On Insulating Substrate Or Layer (e.g., Tft, Etc.) Patents (Class 438/149)
  • Patent number: 8895373
    Abstract: There is provided a flexible semiconductor device. The flexible semiconductor device of the present invention comprising a support layer, a semiconductor structure portion formed on the support layer, and a resin film formed on the semiconductor structure portion. The resin film comprises an opening formed by a laser irradiation therein, and also an electroconductive member which is in contact with the surface of the semiconductor structure portion is disposed within the opening of the resin film.
    Type: Grant
    Filed: October 7, 2013
    Date of Patent: November 25, 2014
    Assignee: Panasonic Corporation
    Inventors: Takeshi Suzuki, Kenichi Hotehama, Seiichi Nakatani, Koichi Hirano, Tatsuo Ogawa
  • Patent number: 8896063
    Abstract: A plurality of semiconductor fins are formed which extend from a semiconductor material portion that is present atop an insulator layer of a semiconductor-on-insulator substrate. A gate structure and adjacent gate spacers are formed that straddle each semiconductor fin. Portions of each semiconductor fin are left exposed. The exposed portions of the semiconductor fins are then merged by forming an epitaxial semiconductor material from an exposed semiconductor material portion that is not covered by the gate structure and gate spacers.
    Type: Grant
    Filed: September 17, 2013
    Date of Patent: November 25, 2014
    Assignee: International Business Machines Corporation
    Inventors: Thomas N. Adam, Veeraraghavan S. Basker, Jinghong Li, Chung-Hsun Lin, Sebastian Naczas, Alexander Reznicek, Tenko Yamashita
  • Patent number: 8895984
    Abstract: The present invention relates to a capacitor having a configuration in which capacitors are coupled in series to each other. The capacitor formed on a substrate according to an exemplary embodiment of the present invention includes: a polysilicon layer doped with an impurity; a first insulation layer formed on the polysilicon layer; a first metal layer formed on the first insulation layer and including first and second areas; a second insulation layer formed on the first metal layer; and a second metal layer formed on the second insulation layer and coupled to the second area of the first metal layer. The second metal layer is overlapped with at least a part of the first area of the first metal layer.
    Type: Grant
    Filed: August 17, 2005
    Date of Patent: November 25, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventor: Won-Kyu Kwak
  • Patent number: 8895334
    Abstract: Embodiments of the present invention disclose a thin film transistor array substrate and a method for manufacturing the same and an electronic device.
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: November 25, 2014
    Assignee: Boe Technology Group Co., Ltd.
    Inventors: Xiang Liu, Jianshe Xue
  • Patent number: 8895407
    Abstract: A manufacturing method of an SOI substrate which possesses a base substrate having low heat resistance and a very thin semiconductor layer having high planarity is demonstrated. The method includes: implanting hydrogen ions into a semiconductor substrate to form an ion implantation layer; bonding the semiconductor substrate and a base substrate such as a glass substrate, placing a bonding layer therebetween; heating the substrates bonded to each other to separate the semiconductor substrate from the base substrate, leaving a thin semiconductor layer over the base substrate; irradiating the surface of the thin semiconductor layer with laser light to improve the planarity and recover the crystallinity of the thin semiconductor layer; and thinning the thin semiconductor layer. This method allows the formation of an SOI substrate which has a single-crystalline semiconductor layer with a thickness of 100 nm or less over a base substrate.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: November 25, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hidekazu Miyairi, Akihisa Shimomura, Tatsuya Mizoi, Eiji Higa, Yoji Nagano
  • Patent number: 8895352
    Abstract: Techniques for forming a thin coating of a material on a carbon-based material are provided. In one aspect, a method for forming a thin coating on a surface of a carbon-based material is provided. The method includes the following steps. An ultra thin silicon nucleation layer is deposited to a thickness of from about two angstroms to about 10 angstroms on at least a portion of the surface of the carbon-based material to facilitate nucleation of the coating on the surface of the carbon-based material. The thin coating is deposited to a thickness of from about two angstroms to about 100 angstroms over the ultra thin silicon layer to form the thin coating on the surface of the carbon-based material.
    Type: Grant
    Filed: June 2, 2009
    Date of Patent: November 25, 2014
    Assignee: International Business Machines Corporation
    Inventors: Katherina Babich, Alessandro Callegari, Zhihong Chen, Edward Kiewra, Yanning Sun
  • Patent number: 8895372
    Abstract: A three-dimensional (3D) integrated circuit (IC) structure includes a first layer of graphene formed over a substrate; a first level of one or more active devices formed using the first layer of graphene; an insulating layer formed over the first level of one or more active devices; a second layer of graphene formed over the insulating layer; and a second level of one or more active devices formed using the second layer of graphene, the second level of one or more active devices electrically interconnected with the first level of one or more active devices.
    Type: Grant
    Filed: July 25, 2012
    Date of Patent: November 25, 2014
    Assignee: International Business Machines Corporation
    Inventors: Dechao Guo, Shu-Jen Hen, Chung-Hsun Lin, Ning Su
  • Patent number: 8896778
    Abstract: It is an object to provide a liquid crystal display device including a thin film transistor with high electric characteristics and high reliability. As for a liquid crystal display device including an inverted staggered thin film transistor of a channel stop type, the inverted staggered thin film transistor includes a gate electrode, a gate insulating film over the gate electrode, a microcrystalline semiconductor film including a channel formation region over the gate insulating film, a buffer layer over the microcrystalline semiconductor film, and a channel protective layer which is formed over the buffer layer so as to overlap with the channel formation region of the microcrystalline semiconductor film.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: November 25, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 8895371
    Abstract: A fin structure including a vertical alternating stack of a first isoelectric point material layer having a first isoelectric point and a second isoelectric material layer having a second isoelectric point less than the first isoelectric point is formed. The first and second isoelectric point material layers become oppositely charged in a solution with a pH between the first and second isoelectric points. Negative electrical charges are imparted onto carbon nanotubes by an anionic surfactant to the solution. The electrostatic attraction causes the carbon nanotubes to be selectively attached to the surfaces of the first isoelectric point material layer. Carbon nanotubes are attached to the first isoelectric point material layer in self-alignment along horizontal lengthwise directions of the fin structure. A transistor can be formed, which employs a plurality of vertically aligned horizontal carbon nanotubes as the channel.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: November 25, 2014
    Assignee: International Business Machines Corporation
    Inventors: Qing Cao, Dechao Guo, Shu-Jen Han, Yu Lu, Keith Kwong Hon Wong
  • Patent number: 8891264
    Abstract: Embodiments of the present invention relate to a rectifier circuit and methods of making the same for use in wireless devices (e.g., RFID tags). The present invention is drawn to a rectifier circuit comprising first and second diode-wired transistors in series, each having a gate oxide layers of the same target thickness. The first diode-wired transistor receives an alternating current and the second diode-wired transistor provides a rectifier output. The first and second diode-wired transistors are configured to divide between them a first voltage differential across the rectifier circuit. The gate oxides are exposed to a peak stress that is similar to a stress on the gate oxide of logic transistors made using the same process.
    Type: Grant
    Filed: November 14, 2007
    Date of Patent: November 18, 2014
    Assignee: Thin Film Electronics ASA
    Inventors: James Montague Cleeves, Patrick Smith
  • Patent number: 8889494
    Abstract: A fin type transistor includes a dielectric layer on a substrate surface which serves to isolate the gate of the transistor from the substrate. The dielectric layer includes a non-selectively etched surface to produce top portions of fin structures which have reduce height variations across the wafer. The fin type transistor may also include a counter doped region at least below the S/D regions to reduce parasitic capacitance to improve its performance.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: November 18, 2014
    Assignee: GlobalFoundries Singapore Pte. Ltd.
    Inventors: Eng Huat Toh, Jae Gon Lee, Chung Foong Tan, Elgin Quek
  • Patent number: 8889496
    Abstract: It is an object to provide a manufacturing method of a structure of a thin film transistor including an oxide semiconductor film, in which threshold voltage at which a channel is formed is positive and as close to 0 V as possible. A protective insulating layer is formed to cover a thin film transistor including an oxide semiconductor layer that is dehydrated or dehydrogenated by first heat treatment, and second heat treatment at a temperature that is lower than that of the first heat treatment, in which the increase and decrease in temperature are repeated plural times, is performed, whereby a thin film transistor including an oxide semiconductor layer, in which threshold voltage at which a channel is formed is positive and as close to 0 V as possible without depending on the channel length, can be manufactured.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: November 18, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Masashi Tsubuku, Shuhei Yoshitomi, Takahiro Tsuji, Miyuki Hosoba, Junichiro Sakata, Hiroyuki Tomatsu, Masahiko Hayakawa
  • Patent number: 8889473
    Abstract: The invention relates to a method for manufacturing adjacent first and second areas of a surface, said areas consisting, respectively, of first and second materials that are different from each other. Said method involves: depositing a first liquid volume that encompasses the first area and comprises a solvent in which the first material is dispersed; depositing a second liquid volume that encompasses the second area and comprises a solvent in which the second material is dispersed; and removing the solvents. According to the invention, the solvents of the first and second volumes are immiscible, and the second volume is simultaneously or consecutively deposited with the deposition of the first volume, before the first volume reaches the second area.
    Type: Grant
    Filed: March 7, 2011
    Date of Patent: November 18, 2014
    Assignee: Commissariat a l'Energie Atomique et aux Energies Alternatives
    Inventors: Mohamed Benwadih, Christophe Serbutoviez, Jean-Marie Verilhac
  • Patent number: 8889495
    Abstract: Semiconductor alloy fin structures can be formed by recessing a semiconductor material layer including a first semiconductor material to form a trench, and epitaxially depositing a semiconductor alloy material of the first semiconductor material and a second semiconductor material within the trench. The semiconductor alloy material is epitaxially aligned to the first semiconductor material in the semiconductor material layer. First semiconductor fins including the first semiconductor material and second semiconductor fins including the semiconductor alloy material can be simultaneously formed. In one embodiment, the first and second semiconductor fins can be formed on an insulator layer, which prevents diffusion of the second semiconductor material to the first semiconductor fins. In another embodiment, shallow trench isolation structures and reverse biased wells can be employed to provide electrical insulation among neighboring semiconductor fins.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: November 18, 2014
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Thomas N. Adam, Ali Khakifirooz, Alexander Reznicek
  • Patent number: 8883571
    Abstract: A method of manufacturing a transistor includes: forming an oxide semiconductor film and a gate electrode on a substrate, the oxide semiconductor film having a channel region, and the gate electrode facing the channel region; and forming an insulating film covering the gate electrode and the oxide semiconductor film. Infiltration of moisture from the insulating film into the oxide semiconductor film is suppressed by the substrate.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: November 11, 2014
    Assignee: Sony Corporation
    Inventors: Narihiro Morosawa, Motohiro Toyota
  • Patent number: 8883573
    Abstract: The present disclosure relates to the field of fabricating microelectronic devices. In at least one embodiment, the present disclosure relates to forming an isolated nanowire, wherein isolation structure adjacent the nanowire provides a substantially level surface for the formation of microelectronic structures thereon.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: November 11, 2014
    Assignee: Intel Corporation
    Inventors: Uday Shah, Benjamin Chu-Kung, Been-Yih Jin, Ravi Pillarisetty, Marko Radosavljevic, Willy Rachmady
  • Patent number: 8884393
    Abstract: A nitride compound semiconductor device includes: a substrate; a buffer layer formed on the substrate and including a plurality of composite layers each layered of: a first layer formed of a nitride compound semiconductor; and a second layer formed of a nitride compound semiconductor containing aluminum and having a lattice constant smaller than a lattice constant of the first layer; a semiconductor operating layer formed on the buffer layer; and a plurality of electrodes formed on the semiconductor operating layer. At least one of the second layers has oxygen added therein.
    Type: Grant
    Filed: July 10, 2013
    Date of Patent: November 11, 2014
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Takuya Kokawa, Tatsuyuki Shinagawa, Masayuki Iwami, Kazuyuki Umeno, Sadahiro Kato
  • Patent number: 8884266
    Abstract: A thin film transistor includes a gate electrode configured to receive a control voltage, a source electrode insulated from the gate electrode, and configured to receive an input voltage, a drain electrode insulated from the gate electrode, and configured to receive an output voltage, at least two carbon nanotube patterns formed in a channel region between the source electrode and the drain electrode, wherein the carbon nanotube patterns are separated from each other, and at least one floating electrode connecting the two carbon nanotube patterns to each other.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: November 11, 2014
    Assignees: Samsung Display Co., Ltd., SNU R&DB Foundation
    Inventors: Sang Ho Park, Young Ki Shin, Yoon Ho Khang, Joo Hyung Lee, Hyung Woo Lee, Seung Hun Hong
  • Patent number: 8884296
    Abstract: A thin-film transistor device manufacturing method for forming a crystalline silicon film of stable crystallinity using a visible wavelength laser includes: a process of forming a plurality of gate electrodes above a substrate; a process of forming a silicon nitride layer on the plurality of gate electrodes; a process of forming a silicon oxide layer on the silicon nitride layer; a process of forming an amorphous silicon layer on the silicon oxide layer; a process of crystallizing the amorphous silicon layer using predetermined laser light to produce a crystalline silicon layer; and a process of forming a source electrode and a drain electrode on the crystalline silicon layer in a region that corresponds to each of the plurality of gate electrodes. A film thickness of the silicon oxide layer, a film thickness of the silicon nitride layer, and a film thickness of the amorphous silicon layer satisfy predetermined conditional expressions.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: November 11, 2014
    Assignee: Panasonic Corporation
    Inventor: Yuta Sugawara
  • Patent number: 8878187
    Abstract: A voltage equal to the threshold value of a TFT (106) is held in capacitor unit (109). When a video signal is inputted from a source signal line, the voltage held in the capacitor unit is added thereto and a resultant signal is applied to a gate electrode of the TFT (106). Even when a threshold value is varied for each pixel, each threshold value is held in the capacitor unit (109) for each pixel. Thus, the influence of a variation in threshold value can be eliminated. Further, holding of the threshold value is conducted by only the capacitor unit (109) and a charge does not move at writing of a video signal so that a voltage between both electrodes is not changed. Thus, it is not influenced by a variation in capacitance value.
    Type: Grant
    Filed: February 20, 2014
    Date of Patent: November 4, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Hajime Kimura
  • Patent number: 8878185
    Abstract: In order to improve the transmissivity of each pixel and the brightness of a high-definition screen, a TFT and a projection are disposed in each pixel, a source electrode of the TFT extends so as to cover the projection, an inorganic passivation film is formed over the TFT and the projection, an organic passivation film is formed on the inorganic passivation film on the TFT, an opposed electrode is formed on the organic passivation film, an upper insulation film is formed over the opposed electrode, a pixel electrode is formed on the upper insulation film, and the pixel electrode is connected to the source electrode through a connection hole formed in the inorganic passivation film and the upper insulation film on the projection. Accordingly, the diameter of a through-hole can be made smaller.
    Type: Grant
    Filed: March 25, 2013
    Date of Patent: November 4, 2014
    Assignee: Japan Display Inc.
    Inventors: Toshimasa Ishigaki, Fumio Takahashi, Hideki Kuriyama
  • Patent number: 8878175
    Abstract: An object is to reduce a capacitance value of parasitic capacitance without decreasing driving capability of a transistor in a semiconductor device such as an active matrix display device. Further, another object is to provide a semiconductor device in which the capacitance value of the parasitic capacitance was reduced, at low cost. An insulating layer other than a gate insulating layer is provided between a wiring which is formed of the same material layer as a gate electrode of the transistor and a wiring which is formed of the same material layer as a source electrode or a drain electrode.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: November 4, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 8878262
    Abstract: An insulating film provided between adjacent pixels is referred to as a bank, a partition, a barrier, an embankment or the like, and is provided above a source wiring or a drain wiring for a thin film transistor, or a power supply line. In particular, at an intersection portion of these wirings provided in different layers, a larger step is formed there than in other portions. Even in a case that the insulating film provided between adjacent pixels is formed by a coating method, there is a problem that thin portions are partially formed due to this step and the withstand pressure is reduced. In the present invention, a dummy material is arranged near the large step portion, particularly, around the intersection portion of wirings, so as to alleviate unevenness formed thereover. The upper wring and the lower wiring are arranged in a misaligned manner so as not to align the end portions.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: November 4, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Masayuki Sakakura, Shunpei Yamazaki
  • Patent number: 8877569
    Abstract: An object is to provide a semiconductor device provided with a thin film transistor having excellent electric characteristics using an oxide semiconductor layer. An In—Sn—O-based oxide semiconductor layer including SiOX is used for a channel formation region. In order to reduce contact resistance between the In—Sn—O-based oxide semiconductor layer including SiOX and a wiring layer formed from a metal material having low electric resistance, a source region or drain region is formed between a source electrode layer or drain electrode layer and the In—Sn—O-based oxide semiconductor layer including SiOX. The source region or drain region and a pixel region are formed using an In—Sn—O-based oxide semiconductor layer which does not include SiOX.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: November 4, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yoshiaki Oikawa, Hotaka Maruyama, Hiromichi Godo, Daisuke Kawae, Shunpei Yamazaki
  • Patent number: 8877570
    Abstract: An array substrate having a wiring of a pad region formed without an insulating film or without an insulating film and an organic film to reduce abnormal operations due to an increase in resistance caused by a contact margin at a high temperature, and a method for manufacturing the same are provided. The array substrate includes: an insulating substrate including a pad region and a thin film transistor (TFT) formation region; a first electrode layer formed in the pad region of the substrate; and a second electrode formed on the first electrode layer in an overlapping manner.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: November 4, 2014
    Assignee: LG Display Co., Ltd.
    Inventors: JongWoo Kim, ChangHo Oh, WonHyung Yoo, SangYoon Paik, JunKi Kang, JongHoon Kim
  • Patent number: 8871582
    Abstract: One method includes forming a recessed gate/spacer structure that partially defines a spacer/gate cap recess, forming a gate cap layer in the spacer/gate cap recess, forming a gate cap protection layer on an upper surface of the gate cap layer, and removing portions of the gate cap protection layer, leaving a portion of the gate cap protection layer positioned on the upper surface of the gate cap layer. A device disclosed herein includes a gate/spacer structure positioned in a layer of insulating material, a gate cap layer positioned on the gate/spacer structure, wherein sidewalls of the gate cap layer contact the layer of insulating material, and a gate cap protection layer positioned on an upper surface of the gate cap layer, wherein the sidewalls of the gate cap protection layer also contact the layer of insulating material.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: October 28, 2014
    Assignees: GLOBALFOUNDRIES Inc., International Business Machines Corporation
    Inventors: Daniel Pham, Xiuyu Cai, Balasubramanian Pranatharthiharan, Pranita Kulkarni
  • Patent number: 8865517
    Abstract: The present invention provides a method for manufacturing thin-film transistor active device and a thin-film transistor active device manufactured with the method.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: October 21, 2014
    Assignee: Shenzhen China Star Optoelectronics Technology Co., Ltd.
    Inventors: Chenglung Chiang, Polin Chen
  • Patent number: 8865516
    Abstract: The present invention provides an oxide semiconductor capable of achieving a thin film transistor having stable transistor characteristics, a thin film transistor having a channel layer formed of the oxide semiconductor and a production method thereof, and a display device equipped with the thin film transistor. The oxide semiconductor of the present invention is an oxide semiconductor for a thin film transistor. The oxide semiconductor includes indium, gallium, zinc, and oxygen as constituent atoms, and the oxygen content of the oxide semiconductor is 87% to 95% of the stoichiometric condition set as 100%, in terms of atomic units.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: October 21, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Yoshifumi Ohta, Go Mori, Hirohiko Nishiki, Yoshimasa Chikama, Tetsuya Aita, Masahiko Suzuki, Okifumi Nakagawa, Michiko Takei, Yoshiyuki Harumoto, Takeshi Hara
  • Patent number: 8865530
    Abstract: A method of forming a semiconductor device that includes providing a logic device on a semiconductor on insulating layer of a transfer substrate. The transfer substrate may further include a dielectric layer and a first handle substrate. A second handle substrate may be contacted to the semiconductor on insulating layer of the transfer substrate that includes logic device. The first handle substrate may be removed to expose the dielectric layer. A memory device can then be formed on the dielectric layer. Interconnect wiring can then be formed connecting the logic device with the memory device.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: October 21, 2014
    Assignee: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Bahman Hekmatshoar-Tabari, Ali Khakifirooz, Ghavam G. Shahidi, Davood Shahrjerdi
  • Patent number: 8865534
    Abstract: In a manufacturing process of a bottom-gate transistor including an oxide semiconductor film, dehydration or dehydrogenation through heat treatment and oxygen doping treatment are performed. A transistor including an oxide semiconductor film subjected to dehydration or dehydrogenation through heat treatment and oxygen doping treatment can be a highly reliable transistor having stable electric characteristics in which the amount of change in threshold voltage of the transistor between before and after the bias-temperature stress (BT) test can be reduced.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: October 21, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 8867875
    Abstract: A semiconductor optical wave guide device is described in which a buried oxide layer (BOX) is capable of guiding light. Optical signals may be transmitted from one part of the semiconductor device to another, or with a point external to the semiconductor device, via the wave guide. In one example, an optical wave guide is provided including a core insulating layer encompassed by a clad insulating layer. The semiconductor device may contain an etched hole for guiding light to and from the core insulating layer from a transmitter or to a receiver.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: October 21, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Yoshiaki Shimooka
  • Patent number: 8865529
    Abstract: A thin-film transistor device manufacturing method and others according to the present disclosure includes: forming a plurality of gate electrodes above a substrate; forming a gate insulating layer on the plurality of gate electrodes; forming an amorphous silicon layer on the gate insulating layer; forming a buffer layer and a light absorbing layer above the amorphous silicon layer; forming a crystalline silicon layer by crystallizing the amorphous silicon layer with heat generated by heating the light absorbing layer using a red or near infrared laser beam; and forming a source electrode and a drain electrode on the crystalline silicon layer in a region that corresponds to each of the plurality of gate electrodes, and film thicknesses of the gate insulating layer, the amorphous silicon layer, the buffer layer, and the light absorbing layer satisfy predetermined expressions.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: October 21, 2014
    Assignee: Panasonic Corporation
    Inventor: Yuta Sugawara
  • Patent number: 8866162
    Abstract: A method of manufacturing an organic light emitting diode (OLED) display includes forming an upper electrode power source line outside of a pixel area over a substrate, forming a lower electrode in the pixel area, forming at least one layer of an organic material layer in the pixel area and areas outside of the pixel area, forming an upper electrode in the pixel area, selectively removing portions of the organic material layer that are exposed outside of the upper electrode, thereby exposing the upper electrode power source line, and coating a conductive material between the upper electrode and the upper electrode power source line in a normal pressure condition such that the conductive material overlaps the upper electrode and the upper electrode power source line, thereby forming a connection portion.
    Type: Grant
    Filed: May 13, 2010
    Date of Patent: October 21, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Jin-Goo Kang, Mu-Hyun Kim
  • Patent number: 8865528
    Abstract: A thin film transistor array panel includes a gate line, a gate insulating layer that covers the gate line, a semiconductor layer that is disposed on the gate insulating layer, a data line and drain electrode that are disposed on the semiconductor layer, a passivation layer that covers the data line and drain electrode and has a contact hole that exposes a portion of the drain electrode, and a pixel electrode that is electrically connected to the drain electrode through the contact hole. The data line and drain electrode each have a double layer that includes a lower layer of titanium and an upper layer of copper, and the lower layer is wider than the upper layer, and the lower layer has a region that is exposed. The gate insulating layer may have a step shape.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: October 21, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Jean-Ho Song, Shin-Il Choi, Sun-Young Hong, Shi-Yul Kim, Ki-Yeup Lee, Jae-Hyoung Youn, Sung-Ryul Kim, O-Sung Seo, Yang-Ho Bae, Jong-Hyun Choung, Dong-Ju Yang, Bong-Kyun Kim, Hwa-Yeul Oh, Pil-Soon Hong, Byeong-Beom Kim, Je-Hyeong Park, Yu-Gwang Jeong, Jong-In Kim, Nam-Seok Suh
  • Patent number: 8859346
    Abstract: A method for manufacturing array substrate with embedded photovoltaic cell includes: providing a substrate; forming a buffer layer on the substrate; forming an amorphous silicon layer on the buffer layer; converting the amorphous silicon layer into a polysilicon layer; forming a pattern on the polysilicon layer; forming a first photoresist pattern on the polysilicon layer and injecting N+ ions; forming a gate insulation layer on the polysilicon layer; forming a second photoresist pattern on the gate insulation layer and injecting N? ions; forming a third photoresist pattern on the gate insulation layer and injecting P+ ions; forming a metal layer on the gate insulation layer so as to form a gate terminal; forming a hydrogenated insulation layer on the metal layer; forming a first ditch in the first insulation layer; and forming a second metal layer on the first insulation layer.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: October 14, 2014
    Assignee: Shenzhen China Star Optoelectronics Technology Co., Ltd
    Inventor: Xindi Zhang
  • Patent number: 8860032
    Abstract: A thin film transistor substrate that includes a substrate, first and second gate electrodes that are formed on the substrate, a gate insulating layer that is formed on the first and second gate electrodes, a first semiconductor and a second semiconductor that are formed on the gate insulating layer, and that overlap the first gate electrode and the second gate electrode, respectively, a first source electrode and a first drain electrode that are formed on the first semiconductor, and positioned opposed to and spaced from each other, a source electrode connected to the first drain electrode and a second drain electrode positioned opposed to and spaced from the second source electrode, wherein the second source and second drain electrodes are formed on the second semiconductor, and a pixel electrode that is electrically connected to the second drain electrode, a method of manufacturing the same, and a display apparatus having the same.
    Type: Grant
    Filed: May 14, 2009
    Date of Patent: October 14, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Byoung-Kwon Choo, Joon-Hoo Choi, Kyu-Sik Cho, Seung-Kyu Park, Yong-Hwan Park, Sang-Ho Moon
  • Patent number: 8859347
    Abstract: Embodiments of the present invention provide for the removal of excess carriers from the body of active devices in semiconductor-on-insulator (SOI) structures. In one embodiment, a method of fabricating an integrated circuit is disclosed. In one step, an active device is formed in an active layer of a semiconductor-on-insulator wafer. In another step, substrate material is removed from a substrate layer disposed on a back side of the SOI wafer. In another step, an insulator material is removed from a back side of the SOI wafer to form an excavated insulator region. In another step, a conductive layer is deposited on the excavated insulator region. Depositing the conductive layer puts it in physical contact with a body of an active device in a first portion of the excavated insulator region. The conductive layer then couples the body to a contact in a second detached portion of the excavated insulator region.
    Type: Grant
    Filed: January 21, 2013
    Date of Patent: October 14, 2014
    Assignee: Silanna Semiconductor U.S.A., Inc.
    Inventors: Michael A. Stuber, Stuart B. Molin, Paul A. Nygaard
  • Patent number: 8859330
    Abstract: A semiconductor device including an oxide semiconductor, which has stable electric characteristics and high reliability, is provided. In a method for manufacturing a transistor including an oxide semiconductor film, an implantation step where rare gas ions are implanted to the oxide semiconductor film is performed, and the oxide semiconductor film to which rare gas ions are implanted is subjected to a heating step under reduced pressure, in a nitrogen atmosphere, or in a rare gas atmosphere, whereby hydrogen or water contained in the oxide semiconductor film to which rare gas ions are implanted is released; thus, the oxide semiconductor film is highly purified.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: October 14, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Junichi Koezuka, Shinji Ohno, Yuichi Sato
  • Patent number: 8853012
    Abstract: A gate insulating film has a convex portion conforming to a surface shape of a gate electrode and a step portion that changes in height from a periphery of the gate electrode along the surface of the gate electrode. An oxide semiconductor layer is disposed on the gate insulating film so as to have a transistor constituting region having a channel region, a source region, and a drain region in a continuous and integral manner and a covering region being separated from the transistor constituting region and covering the step portion of the gate insulating film. A channel protective layer is disposed on the channel region of the oxide semiconductor layer. A source electrode and a drain electrode are disposed in contact respectively with the source region and the drain region of the oxide semiconductor layer. A passivation layer is disposed on the source electrode and the drain electrode.
    Type: Grant
    Filed: August 13, 2013
    Date of Patent: October 7, 2014
    Assignee: Japan Display Inc.
    Inventors: Norihiro Uemura, Takeshi Noda, Hidekazu Miyake, Isao Suzumura
  • Patent number: 8852975
    Abstract: The present invention relates to an array substrate for a fringe field switching (FFS) mode liquid crystal display device and a method for fabricating the same. The liquid crystal display device may include a gate line formed on the substrate; a data line crossed with the gate line to define a pixel region; a thin-film transistor (TFT) formed at an intersection of the gate and data line; an organic insulating layer formed to have an opening portion for exposing the TFT; a common electrode having an area formed at an upper portion of the organic insulating layer, and an auxiliary electrode pattern connected to the TFT through the opening portion; a passivation layer formed to expose the auxiliary electrode pattern connected to the TFT; and pixel electrodes electrically connected to the TFT through the exposed auxiliary electrode pattern.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: October 7, 2014
    Assignee: LG Display Co., Ltd.
    Inventors: DongSu Shin, SeungKyu Choi, CheolHwan Lee
  • Patent number: 8853040
    Abstract: A method of forming a transistor device includes forming a patterned gate structure over a semiconductor substrate; forming a spacer layer over the semiconductor substrate and patterned gate structure; removing horizontally disposed portions of the spacer layer so as to form a vertical sidewall spacer adjacent the patterned gate structure; and forming a raised source/drain (RSD) structure over the semiconductor substrate and adjacent the vertical sidewall spacer, wherein the RSD structure has a substantially vertical sidewall profile so as to abut the vertical sidewall spacer and produce one of a compressive and a tensile strain on a channel region of the semiconductor substrate below the patterned gate structure.
    Type: Grant
    Filed: August 13, 2013
    Date of Patent: October 7, 2014
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Bruce B. Doris, Pranita Kerber, Ali Khakifirooz, Ghavam G. Shahidi
  • Patent number: 8853691
    Abstract: A transistor and a manufacturing method thereof are provided. The transistor includes a first gate, a second gate disposed on one side of the first gate, a first semiconductor layer, a second semiconductor layer, an oxide layer, a first insulation layer, a second insulation layer, a source, and a drain. The first semiconductor layer is disposed between the first and second gates; the second semiconductor layer is disposed between the first semiconductor layer and the second gate. The oxide layer is disposed between the first semiconductor layer and the second semiconductor layer. The first insulation layer is disposed between the first gate and the first semiconductor layer; the second insulation layer is disposed between the second gate and the second semiconductor layer. The source and the drain are disposed between the first insulation layer and the second insulation layer and respectively disposed on opposite sides of the oxide layer.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: October 7, 2014
    Assignee: E Ink Holdings Inc.
    Inventors: Chih-Hsiang Yang, Ted-Hong Shinn, Wei-Tsung Chen, Hsing-Yi Wu
  • Patent number: 8853011
    Abstract: A repairing method, repairing device and repairing structure for repairing a signal line of an array substrate having the disconnected defect, including: setting a repairing route according to a position of the disconnected defect and determining a position at which a filling portion is required to be formed according to the repairing route; forming the filling portion at the position at which the filling portion is required to be formed; and forming a repairing line along the repairing route. By detecting the repairing route before repairing the disconnected defect by forming the filling portion according to the repairing route, the present disclosure can avoid the disconnection of the repairing line caused by great height differences of the surface under the repairing line and improve the repairing success rate of the disconnected defect.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: October 7, 2014
    Assignee: Shenzhen China Star Optoelectronics Technology Co., Ltd.
    Inventors: Wen-da Cheng, Chujen Wu
  • Patent number: 8853016
    Abstract: A double gate thin-film transistor (TFT), and an organic light-emitting diode (OLED) display apparatus including the double gate TFT, includes a double gate thin-film transistor (TFT) including: a first gate electrode on a substrate; an active layer on the first gate electrode; source and drain electrodes on the active layer; a planarization layer on the substrate and the source and drain electrodes, and having an opening corresponding to the active layer; and a second gate electrode in the opening.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: October 7, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Hye-Hyang Park, Ki-Ju Im, Yong-Sung Park
  • Patent number: 8846458
    Abstract: An array for an in-plane switching (IPS) mode liquid crystal display device includes a gate line formed on a substrate to extend in a first direction, a common line formed on the substrate to extend in the first direction, a data line formed to extend in a second direction, a thin film transistor formed at an intersection between the gate line and the data line, wherein the thin film transistor includes a gate line, a gate insulating layer, an active layer, a source electrode, and a drain electrode, a passivation film formed on the substrate including the thin film transistor, a pixel electrode formed on the passivation film located on a pixel region defined by the gate line and the data line, the pixel electrode being electrically connected to the drain electrode, a common electrode formed on the passivation film, and a common electrode connection line connected to the common electrode and the common line, wherein the common electrode connection line overlaps with the common line and the drain electrode.
    Type: Grant
    Filed: July 23, 2013
    Date of Patent: September 30, 2014
    Assignee: LG Display Co., Ltd.
    Inventor: Min-Jic Lee
  • Patent number: 8846460
    Abstract: An object is to provide a high reliable semiconductor device including a thin film transistor having stable electric characteristics. In a method for manufacturing a semiconductor device including a thin film transistor in which an oxide semiconductor film is used for a semiconductor layer including a channel formation region, heat treatment (which is for dehydration or dehydrogenation) is performed so as to improve the purity of the oxide semiconductor film and reduce impurities such as moisture. Besides impurities such as moisture existing in the oxide semiconductor film, heat treatment causes reduction of impurities such as moisture existing in the gate insulating layer and those in interfaces between the oxide semiconductor film and films which are provided over and below the oxide semiconductor film and are in contact with the oxide semiconductor film.
    Type: Grant
    Filed: September 10, 2013
    Date of Patent: September 30, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Toshinari Sasaki, Junichiro Sakata, Hiroki Ohara, Shunpei Yamazaki
  • Patent number: 8847226
    Abstract: A transistor includes a substrate. A first electrically conductive material layer is positioned on the substrate. A second electrically conductive material layer is in contact with and positioned on the first electrically conductive material layer. The second electrically conductive material layer includes a reentrant profile. The second electrically conductive material layer also overhangs the first electrically conductive material layer.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: September 30, 2014
    Assignee: Eastman Kodak Company
    Inventors: Lee W. Tutt, Shelby F. Nelson
  • Patent number: 8846545
    Abstract: A method of producing an inorganic multi-layered thin film structure includes providing a substrate. A patterned deposition inhibiting material layer is provided on the substrate. A first inorganic thin film material layer is selectively deposited on a region of the substrate where the deposition inhibiting material layer is not present using an atomic layer deposition process. A second inorganic thin film material layer is selectively deposited on the region of the substrate where the thin film deposition inhibiting material layer is not present using an atomic layer deposition process.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: September 30, 2014
    Assignee: Eastman Kodak Company
    Inventors: Carolyn R. Ellinger, David H. Levy, Shelby F. Nelson
  • Patent number: 8835926
    Abstract: An organic light emitting display device includes a substrate having transmitting and pixel regions, the pixel regions being separated by the transmitting regions, at least one thin film transistor in each of the pixel regions, a plurality of transparent first conductive lines electrically connected to the thin film transistors and extending across the transmitting regions, a plurality of second conductive lines electrically connected to the thin film transistors and extending across the transmitting regions, a passivation layer, a plurality of pixel electrodes on the passivation layer, the pixel electrodes being separated and positioned to correspond to respective pixel regions, each of the pixel electrodes being electrically connected to and overlapping a corresponding thin film transistor, an opposite electrode overlapping the pixel electrodes in the transmitting and pixel regions, and an organic emission layer between the pixel electrodes and the opposite electrode.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: September 16, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Seok-Gyu Yoon, Jae-Heung Ha, Jong-Hyuk Lee, Young-Woo Song, Kyu-Hwan Hwang
  • Patent number: 8835919
    Abstract: A thin film transistor substrate and a method for manufacturing the same are disclosed. The thin film transistor substrate includes a gate electrode disposed on a substrate, a gate insulating film disposed on the gate electrode, an active layer disposed on the gate insulating film and including metal oxide, a source electrode contacted with one side of the active layer and a pixel electrode contacted with the other side of the active layer; and an etch stopper interposed between the source electrode and the pixel electrode.
    Type: Grant
    Filed: December 26, 2012
    Date of Patent: September 16, 2014
    Assignee: LG Display Co., Ltd.
    Inventor: Sanghee Yu