soichiro Kawakami, Masaya Asao
  • Patent number: 7531160
    Abstract: The present invention relates to fine hollow powder with a titanium oxide shell, obtained by spray drying an exfoliated titania sol, and thin flaky titanium oxide powder obtained by pulverizing the fine hollow powder, and also to processes for producing the same. The present fine hollow powder and thin flaky titanium oxide powder have a distinguished dispersibility and are useful for additives to cosmetics, pigments, paints, etc., and the present fine hollow powder also has a distinguished flowability and is useful for seed particles for flow measurement.
    Type: Grant
    Filed: May 25, 2007
    Date of Patent: May 12, 2009
    Assignee: Ishihara Sangyo Kaisha, Ltd.
    Inventors: Takayoshi Sasaki, Mamoru Watanabe, Yuichi Michiue, Masaki Iida
  • Patent number: 7521629
    Abstract: A nitrogen-containing thermoelectric material, which has an element composition represented by: AlzGayInxMuRvOsNt??(A) or AlzGayInxMuRvDwNm??(B) (wherein M represents a transition element; R represents a rare earth element; D represents at least one element selected from elements of the Group IV or II; 0?z?0.7, 0?y?0.7, 0.2?x?1.0, 0?u?0.7, 0?v?0.05, 0.9?s+t?1.7, 0.4?s?1.2, 0?w?0.2, and 0.9?m?1.1; and x+y+z=1), and has an absolute value of a Seebeck coefficient of 40 ?V/K or more at a temperature of 100° C. or more. These thermoelectric materials comprise elements having low toxicity, are excellent in a heat resistance, a chemical resistance and the like, and have a high thermoelectric transforming efficiency.
    Type: Grant
    Filed: July 25, 2003
    Date of Patent: April 21, 2009
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Shigeo Yamaguchi, Yasuo Iwamura, Atsushi Yamamoto
  • Patent number: 7514577
    Abstract: The invention relates to polyoxometalates represented by the formula (An)m+ [My(H2O)(p.y)X2W22O74(OH)2]m? or solvates or mixtures thereof, wherein A represents a cation, n is the number of the cations, m is the charge of the polyoxoanion, M represents a transition metal selected from Pd, Pt and mixtures thereof, y is 1, 2, 3 or 4, p is the number of water molecules bound to one M and varies from 3 to 5, and X represents a heteroatom selected from SbIII, BiIII, AsIII, SeIV and TeIV, a process for their preparation and their use for the catalytic oxidation of organic molecules.
    Type: Grant
    Filed: May 31, 2006
    Date of Patent: April 7, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Ulrich Kortz, Lihua Bi
  • Patent number: 7514065
    Abstract: A layered ruthenic acid compound is converted to a protonic layered ruthenic acid hydrate, which is then converted to a layered alkylammonium-ruthenic acid intercalation compound to obtain a colloid containing ruthenic acid nanosheets having a thickness of 1 nm or smaller. Thereby, a ruthenic acid nanosheet is obtained.
    Type: Grant
    Filed: March 26, 2004
    Date of Patent: April 7, 2009
    Inventors: Yoshio Takasu, Yasushi Murakami, Wataru Sugimoto
  • Publication number: 20090087623
    Abstract: Methods and associated structures of forming a microelectronic device are described. Those methods may include introducing a first metal source, a second metal source and an oxygen source into a chamber and then forming a ternary oxide film comprising a first percentage of the first metal, a second percentage of the second metal, and a third percentage of oxygen.
    Type: Application
    Filed: September 28, 2007
    Publication date: April 2, 2009
    Inventors: Mark R. Brazier, Matthew V. Metz, Michael L. McSwiney, Markus Kuhn, Michael L. Hattendorf
  • Patent number: 7510693
    Abstract: Process for the production of a metal oxide powder having a BET surface area of at least 20 m2/g by reacting an aerosol with oxygen in a reaction space at a reaction temperature of more than 700° C. and then separating the resulting powder from gaseous substances in the reaction space, wherein the aerosol is obtained by atomisation using a multi-component nozzle of at least one starting material, as such in liquid form or in solution, and at least one atomising gas, the volume-related mean drop diameter D30 of the aerosol is from 30 to 100 ?m and the number of aerosol drops larger than 100 ?m is up to 10%, based on the total number of drops, and metal oxide powder obtainable by this process.
    Type: Grant
    Filed: January 30, 2006
    Date of Patent: March 31, 2009
    Assignee: Degussa AG
    Inventors: Stipan Katusic, Michael Kraemer, Michael Kroell, Peter Kress, Edwin Staab
  • Patent number: 7504085
    Abstract: An alumina-based perovskite is formed by mixing a lanthanide source with a transitional alumina to form a dual-phase composition comprising in-situ formed LnAlO3 dispersed in alumina. The lanthanide content of the composition ranges from 6-35 wt. % to yield a high surface area composition which is useful as a catalyst or catalyst support such as for precious metals.
    Type: Grant
    Filed: May 12, 2005
    Date of Patent: March 17, 2009
    Assignee: BASF Catalysts LLC
    Inventor: Xiaolin David Yang
  • Patent number: 7488465
    Abstract: Single-phase lithium-transition metal oxide compounds containing cobalt, manganese and nickel can be prepared by wet milling cobalt-, manganese-, nickel- and lithium-containing oxides or oxide precursors to form a finely-divided slurry containing well-distributed cobalt, manganese, nickel and lithium, and heating the slurry to provide a lithium-transition metal oxide compound containing cobalt, manganese and nickel and having a substantially single-phase O3 crystal structure. Wet milling provides significantly shorter milling times than dry milling and appears to promote formation of single-phase lithium-transition metal oxide compounds. The time savings in the wet milling step more than offsets the time that may be required to dry the slurry during the heating step.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: February 10, 2009
    Assignee: 3M Innovative Properties Company
    Inventors: Kevin W. Eberman, Jerome E. Scanlan, Chris J. Goodbrake
  • Patent number: 7488464
    Abstract: Methods and systems for processing metal oxides from metal containing solutions. Metal containing solutions are mixed with heated aqueous oxidizing solutions and processed in a continuous process reactor or batch processing system. Combinations of temperature, pressure, molarity, Eh value, and pH value of the mixed solution are monitored and adjusted so as to maintain solution conditions within a desired stability area during processing. This results in metal oxides having high or increased pollutant loading capacities and/or oxidation states. These metal oxides may be processed according to the invention to produce co-precipitated oxides of two or more metals, metal oxides incorporating foreign cations, metal oxides precipitated on active and inactive substrates, or combinations of any or all of these forms.
    Type: Grant
    Filed: July 28, 2004
    Date of Patent: February 10, 2009
    Assignee: EnviroScrub Technologies Corporation
    Inventors: Charles F. Hammel, Richard M. Boren
  • Patent number: 7479242
    Abstract: It is a composite-type mixed oxygen ion and electronic conductor, in which an oxygen ion conductive phase consists of gadolinium-doped cerium oxide (GDC), an electronic conductive phase consists of spinel-type ferrite (CFO), the particle diameters of both phases are 1 ?m or less, respectively, both phases are uniformly mixed mutually, and both phases form respective conductive networks. Both phases have low solid solubility mutually, chemical reactions are not easily caused between both phases, and even if chemical reactions are caused between both phases, different phase to disturb mixed conductivity is not formed. And it has high oxygen permeability, and does not easily cause aged deterioration.
    Type: Grant
    Filed: April 13, 2007
    Date of Patent: January 20, 2009
    Assignee: Japan Science and Technology Agency
    Inventors: Hitoshi Takamura, Masuo Okada
  • Publication number: 20090016953
    Abstract: High-temperature air braze filler materials composed of various ternary metal alloys are described. Noble metals (M) are added as a ternary constituent to a silver-copper oxide (Ag—CuOx) system. The silver (Ag) component is directly substituted with the noble metal to form a series of alloys. Addition of the noble metal increases the solidus and liquidus temperatures of the resulting air braze filler metals and increases temperatures under which seals and other sealing components formed from these filler metals can be employed.
    Type: Application
    Filed: July 10, 2008
    Publication date: January 15, 2009
    Inventors: Kenneth Scott Weil, John S. Hardy, Jin Yong Kim
  • Patent number: 7476376
    Abstract: Disclosed is metal composite oxides having the new crystal structure. Also disclosed are ionic conductors including the metal composite oxides and electrochemical devices comprising the ionic conductors. The metal composite oxides have an ion channel formed for easy movement of ions due to crystallographic specificity resulting from the ordering of metal ion sites and metal ion defects within the unit cell. Therefore, the metal composite oxides according to the present invention are useful in an electrochemical device requiring an ionic conductor or ionic conductivity.
    Type: Grant
    Filed: April 21, 2005
    Date of Patent: January 13, 2009
    Assignee: LG Chem, Ltd.
    Inventors: Seung Tae Hong, Yun Ho Roh, Eung Je Lee, Mi Hyae Park
  • Patent number: 7449235
    Abstract: An aqueous alkaline solution containing a tin salt dissolved therein is mixed with a zinc compound, and an aqueous solution of an indium salt is added to the mixture. The resultant hydroxide or hydrate containing tin, indium and zinc is treated by heating at a temperature of 110 to 300° C. in the present of water. Then, the resultant product is filtered, dried and treated by heating at a temperature of 300 to 1,000° C. in an air and further reduced at a temperature of 150 to 400° C. under a reducing atmosphere to obtain composite indium oxide particles of zinc oxide and tin-containing indium oxide, which have an average particle size of 5 to 100 nm. The resultant composite particles of zinc oxide and tin-containing indium oxide are suitably used to form a transparent conductive coating film having a UV-shielding effect.
    Type: Grant
    Filed: March 31, 2004
    Date of Patent: November 11, 2008
    Assignee: Hitachi Maxell, Ltd.
    Inventors: Yuko Sawaki, Mikio Kishimoto
  • Publication number: 20080260613
    Abstract: A garnet-type compound is represented by general formula A3B2C3O12 wherein A, B, C respectively represent one or more elements forming an A site, one or more elements forming a B site and one or more elements forming a C site, and O represents an oxygen atom. The following formulae (1) and (2) are satisfied. 0.50?rB/rA?0.86 ??(1) 11.70?a?13.02 ??(2) wherein rA represents an average ionic radius of one or more elements which forms the A site, rB represents an average ionic radius of one or more elements which forms the B site, and a represents a lattice constant.
    Type: Application
    Filed: June 25, 2007
    Publication date: October 23, 2008
    Applicant: FUJIFILM Corporation
    Inventor: Tomotake Ikada
  • Patent number: 7431910
    Abstract: A process for preparing zirconium-cerium-based mixed oxides which comprises reacting an alkali with an aqueous solution of a zirconium salt containing 0.42-0.7 mole of sulphate anion (SO42?) per mole of zirconium cation at a temperature of not greater than 50° C., in the presence of a cerium salt to form a cerium-zirconium mixed hydroxide, and then calcining the cerium—zirconium mixed hydroxide to form a mixed oxide. The mixed oxides possess good thermal stability and are essentially single phase and are suitable as promoters and catalyst supports in, particularly, automobile exhaust systems.
    Type: Grant
    Filed: October 30, 2002
    Date of Patent: October 7, 2008
    Assignee: Magnesium Elektron Ltd.
    Inventors: Yasuhide Takao, Colin Norman, Gavin Edwards, Ian Chisem
  • Publication number: 20080233406
    Abstract: A translucent ceramic having a high linear transmittance and a high refractive index, substantially not causing double refraction, and exhibiting a high anomalous dispersion has a pyrochlore compound represented by the general formula AxByOw (wherein 1.00?x/y?1.10 and w represents a positive number maintaining electroneutrality) as a main component. The main component has a cubic crystal system. Preferably, the A site comprises a trivalent metallic element, and the B site comprises a tetravalent metallic element. More preferably, A is at least one of La, Y, Gd, Yb, and Lu, and B is of at least one of Ti, Sn, Zr, and Hf. The translucent ceramic is useful as a material of, for example, an objective lens used in an optical pickup.
    Type: Application
    Filed: May 9, 2008
    Publication date: September 25, 2008
    Applicant: MURATA MANUFACTURING CO., LTD.
    Inventor: Takeshi Hayashi
  • Publication number: 20080233033
    Abstract: This invention relates to a Polyoxometalate (POM) represented by the formula: (An)m+[HqM16X8W48O184(OH)32]m? or solvates thereof, wherein: A represents a cation, n is the number of the cations A, m is the charge of the polyoxoanion, q is the number of protons and varies from 0 to 12, M represents a transition metal, and X represents a heteroatom selected from P, As and mixtures thereof. This invention also relates to a process to produce such POMs and to a process for the homogeneous or heterogeneous oxidation of organic substrates comprising contacting the organic substrate with such POMs.
    Type: Application
    Filed: March 23, 2007
    Publication date: September 25, 2008
    Inventors: Ulrich Kortz, Sib Sankar Mal
  • Publication number: 20080226526
    Abstract: A process for the preparation of a nanoparticulate carbon dioxide acceptor. The acceptor is a mixed metal oxide having at least two metal ions X and Y. The process includes contacting in solution a precursor of an oxide of metal ion X and a precursor of an oxide of metal ion Y; drying said solution to form an amorphous solid; and calcining the amorphous solid to form the acceptor.
    Type: Application
    Filed: April 18, 2006
    Publication date: September 18, 2008
    Applicant: NTNU TECHNOLOGY TRANSFER AS
    Inventors: Magnus Ronning, Esther Ochoa-Fernandez, Tor Grande, De Chen
  • Publication number: 20080210902
    Abstract: Lattice doped stoichiometric-nanostructured materials having a plurality of discrete nanocrystalline particles, which are at least 95% crystalline, and a dopant either substituted in at least one nanocrystalline particle crystal lattice or interstitially located between crystal lattices or crystal planes of the nanocrystalline particles.
    Type: Application
    Filed: July 12, 2007
    Publication date: September 4, 2008
    Applicant: NANOPHASE TECHNOLOGIES CORPORATION
    Inventors: Dan Coy, Harry Sarkas, Robert Haines
  • Patent number: 7417008
    Abstract: The invention relates to supported polyoxometalates represented by the formula (An)m+ [M4(H2O)10(XW9O33)2]m? or solvates thereof, wherein A represents a cation, n is the number of cations, m is the charge of the polyoxoanion, M is a transition metal, and X is an element selected from the group consisting of As, Sb, Bi, Se and Te, characterized in that the polyoxometalate is supported on a solid support selected from the group consisting of Al2O3, MgO, TiO2, ZrO2, SiO2, mesoporous silica, active carbon, diatomite, clays, zeolites, polyoxometalate salts and mixtures thereof, with the proviso that the polyoxometalate salt supports are different from the supported polyoxometalates defined by the above formula, a process for their preparation and their use for the catalytic oxidation of organic molecules.
    Type: Grant
    Filed: May 31, 2006
    Date of Patent: August 26, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Ryan M. Richards, Ulrich Kortz, Lihua Bi, Kake Zhu
  • Publication number: 20080199392
    Abstract: Alkali metal oxide-metal oxide mixed oxide powder in the form of aggregates of pore-free primary particles, comprising from 0.005 to 5% by weight of at least one alkali metal oxide, which has a BET surface area of from 100 to 350 m/g, has a specific DBP number, expressed as DBP number per square metre of specific surface area, greater than or equal to that of a powder which has only the metal oxide component, has the alkali metal oxide distributed in the core and on the surface of the primary particles. Silicone rubber comprising the alkali metal oxide-metal oxide mixed oxide powder.
    Type: Application
    Filed: May 23, 2006
    Publication date: August 21, 2008
    Applicant: Evonik Degussa GmgH
    Inventors: Kai Schumacher, Helmut Roth, Rainer Golchert, Helmut Mangold, Mario Scholz
  • Publication number: 20080175787
    Abstract: An activated catalyst capable of selectively growing single-walled carbon nanotubes when reacted with carbonaceous gas is provided. The activated catalyst is formed by reducing a catalyst that comprises a complex oxide. The complex oxide may be of formula Ax?wFwBy?vGvOz wherein x/y?2; z/y?4; 0?w?0.3x; 0?v?0.3y; A is a Group VIII element; F is an element that is different from A but has, in said composition, the same valence state as A; B is an element different from A and F, and is an element whose simple oxide, in which B is at the same valence state as in the complex oxide, is not reducible in the presence of hydrogen gas at a temperature less than about 900° C.; G is an element different from A, B and F, and is an element whose simple oxide, in which G is at the same valence state as in the complex oxide, is not reducible in the presence of hydrogen gas at a temperature less than about 900° C.; and O is oxygen. The complex oxide is reduced at a temperature less that 950° C.
    Type: Application
    Filed: August 20, 2007
    Publication date: July 24, 2008
    Inventors: Jun MA, David Moy
  • Publication number: 20080145306
    Abstract: The present invention relates to a novel process for the production of spherical binary and multinary mixed oxide powders in a hot-wall reactor. Through the use of aqueous or organic salt solutions or suspensions having a limited salt or solid concentration in combination with additives in the form of surfactants and/or of inorganic salts which have an exothermic decomposition reaction, a compact spherical particle morphology can be obtained, where the average particle size is in the range from 5 nm to <10 ?m.
    Type: Application
    Filed: January 14, 2006
    Publication date: June 19, 2008
    Inventors: Guenter Riedel, Matthias Koch
  • Publication number: 20080131357
    Abstract: Collections of particles comprising multiple a metal oxide can be formed with average particle sizes less than about 500 nm. In some embodiments, the particle collections have particle size distributions such that at least about 95 percent of the particles have a diameter greater than about 40 percent of the average diameter and less than about 160 percent of the average diameter. Also, in further embodiments, the particle collections have particle size distribution such that effectively no particles have a diameter greater than about four times the average diameter of the collection of particles.
    Type: Application
    Filed: January 16, 2008
    Publication date: June 5, 2008
    Inventors: Sujeet Kumar, Hariklia Dris Reitz, Craig R. Home, James T. Gardner, Ronald J. Mosso, Xiangxin Bi
  • Patent number: 7381496
    Abstract: A composition having a formula LixMgyNiO2 wherein 0.9<x<1.3, 0.01<y<0.1, and 0.91<x+y<1.3 can be utilized as cathode materials in electrochemical cells. A composition having a core, having a formula LixMgyNiO2 wherein 0.9<x<1.3, 0.01<y<0.1, and 0.9<x+y<1.3, and a coating on the core, having a formula LiaCobO2 wherein 0.7<a<1.3, and 0.9<b<1.2, can also be utilized as cathode materials in electrochemical cells.
    Type: Grant
    Filed: May 21, 2004
    Date of Patent: June 3, 2008
    Assignee: Tiax LLC
    Inventors: Per T. Onnerud, Jay Jie Shi, Sharon L. Dalton, Christina Lampe-Onnerud
  • Patent number: 7381394
    Abstract: Methods of producing a safe and hygienic method for industrially and efficiently producing a perovskite-type composite oxide are provided that can maintain the catalytic activity of a noble metal at a high level. Methods include preparing a precursor of the perovskite-type composite oxide by mixing organometal salts of elementary components of the perovskite-type composite oxide and heat treating the precursor. The precursor may be prepared by mixing all elementary components constituting the perovskite-type composite oxide, or by mixing one or more organometal salts of part of the elementary components with the other elementary components prepared as alkoxides, a coprecipitate of salts, or a citrate complex of the respective elements.
    Type: Grant
    Filed: July 3, 2003
    Date of Patent: June 3, 2008
    Assignees: Daihatsu Motor Co., Ltd., Hokko Chemical Industry Co. Ltd.
    Inventors: Hirohisa Tanaka, Kimiyoshi Kaneko
  • Publication number: 20080124265
    Abstract: An anode in a Direct Carbon Fuel Cell (DCFC) operating in a temperature range between 500 and 1200 degrees Celsius is provided. The anode material has high catalytic activity and selectivity for carbon oxidation, sufficient oxygen non-stoichiometry, rapid oxygen chemical diffusion, wide thermodynamic stability window to withstand reducing environment, sufficient electronic conductivity and tolerance to sulfur and CO2 environments. The anode has doped ruthenate compositions A1?xA?xRuO3, AB1?yRuyO3, or A1?xA?xB1?yRuyO3. A and A? may be divalent, trivalent, or tetravalent cation, and B is a multivalent cation. A is among lanthanide series elements La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Er or Yb, and dopant A? is from Group IIA, IIIB, or IVB elements. The doped ruthenates can also be a (AB1?yRuyO3) structure or an ordered Ruddlesden-Popper series ((A1?xAx?)n+1(B1?yRuy)nO3n+1) structure where n=1 or 2. The dopant B is among Group IVB, VB, VIB, VIII, IB, and IIB elements.
    Type: Application
    Filed: October 16, 2007
    Publication date: May 29, 2008
    Inventor: Turgut M. Gur
  • Patent number: 7375224
    Abstract: The present invention provides an adenine modified solid, ordered, mesoporous, bifunctional, organo-inorganic silica-based catalyst, its method of preparation and also a process for the production of cyclic carbonates of the formula hereinbelow wherein R?H, CH2Cl, CH3, C4H9, C6H11, C6H5.
    Type: Grant
    Filed: May 23, 2006
    Date of Patent: May 20, 2008
    Assignee: Council of Scientific and Industrial Research
    Inventors: Darbha Srinivas, Rajendra Srivastava, Paul Ratnasamy
  • Patent number: 7368095
    Abstract: The present invention provides a composite oxide for a high performance solid oxide fuel cell which can be fired at a relatively low temperature, and which has little heterogeneous phases of impurities other than the desired composition. The composite oxide is the one having a perovskite type crystal structure containing rare earth elements, and having constituent elements homogeneously dispersed therein. A homogeneous composite oxide having an abundance ratio of heterogeneous phases of at most 0.3% by average area ratio, and a melting point of at least 1470° C., is obtained by using metal carbonates, oxides or hydroxides, and reacting them with citric acid in an aqueous system.
    Type: Grant
    Filed: November 15, 2002
    Date of Patent: May 6, 2008
    Assignee: Seimi Chemical Co., Ltd.
    Inventors: Fumio Munakata, Kenji Furuya, Masaharu Hatano, Yoshinori Fujie, Manabu Suhara
  • Patent number: 7358380
    Abstract: The invention relates to polyoxometalates represented by the formula (An)m+[R2(H2O)6X2W20O70]m? or solvates thereof, wherein A represents a cation, n is the number of the cations, m is the charge of the polyoxoanion, and X represents a heteroatom selected from SbIII, BiIII, AsIII, SeIV and TeIV, a process for their preparation and their use for the catalytic oxidation of organic molecules.
    Type: Grant
    Filed: May 31, 2006
    Date of Patent: April 15, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Ulrich Kortz, Lihua Bi
  • Patent number: 7357910
    Abstract: Method for producing metal oxide nanoparticles. The method includes generating an aerosol of solid metallic microparticles, generating plasma with a plasma hot zone at a temperature sufficiently high to vaporize the microparticles into metal vapor, and directing the aerosol into the hot zone of the plasma. The microparticles vaporize in the hot zone into metal vapor. The metal vapor is directed away from the hot zone and into the cooler plasma afterglow where it oxidizes, cools and condenses to form solid metal oxide nanoparticles.
    Type: Grant
    Filed: July 15, 2002
    Date of Patent: April 15, 2008
    Assignee: Los Alamos National Security, LLC
    Inventors: Jonathan Phillips, Daniel Mendoza, Chun-Ku Chen
  • Patent number: 7348100
    Abstract: Methods for producing an electrode active material precursor, comprising: a) producing a mixture comprising particles of lithium hydrogen phosphate, having a first average particle size, and a metal hydroxide, having a second average particle size; and b) grinding said mixture in a jet mill for a period of time suitable to produce a generally homogeneous mixture of particles having a third average size smaller than said first average size. The precursor may be used as a starting material for making electrode active materials for use in a battery, comprising lithium, a transition metal, and phosphate or a similar anion.
    Type: Grant
    Filed: October 8, 2004
    Date of Patent: March 25, 2008
    Assignee: Valence Technology, Inc.
    Inventors: George Adamson, Jeremy Barker, Allan Dirilo, Titus Faulkner, M. Yazid Saidi, Jeffrey Swoyer
  • Patent number: 7347983
    Abstract: Complex ceramic oxides of the general formula Mg2MM?O6+x where M=Rare metal ion or Yttrium or Lanthanum and M?=Sn, Sb, Zr, Hf, Ta, and Nb; and where ?0.5<x<0.5; having a defective pyrochlore structure are useful for active and passive electronic applications, as dielectrics, catalyst sensors, hosts for radioactive waste, etc. This process for the preparation of this class of compounds comprises: (i) mixing the compounds of magnesium, M and M? to get the molar ratio as 2:1:1 (ii) the mixture obtained in step (i) along with a wetting medium may be ball milled or mixed; (iii) the resultant slurry may be dried to obtain dry powder, (iv) the resultant mixture may be heated to a temperature in the range of 1000-1600° C. for the duration ranging from 3 hours to 50 hours, either in a single step or by taking out the reactant after heating, checking for the structure formation and heating again after grinding, if necessary.
    Type: Grant
    Filed: March 31, 2003
    Date of Patent: March 25, 2008
    Assignee: Council of Scientific & Industrial Research
    Inventors: Jose James, Selvaraj Senthilkumar, Kallumelthekethil Vasudevan Pillaj Oonnikrishnan Nair
  • Patent number: 7338647
    Abstract: The present invention relates to a method for preparing an electroactive metal polyanion or a mixed metal polyanion comprising forming a slurry comprising a polymeric material, a solvent, a polyanion source or alkali metal polyanion source and at least one metal ion source; heating said slurry at a temperature and for a time sufficient to remove the solvent and form an essentially dried mixture; and heating said mixture at a temperature and for a time sufficient to produce an electroactive metal polyanion or electroactive mixed metal polyanion.
    Type: Grant
    Filed: May 20, 2004
    Date of Patent: March 4, 2008
    Assignee: Valence Technology, Inc.
    Inventors: Biying Huang, Jeffrey Swoyer, M. Yazid Saidi, Haitao Huang
  • Patent number: 7326398
    Abstract: A method for preparation for mesoporous oxide comprising a non silica oxide having a hexagonal pore structure periodicity and an average maximum pore length of from 2 nm to 5 nm, characterized by comprising blending 0.003 mol to 0.01 mol of TaCl5, NbCl5 or a mixture thereof and Al isopropoxide comprising 10 g of an aliphatic linear alcohol and 1 g of a template compound to prepare a mixture for forming a sol solution, adding 5 mol to 35 mol (based on the metal compounds) of water or an aqueous inorganic acid solution to the mixture followed by hydrolysis and polycondensation to give a sol solution, transferring the sol into an oxygen containing atmosphere followed by again at 40° C. to 100° C. to form a gel, and then calcinating the gel in an oxygen containing atmosphere at 350° C. to 550° C.; and the mesoporous oxide obtained by the method.
    Type: Grant
    Filed: November 11, 2002
    Date of Patent: February 5, 2008
    Assignee: Japan Science and Technology Agency
    Inventors: Kazunari Domen, Junko Nomura, Tokumitsu Kato
  • Patent number: 7323158
    Abstract: Collections of particles comprising multiple a metal oxide can be formed with average particle sizes less than about 500 nm. In some embodiments, the particle collections have particle size distributions such that at least about 95 percent of the particles have a diameter greater than about 40 percent of the average diameter and less than about 160 percent of the average diameter. Also, in further embodiments, the particle collections have particle size distribution such that effectively no particles have a diameter greater than about four times the average diameter of the collection of particles.
    Type: Grant
    Filed: September 4, 2003
    Date of Patent: January 29, 2008
    Assignee: NanoGram Corporation
    Inventors: Sujeet Kumar, Hariklia Dris Reitz, Craig R. Horne, James T. Gardner, Ronald J. Mosso, Xiangxin Bi
  • Patent number: 7297322
    Abstract: A process for producing powders of metal compound containing oxygen including the steps of: feeding at least one material selected from a liquid material and a solution material obtained by dissolving solid ingredient in organic solvent via a liquid flow controller into a vaporizer; vaporizing the materials in the vaporizer; adding oxygen; heating; cooling; and crystallizing. Also disclosed is the product formed by this process, and apparatus used in performing the process. The process and the apparatus enable easily mass-producing fine powders of metal compound containing oxygen used as materials for optical crystals, nonlinear crystals or magneto-optical crystals with reasonable production cost.
    Type: Grant
    Filed: March 11, 2005
    Date of Patent: November 20, 2007
    Assignee: Japan Pionics Co., Ltd.
    Inventors: Yukichi Takamatsu, Koji Kiriyama, Akira Asano, Takafumi Ishii
  • Patent number: 7294434
    Abstract: Nickel hydroxide material comprising particles with a microstructure including crystallites of less than 103 ? as measured in the 101 direction by x-ray diffraction. A method of making positive electrode material for use in an alkaline rechargeable electrochemical cell comprising forming a metal ion solution and increasing the pH to precipitate positive electrode material with a crystallite structure of 120 ? or less in the 101 direction.
    Type: Grant
    Filed: August 30, 2002
    Date of Patent: November 13, 2007
    Assignee: Ovonic Battery Company, Inc.
    Inventors: Cristian Fierro, Michael A. Fetcenko, Kwo Young, Stanford R. Ovshinsky, Beth Sommers, Craig Harrison
  • Patent number: 7291781
    Abstract: The present invention provides a complex oxide having a composition represented by the formula La1?xMxNiO2.7?3.3 or (La1?xMx)2NiO3.6?4.4 (wherein M is at least one element selected from the group consisting of Na, K, Li, Zn, Pb, Ba, Ca, Al, Nd, Bi and Y, and 0.01?×?0.8), the complex oxide having a negative Seebeck coefficient at 100° C. or higher. This complex oxide is a novel material which exhibits excellent properties as an n-type thermoelectric material.
    Type: Grant
    Filed: March 11, 2003
    Date of Patent: November 6, 2007
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Ryoji Funahashi, Masahiro Shikano
  • Patent number: 7291317
    Abstract: The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as carbides and transition-metal, lanthanide and actinide oxides, using an aerodynamic levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.
    Type: Grant
    Filed: July 15, 2005
    Date of Patent: November 6, 2007
    Assignee: United States of America as represented by the Department of Energy
    Inventors: Marie-Louise Saboungi, Benoit Glorieux