Including Bipolar Transistor (i.e., Bicmos) Patents (Class 438/202)
  • Publication number: 20080203490
    Abstract: High performance bipolar transistors with raised extrinsic self-aligned base are integrated into a BiCMOS structure containing CMOS devices. By forming pad layers and raising the height of an intrinsic base layer relative to the source and drain of preexisting CMOS devices and by forming an extrinsic base through selective epitaxy, the effect of topographical variations is minimized during a lithographic patterning of the extrinsic base. Also, by not employing any chemical mechanical planarization process during the fabrication of the bipolar structures, complexity of process integration is reduced. Internal spacers or external spacers may be formed to isolate the base from the emitter. The pad layers, the intrinsic base layer, and the extrinsic base layer form a mesa structure with coincident outer sidewall surfaces.
    Type: Application
    Filed: February 28, 2007
    Publication date: August 28, 2008
    Inventors: Natalie B. Feilchenfeld, Bradley A. Orner, Benjamin T. Voegeli
  • Patent number: 7415318
    Abstract: Concerning a plurality of wafers which compose one lot, amounts of misalignment between alignment marks of these wafers and alignment patterns transferred on photoresists are measured in advance, and then, a mutual relation between a thickness of an interlayer dielectric film and a value of Wafer Scaling is calculated. When exposure is actually executed, first, an interlayer dielectric film is formed on the alignment marks in a lot and planarized. After that, the thickness of the interlayer dielectric film after planarization is measured. The value of the Wafer Scaling is estimated from an average value of the thicknesses of the interlayer dielectric films in the lot and the above-mentioned mutual relation. Then, photoresists are coated on the interlayer dielectric films in the lot, and the photoresists are exposed while the correction is executed so as to compensate the value of the Wafer Scaling.
    Type: Grant
    Filed: October 6, 2005
    Date of Patent: August 19, 2008
    Assignee: Spansion LLC
    Inventor: Tohru Higashi
  • Patent number: 7393739
    Abstract: A demultiplexer using transistors for accessing memory cell arrays. The demultiplexer includes (a) a substrate; (b) 2N semiconductor regions which are parallel to one another and run in a first direction; (c) first N gate electrode lines, which (i) run in a second direction which is perpendicular to the first direction, (ii) are electrically insulated from the 2N semiconductor regions, and (iii) are disposed between the first plurality of memory cells and the contact region; (d) a contact region; (e) a first plurality of memory cells. An intersection transistor exists at each of intersections between the first N gate electrode lines and the 2N semiconductor regions. In response to pre-specified voltage potentials being applied to the contact region and the first N gate electrode lines, memory cells of the first plurality of memory cells disposed on only one of the 2N semiconductor regions are selected.
    Type: Grant
    Filed: August 30, 2006
    Date of Patent: July 1, 2008
    Assignee: International Business Machines Corporation
    Inventors: Kailash Gopalakrishnan, Rohit Sudhir Shenoy
  • Patent number: 7384836
    Abstract: A transistor of an integrated circuit is provided. A first doped well region is formed in a well layer at a first active region. At least part of the first doped well region is adjacent to a gate electrode of the transistor. A recess is formed in the first doped well region, and the recess preferably has a depth of at least about 500 angstroms. A first isolation portion is formed on an upper surface of the well layer at least partially over an isolation region. A second isolation portion is formed at least partially in the recess of the first doped well region. At least part of the second isolation portion is lower than the first isolation portion. A drain doped region is formed in the recess of the first doped well region. The second isolation portion is located between the gate electrode and the drain doped region.
    Type: Grant
    Filed: August 17, 2006
    Date of Patent: June 10, 2008
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: You-Kuo Wu, Edward Chiang, Shun-Liang Hsu
  • Patent number: 7371650
    Abstract: A method for fabricating a transistor structure with a first and a second bipolar transistor having different collector widths is presented. The method includes providing a semiconductor substrate, introducing a first buried layer of the first bipolar transistor and a second buried layer of the second bipolar transistor into the semiconductor substrate, and producing at least a first collector region having a first collector width on the first buried layer and a second collector region having a second collector width on the second buried layer. A first collector zone having a first thickness is produced on the second buried layer for production of the second collector width. A second collector zone having a second thickness is produced on the first collector zone. At least one insulation region is produced that isolates at least the collector regions from one another.
    Type: Grant
    Filed: October 24, 2003
    Date of Patent: May 13, 2008
    Assignee: Infineon Technologies AG
    Inventors: Josef Böck, Rudolf Lachner, Thomas Meister, Reinhard Stengl, Herbert Schäfer, Martin Seck
  • Patent number: 7358573
    Abstract: A triple-well CMOS structure having reduced latch-up susceptibility and a method of fabricating the structure. The method includes forming a buried P-type doped layer having low resistance under the P-wells and N-wells in which CMOS transistors are formed and forming a gap in a buried N-type doped layer formed in the P-wells, the is gap aligned under a contact to the P-well. The buried P-type doped layer and gap in the buried N-type doped layer allow a low resistance hole current path around parasitic bipolar transistors of the CMOS transistors.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: April 15, 2008
    Assignee: International Business Machines Corporation
    Inventors: Delbert R. Cecchi, Toshiharu Furukawa, Jack Allan Mandelman
  • Patent number: 7344989
    Abstract: Reducing CMP wafer contamination by in-situ clean is disclosed herein. The invention can be employed in a method in which a conductive layer is formed on a surface of a semiconductor wafer. After a portion of the conductive layer is removed, an acidic solution is directly or indirectly applied to the semiconductor wafer. Then the semiconductor wafer is engaged with a polishing pad as the acidic solution is applied directly or indirectly to the semiconductor wafer. In one embodiment, the portion of the conductive layer is removed by a CMP tool, and the semiconductor wafer is engaged with the polishing pad before the semiconductor is removed from the CMP tool.
    Type: Grant
    Filed: August 19, 2005
    Date of Patent: March 18, 2008
    Assignee: NEC Electronics America, Inc.
    Inventors: Bradley S. Withers, Elvis M. Chan
  • Patent number: 7341905
    Abstract: A process for making an integrated circuit is described wherein sequence of mask steps is applied to a substrate or epitaxial layer of p-type material. The sequence consists of sixteen specific mask steps that permit a variety of bipolar/CMOS/DMOS devices to be fabricated. The mask steps include (1) forming at least one N-well in the p-type material, (2) forming an active region, forming a p-type field region, (4) forming a gate oxide, (5) carrying out a p-type implantation, (6) forming polysilicon gate regions, (7) forming a p-base region, (8) forming a N-extended region, (9) forming a p-top region, 10) carrying out an N+ implant, (11) carrying out a P+ implant, (12) forming contacts, (13) depositing a metal layer, (14) forming vias, (15) depositing a metal layer therethrough, and (16) forming a passivation layer. Up to any three of mask steps (4), (7), (8), and (9) may be omitted depending on the type of integrated circuit.
    Type: Grant
    Filed: December 27, 2004
    Date of Patent: March 11, 2008
    Assignee: DALSA Semiconductor Inc.
    Inventors: Stephane Martel, Yan Riopel, Sebastien Michel, Luc Ouellet
  • Patent number: 7339236
    Abstract: The present invention provides a semiconductor technology capable of suppressing an increase in threshold voltage of a transistor and, also, improving a withstand voltage between a source region and a drain region. Source and drain regions of a p channel type MOS transistor are formed in an n? type semiconductor layer in an SOI substrate. In addition, an n type impurity region is formed in the semiconductor layer. The impurity region is formed over the entire bottom of the source region at a portion directly below this source region, and is also formed directly below the semiconductor layer between the source region and the drain region. A peak position of an impurity concentration in the impurity region is set below a lowest end of the source region at a portion directly below an upper surface of the semiconductor layer between the source region and the drain region.
    Type: Grant
    Filed: February 13, 2006
    Date of Patent: March 4, 2008
    Assignee: Renesas Technology Corp.
    Inventors: Tetsuya Nitta, Yasunori Yamashita, Shinichiro Yanagi, Fumitoshi Yamamoto
  • Patent number: 7338848
    Abstract: According to an exemplary embodiment, a method includes providing a silicon-on-insulator substrate including a buried oxide layer situated over a bulk silicon substrate and a silicon layer situated over the buried oxide layer. A trench is formed in the silicon layer and the buried oxide layer, where the trench exposes a portion of the bulk silicon substrate, and where the trench is situated adjacent to an optical region of said silicon-on-insulator substrate. According to this exemplary embodiment, an epitaxial layer is formed on the exposed portion of the bulk silicon substrate in the trench. The epitaxial layer and the bulk silicon substrate form a bulk silicon electronic region of the silicon-on-insulator substrate.
    Type: Grant
    Filed: October 20, 2004
    Date of Patent: March 4, 2008
    Assignee: Newport Fab, LLC
    Inventor: Paul H Kempf
  • Patent number: 7338847
    Abstract: An intentional recess or indentation is created in a region of semiconductor material that will become part of a channel of a metal oxide semiconductor (MOS) transistor structure. A layer is created on a surface of the recess to induce an appropriate type of stress in the channel.
    Type: Grant
    Filed: December 27, 2004
    Date of Patent: March 4, 2008
    Assignee: Intel Corporation
    Inventors: M. Reaz Shaheed, Thomas Hoffmann, Mark Armstrong, Christopher P. Auth
  • Patent number: 7335547
    Abstract: According to an exemplary embodiment, a method for integrating bipolar and CMOS devices on a substrate, where the substrate includes bipolar and CMOS regions and has a sacrificial oxide layer situated thereon, includes removing a portion of the sacrificial oxide layer in the bipolar region of the substrate to expose a top surface of the substrate. The method includes forming a base layer on the top surface of the substrate in the bipolar region. The base layer forms a bipolar transistor base. The method further includes forming a sacrificial post on the base layer in the bipolar region and at least one gate electrode in the CMOS region of the substrate. A common mask is used to form the sacrificial post and the at least one gate electrode. The method further includes forming LDD regions adjacent to the at least one gate electrode in the CMOS region.
    Type: Grant
    Filed: March 21, 2005
    Date of Patent: February 26, 2008
    Assignee: Newport Fab, LLC
    Inventor: Greg D. U'Ren
  • Patent number: 7329570
    Abstract: An exemplary method of manufacturing a semiconductor device according to an embodiment of the present invention includes forming a P-well and an N-well for high voltage (HV) devices and a first well in a low voltage/medium voltage (LV/MV) region for a logic device, in a semiconductor substrate; simultaneously forming a second well in the LV/MV region for a logic device and a drift region for one of the HV devices using the same mask; and respectively forming gate oxide layers on the semiconductor substrate in the HV/MV/LV regions. According to the present invention, the number of photolithography processes can be reduced by replacing or combining an additional mask for forming an extended drain region of a high voltage depletion-enhancement CMOS (DECMOS) with a mask for forming a typical well of a logic device, so productivity of the total process of the device can be enhanced.
    Type: Grant
    Filed: December 27, 2005
    Date of Patent: February 12, 2008
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: Kyung-Ho Lee
  • Publication number: 20080003737
    Abstract: Methods and apparatus are provided for controlling a depth of a cavity between two layers of a light modulating device. A method of making a light modulating device includes providing a substrate, forming a sacrificial layer over at least a portion of the substrate, forming a reflective layer over at least a portion of the sacrificial layer, and forming one or more flexure controllers over the substrate, the flexure controllers configured so as to operably support the reflective layer and to form cavities, upon removal of the sacrificial layer, of a depth measurably different than the thickness of the sacrificial layer, wherein the depth is measured perpendicular to the substrate.
    Type: Application
    Filed: June 30, 2006
    Publication date: January 3, 2008
    Inventors: Ming-Hau Tung, Lior Kogut
  • Publication number: 20070284672
    Abstract: A current-limiting circuit for limiting rising of a current above a predetermined level. The circuit including forward- and reverse-conducting devices, each device including a MOS and a bipolar transistor, wherein ON-resistance of one of the devices is used instead of a current-sensing resistance for another of the devices; and a gate driver connected to the gates of the forward- and reverse-conducting devices for controlling the devices such that a channel of each of the devices simultaneously conducts a current.
    Type: Application
    Filed: June 7, 2007
    Publication date: December 13, 2007
    Applicant: INTERNATIONAL RECTIFIER CORPORATION
    Inventor: Maxime Zafrani
  • Patent number: 7297584
    Abstract: In a semiconductor device having a dual stress liner for improving electron mobility, the dual stress liner includes a first liner portion formed on a PMOSFET and a second liner portion formed on an NMOSFET. The first liner portion has a first compressive stress, and the second liner portion has a second compressive stress smaller than the first compressive stress. The dual stress liner may be formed by forming a stress liner on a semiconductor substrate on which the PMOSFET and the NMOSFET are formed and selectively exposing a portion of the stress liner on the NMOSFET.
    Type: Grant
    Filed: October 7, 2005
    Date of Patent: November 20, 2007
    Assignees: Samsung Electronics Co., Ltd., Chartered Semiconductor Manufacturing, Ltd.
    Inventors: Jae-Eon Park, Ja-Hum Ku, Jun-Jung Kim, Dae-Kwon Kang, Young Way Teh
  • Publication number: 20070254398
    Abstract: A method of manufacturing a high-speed operable and broadband operable semiconductor device where a light-receiving element section, a CMOS element and a bipolar transistor element having a double polysilicon structure are formed on one chip. By performing the same conductivity type ion implantation, the same conductivity type diffusion layers (examples thereof include N-type diffusion layers, an anode diffusion layer, P-type well diffusion layer and collector diffusion layer as P-type diffusion layers, a cathode diffusion layer and collector contact diffusion layer as N-type diffusion layers, a source/drain diffusion layer and base Poly-Si diffusion layer as N-type diffusion layers, and a source/drain diffusion layer and base Poly-Si diffusion layer as P-type diffusion layers) are simultaneously formed in two or more regions among a light-receiving element region, CMOS element region and bipolar transistor element region of a semiconductor substrate or of an epitaxial layer over the semiconductor substrate.
    Type: Application
    Filed: September 28, 2006
    Publication date: November 1, 2007
    Applicant: FUJITSU LIMITED
    Inventors: Toshihiro Wakabayashi, Takao Setoyama, Yuji Asano, Akio Igarashi
  • Patent number: 7288450
    Abstract: In an integrated circuit, a diode is interposed between the semiconductor substrate and the contact pad to an external bias voltage, and the substrate is biased at an internal voltage reference. Between each contact pad of the integrated circuit and semiconductor substrate, there is positioned a protection device against permanent overloads and a protection device against electrostatic discharges. By isolating the semiconductor substrate from the external voltages source and by placing a protection device between each contact pad and the substrate, a broad, general protection of the integrated circuit is obtained against all the destructive phenomena such as overloads, positive and negative overvoltages, polarity reversal and electrostatic discharges.
    Type: Grant
    Filed: November 30, 1999
    Date of Patent: October 30, 2007
    Assignee: STMicroelectronics S.A.
    Inventor: Francois Tailliet
  • Patent number: 7285455
    Abstract: A method of producing a semiconductor device includes the steps of: preparing a double SOI substrate, forming a deep trench, filling the deep trench, forming an opening, forming a cavity, depositing a polycrystalline silicon layer, and forming a bipolar transistor.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: October 23, 2007
    Assignee: Oki Electric Industry Co., Ltd.
    Inventor: Hirokazu Fujimaki
  • Patent number: 7285454
    Abstract: Complementary metal-oxide-semiconductor (CMOS) integrated circuits with bipolar transistors and methods for fabrication are provided. A bipolar transistor may have a lightly-doped base region. To reduce the resistance associated with making electrical contact to the lightly-doped base region, a low-resistance current path into the base region may be provided. The low-resistance current path may be provided by a base conductor formed from heavily-doped epitaxial crystalline semiconductor. Metal-oxide-semiconductor (MOS) transistors with narrow gates may be formed on the same substrate as bipolar transistors. The MOS gates may be formed using a self-aligned process in which a patterned gate conductor layer serves as both an implantation mask and as a gate conductor. A base masking layer that is separate from the patterned gate conductor layer may be used as an implantation mask for defining the lightly-doped base region.
    Type: Grant
    Filed: August 19, 2005
    Date of Patent: October 23, 2007
    Assignee: Altera Corporation
    Inventors: Minchang Liang, Yow-Juang Liu, Fangyun Richter
  • Patent number: 7282402
    Abstract: According to the embodiments to the present disclosure, the process of making a dual strained channel semiconductor device includes integrating strained Si and compressed SiGe with trench isolation for achieving a simultaneous NMOS and PMOS performance enhancement. As described herein, the integration of NMOS and PMOS can be implemented in several ways to achieve NMOS and PMOS channels compatible with shallow trench isolation.
    Type: Grant
    Filed: March 30, 2005
    Date of Patent: October 16, 2007
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Mariam G. Sadaka, Alexander L. Barr, Dejan Jovanovic, Bich-Yen Nguyen, Voon-Yew Thean, Shawn G. Thomas, Ted R. White
  • Patent number: 7271045
    Abstract: A method including forming a hard mask and an etch stop layer over a sacrificial material patterned as a gate electrode, wherein a material for the hard mask and a material for the etch stop layer are selected to have a similar stress property; removing the material for the hard mask and the material for the etch stop layer sufficient to expose the sacrificial material; replacing the sacrificial material with another material. A system including a computing device including a microprocessor, the microprocessor including a plurality of transistor devices, at least one of the plurality of transistor devices including a gate electrode formed on a substrate surface; a discontinuous etch stop layer conformally formed on the substrate surface and adjacent side wall surfaces of the gate electrode; and a dielectric material conformally formed over the etch stop layer.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: September 18, 2007
    Assignee: Intel Corporation
    Inventors: Matthew J. Prince, Chris E. Barns, Justin K. Brask
  • Patent number: 7268398
    Abstract: In an NMOS device, the turn-on voltage or the triggering voltage is reduced by adding an NBL connected to an n-sinker and contacted through an n+ region, which is connected to a bias voltage. The bias voltage may be provided by the drain contact or by a separate bias voltage.
    Type: Grant
    Filed: August 14, 2006
    Date of Patent: September 11, 2007
    Assignee: National Semiconductor Corporation
    Inventors: Vladislav Vashchenko, Ann Concannon, Peter J. Hopper
  • Patent number: 7265010
    Abstract: The invention includes a method and resulting structure for fabricating high performance vertical NPN and PNP transistors for use in BiCMOS devices. The resulting high performance vertical PNP transistor includes an emitter region including silicon and germanium, and has its PNP emitter sharing a single layer of silicon with the NPN transistor's base. The method adds two additional masking steps to conventional fabrication processes for CMOS and bipolar devices, thus representing minor additions to the entire process flow. The resulting structure significantly enhances PNP device performance.
    Type: Grant
    Filed: June 8, 2004
    Date of Patent: September 4, 2007
    Assignee: International Business Machines Corporation
    Inventors: Peter B. Gray, Jeffrey B. Johnson
  • Patent number: 7262107
    Abstract: A manufacturing process modification is disclosed for producing a metal-insulator-metal (MIM) capacitor. The MIM capacitor may be used in memory cells, such as DRAMs, and may also be integrated into logic processing, such as for microprocessors. The processing used to generate the MIM capacitor is adaptable to current logic processing techniques. Other embodiments are described and claimed.
    Type: Grant
    Filed: June 29, 2005
    Date of Patent: August 28, 2007
    Assignee: Intel Corporation
    Inventors: Stephen H. Tang, Ali Keshavarzi, Dinesh Somasekhar, Fabrice Paillet, Muhammad M. Khellah, Yibin Ye, Shih-Lien L. Lu, Vivek K. De
  • Patent number: 7247532
    Abstract: A high voltage transistor operating through a high voltage and a method for fabricating the same are provided. The high voltage transistor includes: an insulation layer on a substrate; an N+-type drain junction region on the insulation layer; an N?-type drain junction region on the N+-type drain junction region; a P?-type body region provided in a trench region of the N?-type drain junction region; a plurality of gate patterns including a gate insulation layer and a gate conductive layer in other trench regions bordered by the P?-type body region and the N?-type drain junction region; a plurality of source regions contacted to a source electrode on the P?-type body region; and a plurality of N+-type drain regions contacted to the N?-type drain junction region and individual drain electrodes.
    Type: Grant
    Filed: September 8, 2005
    Date of Patent: July 24, 2007
    Assignee: Magnachip Semiconductor, Ltd.
    Inventor: Jae-Il Ju
  • Patent number: 7244635
    Abstract: There are included a semiconductor substrate provided with a desirable element region, an electrode pad formed to come in contact with a surface of the semiconductor substrate or a wiring layer provided on the surface of the semiconductor substrate, a bonding pad formed on a surface of the electrode pad through an intermediate layer, and a resin insulating film for covering a peripheral edge of the bonding pad such that an interface of the bonding pad and the intermediate layer is not exposed to a side wall.
    Type: Grant
    Filed: January 20, 2004
    Date of Patent: July 17, 2007
    Assignee: Rohm Co., Ltd.
    Inventor: Goro Nakatani
  • Patent number: 7238562
    Abstract: A method for fabricating a CMOS image sensor is disclosed, to decrease a dark current, which includes the steps of forming a photodiode area in a semiconductor substrate; forming a plurality of gates including a first gate on the semiconductor substrate, wherein the first gate has one side aligned to the edge of the photodiode area; sequentially forming a first insulating layer and a second insulating layer on an entire surface of the semiconductor substrate; forming a first photoresist, wherein the firs photoresist is patterned so as to expose the upper side of the first gate and the other side of the gate being opposite to one side of the gate; forming a spacer at the other side of the first gate by dry-etching the second insulating layer in state of using the first photoresist as a mask, and forming a silicide blocking layer above the photodiode area; and removing the first photoresist.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: July 3, 2007
    Assignee: Dongbu Electronics Co., Ltd.
    Inventor: James Jang
  • Patent number: 7226844
    Abstract: A method forms a bipolar transistor in a semiconductor substrate of a first conductivity type. The method includes: forming on the substrate a single-crystal silicon-germanium layer; forming a heavily-doped single-crystal silicon layer of a second conductivity type; forming a silicon oxide layer; opening a window in the silicon oxide and silicon layers; forming on the walls of the window a silicon nitride spacer; removing the silicon-germanium layer from the bottom of the window; forming in the cavity resulting from the previous removal a heavily-doped single-crystal semiconductor layer of the second conductivity type; and forming in said window the emitter of the transistor.
    Type: Grant
    Filed: March 28, 2005
    Date of Patent: June 5, 2007
    Assignee: STMicroelectronics SA
    Inventors: Alain Chantre, Pascal Chevalier
  • Patent number: 7220633
    Abstract: A method of monolithically fabricating an LDMOS transistor with a fabrication process that is compatible with a sub-micron CMOS fabrication process. The specification further describes an LDMOS transistor. The LDMOS transistor is implemented in a first impurity region on a substrate. The LDMOS transistor has a source that includes a second impurity region. The second impurity region is implanted into the surface of the substrate within the first impurity region. Additionally, the LDMOS transistor has a drain that includes a third impurity region. The third impurity region is implanted into the surface of the substrate within the first impurity region. The third impurity region is spaced a predetermined distance away from a gate of the LDMOS transistor. The drain of the LDMOS transistor further includes a fourth impurity region within the third impurity region. The fourth impurity region provides an ohmic contact for the drain.
    Type: Grant
    Filed: November 13, 2003
    Date of Patent: May 22, 2007
    Assignee: Volterra Semiconductor Corporation
    Inventors: Budong You, Marco A. Zuniga
  • Patent number: 7205188
    Abstract: The invention relates to a method for producing high-speed vertical npn bipolar transistors and complementary MOS transistors on a chip. In order to produce these high-speed vertical npn bipolar transistors and complementary MOS transistors on a chip, all technological method steps for producing the vertical structure of the collector, base and emitter in the active region of the npn bipolar transistors as well as for laterally structuring the collector regions, base regions and emitter regions are performed before the troughs and the gate insulating layer for the MOS transistors are produced.
    Type: Grant
    Filed: December 6, 2001
    Date of Patent: April 17, 2007
    Assignee: IHP GmbH-Innovations for High Performance Microelectronics/Institute for Innovative Mikroele
    Inventors: Dieter Knoll, Bernd Heinemann
  • Patent number: 7198998
    Abstract: A method of manufacturing a bipolar-complementary metal oxide semiconductor (BiCMOS) is provided. A gate in a CMOS area and a conductive layer pattern defining an opening, which opens an active region in a bipolar transistor area, are simultaneously formed by patterning a gate conductive layer. Thereafter, bipolar transistor manufacturing processes are performed while CMOS manufacturing processes are performed. Accordingly, the number of masks is decreased, and degradation of device characteristics is prevented.
    Type: Grant
    Filed: September 17, 2004
    Date of Patent: April 3, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Sang-don Yi
  • Patent number: 7195965
    Abstract: The concept of the present invention describes a semiconductor device with a junction 504 between a lightly doped region 501 and a heavily doped region 502, wherein the junction has an elongated portion 504a and curved portions 504b. The doping concentration of the lightly doped region is configured so that it exhibits higher resistivity in the proximity 510 of the curved portion by an amount suitable to lower the electric field strength during device operation and thus to offset the increased field strength caused by the curved portion. As a consequence, the device breakdown voltage in the curved junction portion becomes equal to or greater than the breakdown voltage in the linear portion.
    Type: Grant
    Filed: November 22, 2002
    Date of Patent: March 27, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: John Lin, Philip L. Hower, Taylor R. Efland, Sameer Pendharkar, Vladimir Bolkhovsky
  • Patent number: 7189606
    Abstract: A fully-depleted (FD) Silicon-on-Insulator (SOI) MOSFET access transistor comprising a gate electrode of a conductivity type which is opposite the conductivity type of the source/drain regions and a method of fabrication are disclosed.
    Type: Grant
    Filed: June 5, 2002
    Date of Patent: March 13, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Hongmei Wang, John K. Zahurak
  • Patent number: 7189603
    Abstract: A semiconductor layer with a threshold voltage for n-channel is formed and patterned to TFT island areas. A gate insulating film is deposited. The first gate electrode layer is fomed and pattered to form an opening. Phosphorous ions are implanted into a p-channel TFT in the opening to set threshold voltage for p-channel TFT. A second gate electrode layer is formed and patterned to form second gate electrodes. By using the first gate electrode layer as a mask, boron ions are implanted at a high concentration to form source/drain regions of the p-channel TFT. By using the second gate electrodes as a mask, the first gate electrode layer is etched to form gate electrodes. Phosphorous ions are implanted at a low concentration to form LDD regions. By using a fourth mask, P ions are implanted at a high concentration to form source/drain regions of n-channel TFTs.
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: March 13, 2007
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Kazushige Hotta
  • Patent number: 7186610
    Abstract: The present invention includes a circuit structure for ESD protection and methods of making the circuit structure. The circuit structure can be used in an ESD protection circuitry to protect certain devices in an integrated circuit, and can be fabricated without extra processing steps in addition to the processing steps for fabricating the ESD protected devices in the integrated circuit.
    Type: Grant
    Filed: August 13, 2004
    Date of Patent: March 6, 2007
    Assignee: Altera Corporation
    Inventors: Yowjuang (Bill) Liu, Cheng Huang
  • Patent number: 7164174
    Abstract: A method of forming a bipolar transistor device, and more particularly a vertical poly-emitter PNP transistor, as part of a BiCMOS type manufacturing process is disclosed. The formation of the PNP transistor during a CMOS/DMOS fabrication process requires merely one additional mask to facilitate formation of a very small emitter in a portion of an N-type surface layer of a double diffused well (DWELL). Unlike conventional PNP transistors, a separate mask is not required to establish the base of the transistor as the transistor base is formed from a portion of the double diffused well and the DWELL includes a P-type body layer formed via implantation through the same opening in the same mask utilized to establish the N-type surface layer of the double diffused well. The base is also thin thus improving the transistor's frequency and gain.
    Type: Grant
    Filed: July 28, 2005
    Date of Patent: January 16, 2007
    Assignee: Texas Instruments Incorporated
    Inventor: Lily Springer
  • Patent number: 7157320
    Abstract: A semiconductor device comprising: a first insulating film formed on a semiconductor substrate; a semiconductor layer at least a part of which is formed on the first insulating film; a second insulating film comprising a non-doped silicon oxide film and formed on the semiconductor layer; a third insulating film comprising a silicon oxide film containing at least phosphorus formed on the second insulating film; and a fourth insulating film comprising a non-doped silicon oxide film formed on the third insulating film.
    Type: Grant
    Filed: April 1, 2004
    Date of Patent: January 2, 2007
    Assignee: Sony Corporation
    Inventor: Yuji Sasaki
  • Patent number: 7135364
    Abstract: The lateral pnp transistor encompasses a p-type semiconductor substrate, an n-type first buried region disposed on the semiconductor substrate, an n-type uniform base region disposed on the first buried region, an n-type first plug region disposed in the uniform base region, a p-type first emitter region and a first collector region disposed in and at the top surface of the uniform base region, a graded base region disposed in the uniform base region and a first base contact region disposed in the first plug region. The graded base region encloses the bottom and the side of the first main electrode region. The doping profile in the graded base region intervening between the first emitter region and the first collector region is such that the impurity concentration is gradually decreases towards the second main electrode region from the first main electrode region.
    Type: Grant
    Filed: March 22, 2004
    Date of Patent: November 14, 2006
    Assignee: Sanken Electric Co., Ltd.
    Inventors: Makoto Yamamoto, Akio Iwabuchi
  • Patent number: 7132323
    Abstract: A method for forming a CMOS well structure including forming a plurality of first conductivity type wells over a substrate, each of the plurality of first conductivity type wells formed in a respective opening in a first mask. A cap is formed over each of the first conductivity type wells, and the first mask is removed. Sidewall spacers are formed on sidewalls of each of the first conductivity type wells. A plurality of second conductivity type wells are formed, each of the plurality of second conductivity type wells are formed between respective first conductivity type wells. A plurality of shallow trench isolations are formed between the first conductivity type wells and second conductive type wells. The plurality of first conductivity type wells are formed by a first selective epitaxial growth process, and the plurality of second conductivity type wells are formed by a second selective epitaxial growth process.
    Type: Grant
    Filed: November 14, 2003
    Date of Patent: November 7, 2006
    Assignee: International Business Machines Corporation
    Inventors: Wilfried Haensch, Terence B. Hook, Louis C. Hsu, Rajiv V. Joshi, Werner Rausch
  • Patent number: 7115459
    Abstract: Provided is a method of fabricating a silicon germanium (SiGe) Bi-CMOS device. In the fabrication method, the source and drain of the CMOS device is formed using a silicon germanium (SiGe) heterojunction, instead of silicon, thereby preventing a leakage current resulting from a parasitic bipolar operation. Further, since the source and drain is connected with an external interconnection through the nickel (Ni) silicide layer, the contact resistance is reduced, thereby preventing loss of a necessary voltage for a device operation and accordingly, making it possible to enable a low voltage and low power operation and securing a broad operation region even in a low voltage operation of an analogue circuit.
    Type: Grant
    Filed: November 18, 2005
    Date of Patent: October 3, 2006
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Hyun Cheol Bae, Seung Yun Lee, Sang Hun Kim, Jin Yeong Kang
  • Patent number: 7101750
    Abstract: A semiconductor device for an integrated injection logic cell having a pnp bipolar transistor structure formed on a semiconductor substrate, wherein at least one layer of insulating films formed on a base region of the pnp bipolar transistor structure is comprised of a silicon nitride film. The semiconductor device of the present invention is advantageous in that the silicon nitride film constituting at least one layer of the insulating films formed on the base region of the pnp bipolar transistor prevents an occurrence of contamination on the surface of the base region, so that both the properties of the pnp bipolar transistor and the operation of the IIL cell can be stabilized. Further, by the process of the present invention, the above-mentioned excellent semiconductor device can be produced.
    Type: Grant
    Filed: September 27, 2004
    Date of Patent: September 5, 2006
    Assignee: Sony Corporation
    Inventor: Hirokazu Ejiri
  • Patent number: 7091075
    Abstract: An EEPROM memory cell uses silicon-germanium/silicon and emitter polysilicon film for fabricating shallow source/drain regions to increase a breakdown voltage with respect to a well. The source/drain regions are fabricated to be approximately 100 nm (0.1 micrometers (?m)) in depth with a breakdown voltage of approximately 14 volts or more. A typical breakdown voltage of a well in a bipolar process is approximately 10 volts. Due to the increased breakdown voltage achieved, EEPROM memory cells can be produced along with bipolar devices on a single integrated circuit chip and fabricated on a common semiconductor fabrication line.
    Type: Grant
    Filed: July 9, 2004
    Date of Patent: August 15, 2006
    Assignee: Atmel Corporation
    Inventor: Muhammad I. Chaudhry
  • Patent number: 7060550
    Abstract: A method for fabricating a bipolar junction transistor on a wafer is disclosed. The wafer has a N-type doped area and a plurality of isolated structures. A protection layer is formed on the wafer and portions of the protection layer are then removed to expose portions of the doped area. A P-type epitaxy layer is formed on the protection layer and the first doped area and then portions of the epitaxy layer and the protection layer are removed. An insulation layer is formed and at least a collector opening and emitter opening are formed within the insulation layer. Following that, a polysilicon layer is formed to fill the collector opening and the emitter opening. A spacer is formed beside the polysilicon layer and the epitaxy layer followed by performing a self-aligned silicidation process to form a salicide layer on the polysilicon layer and portions of the epitaxy layer.
    Type: Grant
    Filed: October 26, 2004
    Date of Patent: June 13, 2006
    Assignee: United Microelectronics Corp.
    Inventor: Ching-Hung Kao
  • Patent number: 7052946
    Abstract: A strained channel MOSFET device with improved charge mobility and method for forming the same, the method including providing a first gate with a first semiconductor conductive type and second gate with a semiconductor conductive type on a substrate; forming a first strained layer with a first type of stress on said first gate; and, forming a second strained layer with a second type of stress on said second gate.
    Type: Grant
    Filed: March 10, 2004
    Date of Patent: May 30, 2006
    Assignee: Taiwan Semiconductor Manufacturing Co. Ltd.
    Inventors: Chien-Hao Chen, Chia-Lin Chen, Ju-Wang Hsu, Tze-Liang Lee, Shih-Chang Chen
  • Patent number: 7049186
    Abstract: A surface region of a first base layer is formed with a second base layer. Trenches are formed over a range from the surface of the second base layer to the first base layer. The second base layer is divided into base layers. Each of first trenches is formed with a trench gate electrode. An emitter layer is formed in a surface region of the base layer intermittently selected from base layers positioned between first trenches, and contacts with the trench. Dummy trenches are formed over a range from the surface of the base region where the emitter layer is not formed to the first base layer at a position near to each of trenches. A diffusion region is formed in the first base layer to contact with the side portion of dummy trenches formed at the bottom of each trench and a position near thereto.
    Type: Grant
    Filed: September 9, 2004
    Date of Patent: May 23, 2006
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Satoshi Yanagisawa
  • Patent number: 7045463
    Abstract: A method of etching cavities having different aspect ratios. An etching stop layer is formed on the bottom surface of a substrate, and a mask pattern is formed on the top surface of the substrate. The mask pattern includes a plurality of sacrificial patterns positioned on both a first cavity predetermined region and a second cavity predetermined region. Then, an etching process is performed to remove the substrate not covered by the mask layer. Then, the etching stop layer is removed, as well as the sacrificial patterns and the substrate covered by the sacrificial patterns.
    Type: Grant
    Filed: October 28, 2004
    Date of Patent: May 16, 2006
    Assignee: Touch Micro-System Technology Inc.
    Inventor: Chen-Hsiung Yang
  • Patent number: 7018889
    Abstract: An SRAM memory cell is provided having a pair of cross-coupled CMOS inverters. The sources of the pull-up transistors forming each of the CMOS inverters are coupled to VCC through parasitic resistance of the substrate in which each is formed. The source of the p-type pull-up transistor is therefore always at a potential less than or equal to the potential of the N-well such that the emitter-base junction of the parasitic PNP transistor cannot become forward biased and latch-up cannot occur.
    Type: Grant
    Filed: June 16, 2004
    Date of Patent: March 28, 2006
    Assignee: Micron Technology, Inc.
    Inventors: John D. Porter, William N. Thompson
  • Patent number: 7018884
    Abstract: The present invention provides a method for parallel production of an MOS transistor in an MOS area of a substrate and a bipolar transistor in a bipolar area of the substrate. The method comprises generating an MOS preparation structure in the MOS area, wherein the MOS preparation structure comprises an area provided for a channel, a gate dielectric, a gate electrode layer and a mask layer on the gate electrode layer. Further, a bipolar preparation structure is generated in the bipolar area, which comprises a conductive layer and a mask layer on the conductive layer. The mask layer is thinned in the area of the gate electrode. For determining a gate electrode and a base terminal area, common structuring of the gate electrode layer and the conductive layer is performed.
    Type: Grant
    Filed: February 6, 2004
    Date of Patent: March 28, 2006
    Assignee: Infineon Technologies AG
    Inventors: Adrian Berthold, Josef Böck, Jürgen Holz, Wolfgang Klein
  • Patent number: 7015551
    Abstract: A semiconductor device (100) according to the present invention comprises a vertical PNP bipolar transistor (20), an NMOS transistor (50) and a PMOS transistor (60) that are of high dielectric strength, and a P-type semiconductor substrate 1, as shown in FIG. 2. A substrate isolation layer (21) of the PNP bipolar transistor (20), a drain buried layer (51) of the NMOS transistor (50), and a back gate buried layer (61) of the PMOS transistor (60) are formed simultaneously by selectively implanting N-type impurities, such as phosphorous, in the semiconductor substrate (1). This invention greatly contributes to curtailing the processes of fabricating BiCMOS ICs and the like including vertical bipolar transistors with easily controllable performance characteristics, such as a current amplification factor, and MOS transistors with high dielectric strength and makes even more miniaturization of such ICs achievable.
    Type: Grant
    Filed: April 7, 2005
    Date of Patent: March 21, 2006
    Assignee: Sony Corporation
    Inventors: Kenichi Ookubo, Hideki Mori, Shigeru Kanematsu