For Electronic Or Optoelectronic Application Patents (Class 977/932)
  • Publication number: 20130114183
    Abstract: Disclosed herein are an electrode active material composition, a method for preparing the same, and an electrochemical capacitor using the same, the electrode active material composition including: an electrode active material; and a conductive material agglomerate having a size of 1/7 to 1/10 times the average particle size of the electrode active material, the conductive material agglomerate containing two or more kinds of conductive materials agglomerated therein, thereby providing electron moving paths through which electrons can move well and increasing packing density of an electrode active material layer, resulting in increasing capacity.
    Type: Application
    Filed: November 1, 2012
    Publication date: May 9, 2013
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventor: Samsung Electro-Mechanics Co., Ltd.
  • Publication number: 20130116114
    Abstract: Certain exemplary embodiments can provide a system comprising a hybrid composite. The hybrid composite can comprise tubular carbon and graphene produced via pyrolysis of a milled solid carbon source under an unoxidizing environment. When analyzed via X-ray diffraction, the hybrid composite can generate peaks at two theta values of approximately 26.5 degrees, approximately 42.5 degrees, and/or approximately 54.5 degrees.
    Type: Application
    Filed: November 7, 2011
    Publication date: May 9, 2013
    Applicant: K Tube Technology LLC
    Inventor: Khe C. Nguyen
  • Patent number: 8436420
    Abstract: Disclosed are a semiconductor device and a manufacturing method thereof. The semiconductor device can include a recess formed in an active area of a semiconductor substrate, an insulating layer formed in the recess, a source electrode and a drain electrode spaced apart from the source electrode on the insulating layer, a carbon nanotube layer formed between the source and drain electrodes, an oxide layer pattern covering at least the carbon nanotube layer, and a gate electrode formed on the oxide layer pattern.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: May 7, 2013
    Assignee: Dongbu Hitek Co., Ltd.
    Inventor: Kyu Hyun Mo
  • Patent number: 8432604
    Abstract: Transparent structures, electrochromic devices, and methods for making such structures/devices are provided. A transparent structure may include a transparent substrate having a plurality of micro- or nano-scale structures, at least one substance configured to block near-infrared or infrared radiation and partially cover at least substantial portions of the substrate and the plurality of micro- or nano-scale structures, and at least one photocatalyst configured to at least partially cover an outermost surface of the transparent structure.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: April 30, 2013
    Assignee: Korea University Research and Business Foundation
    Inventor: Kwangyeol Lee
  • Patent number: 8431817
    Abstract: Nanostructure array optoelectronic devices are disclosed. The optoelectronic device may be a multi junction solar cell. The optoelectronic device may have a bi-layer electrical interconnect that is physically and electrically connected to sidewalls of the array of nanostructures. The optoelectronic device may be operated as a multi junction solar cell, wherein each junction is associated with one portion of the device. The bi-layer electrical interconnect allows current to pass from one portion to the next. Thus, the bi-layer electrical interconnect may serve as a replacement for a tunnel junction, which is used in some conventional multi junction solar cells.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: April 30, 2013
    Assignee: Sundiode Inc.
    Inventors: James C. Kim, Sungsoo Yi, Danny E. Mars
  • Publication number: 20130098668
    Abstract: Disclosed herein is a method of manufacturing a conductive substrate, the method including: a first electrode applying operation of applying first electrodes on a substrate; a first electrode forming operation of forming the first electrodes of fine lines by partly removing the first electrodes; and a second electrode forming operation of forming second electrodes on the substrate from which the first electrodes are removed, thereby enhancing reliability in a whole product including the conductive substrate.
    Type: Application
    Filed: October 22, 2012
    Publication date: April 25, 2013
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventor: SAMSUNG ELECTRO-MECHANICS CO., LTD.
  • Patent number: 8425873
    Abstract: Provided are a transparent electroconductive thin film of single-walled carbon nanotubes and its production method capable of further enhancing the electroconductivity and the light transmittance of the film and capable of simplifying the thin film formation process. The method comprises: dispersing single-walled carbon nanotubes of mixed metallic single-walled carbon nanotubes (m-SWNTs) and semiconductor single-walled carbon nanotubes (s-SWNTs) in an amine solution containing an amine having a boiling point of from 20 to 400° C. as a dispersant; centrifuging or filtering the resulting dispersion to concentrate m-SWNTs, thereby giving a dispersion rich in m-SWNTs; and applying the resulting dispersion rich in m-SWNTs onto a substrate to form a thin film thereon.
    Type: Grant
    Filed: July 10, 2008
    Date of Patent: April 23, 2013
    Assignee: Japan Science and Technology Agency
    Inventors: Yutaka Maeda, Takeshi Akasaka
  • Publication number: 20130093287
    Abstract: A polymeric actuator includes a first and a second electrode layer (2, 3), both containing electrically conductive material and able to change size in at least one direction of deformation under the action of charge injection or ion intercalation. A solid polymer electrolyte layer (4) is interposed between the first and the second electrode layer, in which the solid polymer electrolyte layer is electrically insulating and ionically conductive. The actuator is able to deform by the action of the dimensional changes of the first and second electrode layer. The actuator further includes a passive electrode (5) immersed in the solid electrolyte layer to be electrically insulated relative to the first and second electrode layer, in which the passive electrode is electrically conductive and elastically deformable material, so as to support mechanically the deformations of the actuator induced by the dimensional changes of the first and second electrode layer.
    Type: Application
    Filed: June 24, 2011
    Publication date: April 18, 2013
    Applicant: FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA
    Inventors: Maurizio Biso, Alberto Ansaldo, Davide Ricci, Giulio Sandini
  • Publication number: 20130087363
    Abstract: Metal nanowires with high linearity can be produced using metal salts at a relatively low temperature. A transparent conductive film can be formed using the metal nanowires. Particularly, the transparent conductive film has high transmittance, low sheet resistance, and good thermal, chemical and mechanical stability. The transparent conductive film has a high electrical conductivity due to the high linearity of the metal nanowires. The metal nanowires take up 5% or less of the volume of the transparent conductive film, ensuring high transmittance of the transparent conductive film. Furthermore, the metal nanowires are useful as replacements for existing conductive materials, such as ITO, conductive polymers, carbon nanotubes and graphene. The metal nanowires can be applied to flexible substrates and other various substrates due to their good adhesion and high applicability to the substrates. Moreover, the metal nanowires can find application in various fields, such as displays and solar cell devices.
    Type: Application
    Filed: February 23, 2012
    Publication date: April 11, 2013
    Inventors: Young-Jei OH, Byung-yong WANG
  • Patent number: 8415192
    Abstract: A composite material is described. The composite material comprises semiconductor nanocrystals, and organic molecules that passivate the surfaces of the semiconductor nanocrystals. One or more properties of the organic molecules facilitate the transfer of charge between the semiconductor nanocrystals. A semiconductor material is described that comprises p-type semiconductor material including semiconductor nanocrystals. At least one property of the semiconductor material results in a mobility of electrons in the semiconductor material being greater than or equal to a mobility of holes. A semiconductor material is described that comprises n-type semiconductor material including semiconductor nanocrystals. At least one property of the semiconductor material results in a mobility of holes in the semiconductor material being greater than or equal to a mobility of electrons.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: April 9, 2013
    Assignee: InVisage Technologies, Inc.
    Inventors: Edward Hartley Sargent, Jiang Tang
  • Publication number: 20130084037
    Abstract: A fiber gas sensor including a core fiber comprising at least one Bragg grating region, a fiber cladding in contact with the core fiber along an entire length of the core fiber, and a sensing matrix structure disposed upon the outer surface of the fiber cladding along a portion of the length of the fiber cladding and surrounding the fiber Bragg grating region. The sensing matrix structure comprising a bonding layer disposed on the outer surface of the fiber cladding layer, a nano-structured trampoline matrix layer disposed on the outer surface of the bonding layer and a capping layer disposed on the outer surface of the matrix layer. The thermally modulated response amplitude of the fiber gas sensor is found to linearly depend upon the gas molecular weight, and can be directly used to determine heat specific capacity ratio of Cp/Cv.
    Type: Application
    Filed: November 30, 2011
    Publication date: April 4, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventor: Hua Xia
  • Publication number: 20130081931
    Abstract: A nanoelectromechanical tunneling current switch includes a cantilevered nanofilament including a secured end and an unsecured end and a conductor with a surface substantially perpendicular to a longitudinal axis of the nanofilament when the nanofilament is undeflected. The nanofilament is positioned with respect to the conductor to define a gap between the unsecured end of the nanofilament and the surface of the conductor substantially perpendicular to the longitudinal axis of the nanofilament. The nanofilament and the conductor are electrically connected by a circuit, and a tunneling current is configured to flow from the nanofilament to the surface of the conductor substantially perpendicular to the longitudinal axis of the nanofilament. In other embodiments of the nanoelectromechanical tunneling current switch, an electrically conductive membrane can be utilized in place of, or in addition to, the cantilevered nanofilament.
    Type: Application
    Filed: November 27, 2012
    Publication date: April 4, 2013
    Applicant: CLEAN ENERGY LABS, LLC
    Inventor: CLEAN ENERGY LABS, LLC
  • Patent number: 8405189
    Abstract: An example of a carbon nanotube capacitor may include (i) a carbon nanotube film having carbon nanotubes and voids with dielectric material, (ii) conductive contacts and (iii) a dielectric layer. The carbon nanotube film may switch from a conductive state to a non-conductive state when a voltage is applied by creating an electrical break within the carbon nanotube film and providing a first conductive region and a second conductive region within the carbon nanotube film. The electrical break may separate the first conductive region from the second conductive region. The first and second conductive regions may store charge. An integrated device may include one or more transistors and one or more carbon nanotube capacitors. A method of making a carbon nanotube capacitor is also disclosed.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: March 26, 2013
    Assignee: Lockheed Martin Corporation
    Inventors: Jonathan W. Ward, Quoc X. Ngo
  • Publication number: 20130070443
    Abstract: The present invention relates inter alia to an array comprising i times j array elements, wherein the array elements may comprise at least one quantum dot and/or at least one photoluminescent compound. Further the present invention relates to devices comprising these arrays. The arrays and devices can be used to generate white light with high color purity.
    Type: Application
    Filed: April 28, 2011
    Publication date: March 21, 2013
    Inventors: Junyou Pan, Niels Schulte, Thomas Eberle
  • Publication number: 20130071837
    Abstract: A system and method for identifying a material passing through a nanopore filter wherein an electrical signal is detected as a result of the passage and that signal is processed in real-time using mathematical and statistical tools to identify the molecule. A carrier molecule is preferably attached to one or more molecule(s) under consideration using a non-covalent bond and the pore in the nanopore filter is sized so that the molecule rattles around in the pore before being discharged without passing through the filter pore. The present invention includes not only a method and system for identifying the molecule(s) under consideration but also a kit for setting up the filter as well as mathematical tools for analyzing the signals from the sensing circuitry for the molecule(s) under consideration.
    Type: Application
    Filed: August 12, 2010
    Publication date: March 21, 2013
    Inventors: Stephen N. Winters-Hilt, Robert L. Adelman
  • Publication number: 20130069011
    Abstract: In an exemplary method, a nano-architectured carbon structure is fabricated by forming a unit (e.g., a film) of a liquid carbon-containing starting material and at least one dopant. A surface of the unit is nano-molded using a durable mold that is pre-formed with a pattern of nano-concavities corresponding to a desired pattern of nano-features to be formed by the mold on the surface of the unit. After nano-molding the surface of the unit, the first unit is stabilized to render the unit and its formed nano-structures capable of surviving downstream steps. The mold is removed from the first surface to form a nano-molded surface of a carbonization precursor. The precursor is carbonized in an inert-gas atmosphere at a suitable high temperature to form a corresponding nano-architectured carbon structure. A principal use of the nano-architectured carbon structure is a carbon electrode used in, e.g., Li-ion batteries, supercapacitors, and battery-supercapacitor hybrid devices.
    Type: Application
    Filed: December 27, 2010
    Publication date: March 21, 2013
    Applicant: The Arizona Board of Regents on Behalf of the University of Arizona
    Inventors: Jayan Thomas, Palash Gangopadhyay, Binh Au Thanh Duong
  • Patent number: 8399751
    Abstract: The invention relates to imparting photoreactivity to target cells, e.g., retinal cells, by introducing photoresponsive functional abiotic nanosystems (FANs), nanometer-scale semiconductor/metal or semiconductor/semiconductor hetero-junctions that in this case include a photovoltaic effect. The invention further provides methods of making and using FANs, where the hetero-junctions bear surface functionalization that localizes them in cell membranes. Illumination of these hetero-junctions incorporated in cell membranes generates photovoltages that depolarize the membranes, such as those of nerve cells, in which FANs photogenerate action potentials. Incorporating FANs into the cells of a retina with damaged photoreceptor cells reintroduces photoresponsiveness to the retina, so that light creates action potentials that the brain interprets as sight.
    Type: Grant
    Filed: June 12, 2008
    Date of Patent: March 19, 2013
    Assignee: University of Southern California
    Inventors: Siyuan Lu, Anupam Madhukar, Mark S. Humayun
  • Publication number: 20130062578
    Abstract: There are provided a dielectric composition, a method of fabricating the same, and a multilayer ceramic electronic component using the same. The dielectric composition includes a perovskite powder particle having a surface on which a doping layer is formed, the doping layer being doped with at least one material selected from a group consisting of alkaline earth elements and boron group elements, and rare earth elements. When a perovskite powder particle is synthesized by using a hydrothermal synthesis method, a doping layer doped with at least one material selected from the group consisting of alkaline earth elements and boron group elements and rare earth elements is formed on a surface of the perovskite powder particle, such that a dielectric composition having excellent reliability, dielectric properties, and electric properties can be fabricated.
    Type: Application
    Filed: December 22, 2011
    Publication date: March 14, 2013
    Inventors: Kum Jin PARK, Chang Hak CHOI, Jong Hoon YOO, Chang Hoon KIM, Hyung Joon JEON, Hye Young BAEG
  • Publication number: 20130062574
    Abstract: Disclosed is a carbon nanotube powder, including a carbon nanotube averagely mixed with a dispersant, wherein the carbon nanotube and the dispersant have a weight ratio of 30:70 to 90:10. The carbon nanotube has a diameter of 10 nm to 100 nm, and a length/diameter ratio of 100:1 to 5000:1. The dispersant is an alternative copolymer, a block copolymer, or a random copolymer polymerized of a solvation segment (A) and a carbon affinity group (B). The carbon nanotube powder can be blended with a thermoplastic material to form a composite, wherein the carbon nanotube and the composite have a weight ratio of 0.5:100 to 50:100.
    Type: Application
    Filed: January 12, 2012
    Publication date: March 14, 2013
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: An-En HSIAO, Shinn-Jen CHANG, Shu-Ya TSAI, Mei-Wen HSU
  • Publication number: 20130062108
    Abstract: A wiring board includes: a first wiring layer; a first insulating layer formed on the first wiring layer and including a reinforcing material therein, the first insulating layer having a first opening; a contact layer formed on the first insulating layer and having a second opening communicated with the first opening; and a second wiring layer comprising a second via and a second wiring pattern connected to the second via. The second wiring pattern is formed on the contact layer, and the second via is filled in the first and second openings. An adhesion property between the contact layer and the second wiring pattern is higher than that between the first insulating layer and the second wiring pattern, and a thickness of the contact layer is smaller than that of the first insulating layer.
    Type: Application
    Filed: September 6, 2012
    Publication date: March 14, 2013
    Applicant: Shinko Electric Industries Co., Ltd.
    Inventor: Hitoshi KONDO
  • Publication number: 20130056687
    Abstract: Provided is a conductive paste for screen printing, capable of being baked at a low temperature of 150° C. or lower and being printed on a plastic substrate that cannot be subjected to printing at high temperatures. The conductive paste for screen printing contains metal nanoparticles (Y) protected by an organic compound (X) containing a basic nitrogen atom; a deprotecting agent (A) for the metal nanoparticles; and an organic solvent (B), wherein an aliphatic monocarboxylic acid having 6 to 10 carbon atoms and/or an unsubstituted aliphatic dicarboxylic anhydride is used as the deprotecting agent (A) for the metal nanoparticles, and a polyalkylene glycol is used as the organic solvent (B).
    Type: Application
    Filed: December 21, 2010
    Publication date: March 7, 2013
    Applicant: DIC CORPORATION
    Inventors: Shou Inagaki, Hideki Etori, Hiroshi Isozumi, Masanori Kasai
  • Publication number: 20130048941
    Abstract: A solid state light emitting semiconductor structure and an epitaxy growth method thereof are provided. The method includes the following steps: A substrate is provided. A plurality of protrusions separated from each other are formed on the substrate. A buffer layer is formed on the protrusions, and fills or partially fills the gaps between the protrusions. A semiconductor epitaxy stacking layer is formed on the buffer layer, wherein the semiconductor epitaxy stacking layer is constituted by a first type semiconductor layer, an active layer and a second type semiconductor layer in sequence.
    Type: Application
    Filed: April 10, 2012
    Publication date: February 28, 2013
    Applicant: LEXTAR ELECTRONICS CORPORATION
    Inventors: Chang-Chin Yu, Mong-Ea Lin
  • Publication number: 20130048337
    Abstract: A cable includes a jacket surrounding a core and a carbon-based substrate (CBS) conductor in the core. The CBS conductor includes a CBS network and an organometallic filler, wherein the organometallic filler combines with the CBS network to form a composite conductor having a higher conductivity than the CBS network. Optionally, the CBS network may include carbon nanotube (CNT) fibers with the organometallic fillers being disposed within the CNT fibers. The organometallic fillers may include at least one of palladium glycolate, glycolic acid, glyoxyllic acid or methanol. A method for manufacturing a carbon-based substrate (CBS) conductor, such as for a cable, includes providing a CBS network of CBS fibers forming a framework, introducing an organometallic compound, and reacting the CBS network with the organometallic compound to form a composite conductor. The method may include immersing the CBS network in an organometallic bath having organometallic particles in a solvent.
    Type: Application
    Filed: August 24, 2011
    Publication date: February 28, 2013
    Applicant: TYCO ELECTRONICS CORPORATION
    Inventors: JESSICA HENDERSON BROWN HEMOND, ROBERT DANIEL HILTY
  • Publication number: 20130050809
    Abstract: A method of preparing high refractive index nanoparticles includes adding a polymer stabilizer to a solvent, and forming high refractive index nanoparticles by adding high refractive index nanoparticle materials to the solvent and stirring the same. The high refractive index nanoparticle materials may have a refractive index equal to or greater than 1.8, and sizes of the high refractive index nanoparticles may be determined by adjusting a content of the polymer stabilizer to control an amount of the polymer stabilizer adsorbed to surfaces of the high refractive index nanoparticles.
    Type: Application
    Filed: May 22, 2012
    Publication date: February 28, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Moon Gyu Han, HongShik Shim, Chang Gyun Shin, Seog-jin Jeon
  • Publication number: 20130048339
    Abstract: In some embodiments, the present invention provides transparent electrodes that comprise: (1) a grid structure; and (2) a graphene film associated with the grid structure. In additional embodiments, the transparent electrodes of the present invention further comprise a substrate, such as glass. Additional embodiments of the present invention pertain to methods of making the above-described transparent electrodes. Such methods generally comprise: (1) providing a grid structure; (2) providing a graphene film; and (3) associating the graphene film with the grid structure. In further embodiments, the methods of the present invention also comprise associating the transparent electrode with a substrate.
    Type: Application
    Filed: March 8, 2011
    Publication date: February 28, 2013
    Applicant: William Marsh Rice University
    Inventors: James M. Tour, Yu Zhu
  • Publication number: 20130050113
    Abstract: The invention relates to a method for the production of an at least partially electrically conductive or semi-conductive element on a structure, wherein the element comprises one or more layers, the method comprising the steps of a) forming a formable element comprising one or more layers, wherein at least one layer comprises a network of high aspect ratio molecular structures (HARM-structures), wherein the HARM-structures are electrically conductive or semi-conductive, and b) arranging the formable element in a conformal manner onto a structure by pressing and/or vacuum sealing the formable element on a three-dimensional surface of the structure, for producing a conformal and at least partially electrically conductive or semi-conductive element comprising one or more layers, wherein at least one layer comprises a network of HARM-structures, on the three dimensional surface of the structure. Further, the invention relates to a conformal element and uses thereof.
    Type: Application
    Filed: March 7, 2011
    Publication date: February 28, 2013
    Applicant: CANATU OY
    Inventor: David P. Brown
  • Publication number: 20130048920
    Abstract: A conductive paste for screen printing that can be fired at a low temperature of 150° C. or less and enables printing on a plastic substrate, printing on which is impossible at high temperature, is provided. A conductive paste for screen printing includes metal nanoparticles (Y) having an average particle diameter of 1 to 50 nm and protected with an organic compound (X) containing a basic nitrogen atom, metal particles (Z) having an average particle diameter of more than 100 nm and 5 ?m, a deprotecting agent (A) for the metal nanoparticles, and an organic solvent (B). An aliphatic monocarboxylic acid having 6 to 10 carbon atoms is used as the deprotecting agent (A) for the metal nanoparticles and a polyalkylene glycol is used as the organic solvent (B).
    Type: Application
    Filed: December 21, 2010
    Publication date: February 28, 2013
    Applicant: DIC CORPORATION
    Inventors: Shou Inagaki, Hideki Etori, Hiroshi Isozumi, Masanori Kasai
  • Publication number: 20130049530
    Abstract: The present invention relates to an actuator which is one of the energy conversion devices, and is characterized by improving the ability to convert electrical energy into mechanical energy by way of using a dielectric elastomer composite comprising a filler with an efficient dispersibility. In case of using a conventional resilient dielectric layer, there was a problem in that the operating voltage is high, while advantageously exhibiting a fast response and a high strain.
    Type: Application
    Filed: August 24, 2010
    Publication date: February 28, 2013
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Chong Min Koo, Soon Man Hong, Seung Sang Hwang, Kyung Youl Baek, Soon Jong Kwak, Myung Hee Kim, Bo Ri Kim, Hee La Kwak, Kyung Ho Min, Youn Duk Park
  • Publication number: 20130048354
    Abstract: A transparent conductive film includes a number of first transparent conductive stripes extending along a first direction and a number of second transparent conductive stripes extending along a second direction and intersecting the number of first transparent conductive stripes. The first conductive stripes are spaced from each other and extend substantially along a first direction. The second transparent conductive stripes are spaced from each other and extend substantially along a second direction. The first transparent conductive stripes are electrically connected with the second transparent conductive stripes. The first transparent conductive stripes and the second conductive stripes are arranged in patterns such that the transparent conductive film has an anisotropic impedance. The first direction is a low impedance direction.
    Type: Application
    Filed: December 29, 2011
    Publication date: February 28, 2013
    Applicant: SHIH HUA TECHNOLOGY LTD.
    Inventors: MING-TIEN LIN, PO-SHENG SHIH
  • Publication number: 20130050409
    Abstract: Various embodiments of the present invention are directed to negative refractive index-based holograms that can be electronically controlled and dynamically reconfigured to generate one or more color three-dimensional holographic images. In one aspect, a hologram comprises a phase-control layer having a plurality of phase modulation elements. The phase-modulation elements are configured with a negative effective refractive index and selectively transmit wavelengths associated with one of three primary color wavelength. The hologram also includes an intensity-control layer including a plurality of intensity-control elements. One or more color three-dimensional images can be produced by electronically addressing the phase-modulation elements and intensity-control elements in order to phase shift and control the intensity of light transmitted through the hologram. A method for generating a color holographic image using the hologram is also provided, as is a system for generating a color holographic image.
    Type: Application
    Filed: April 13, 2009
    Publication date: February 28, 2013
    Inventors: Jingjing Li, Philip J. Kuekes
  • Patent number: 8384058
    Abstract: A battery can be fabricated from a substrate including silicon. This allows the battery to be produced as an integrated unit. The battery includes a anode formed from an array of spaced elongated structures, such as pillars, which include silicon and which can be fabricated on the substrate. The battery also includes a cathode which can include lithium.
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: February 26, 2013
    Assignee: Nexeon Ltd.
    Inventor: Mino Green
  • Publication number: 20130043067
    Abstract: [PROBLEM] To provide a circuit board improved in electrical reliability. [SOLUTION] A circuit board 3 comprises a plurality of first inorganic insulating particles 13a which are connected to each other via first neck structures 17a and have a particle size of 3 nm or more and 110 nm or less and a resin (third filling portions 19c) arranged in first gaps G1 among the plurality of first inorganic insulating particles 13a.
    Type: Application
    Filed: January 13, 2012
    Publication date: February 21, 2013
    Applicant: KYOCERA CORPORATION
    Inventor: Katsura HAYASHI
  • Publication number: 20130044457
    Abstract: The invention relates to a lighting apparatus comprising a conversion material (2) for converting primary light (4) into secondary light (5), wherein the conversion material (2) comprises converting photolummescent material (15), which degrades to non-converting photolummescent material over time when the conversion material (2) is illuminated by the primary light (4). The conversion material (2) is adapted such that, when the conversion material (2) is illuminated by the primary light (4), the relative decrease in concentration of the converting photolummescent material (15) within the conversion material (2) is larger than the relative decrease in intensity of the secondary light (5). This allows the lighting apparatus to provide an only slightly reduced absorbance of the primary light, even if a large part of the photolummescent material has been bleached, and thus a longer lifetime, with the same or a slightly reduced intensity of the secondary light.
    Type: Application
    Filed: March 3, 2011
    Publication date: February 21, 2013
    Applicant: KONNINKLIJKE PHILIPS ELECTRONICS, N.V.
    Inventors: Rifat Ata Mustafa Hikmet, Jan Cornelis Kriege, Johannes Franciscus Maria Cillessen, René Theodorus Wegh
  • Publication number: 20130038983
    Abstract: There is provided a conductive paste for an internal electrode of a multilayer ceramic electronic component and a multilayer ceramic electronic component using the same. One or more nitride powders containing a nitride selected from the group consisting of silicon nitride, boron nitride, aluminum nitride, a vanadium nitride are added to the conductive paste for an internal electrode to increase a shrinkage initiation temperature of the internal electrodes. Accordingly, the reliability of the multilayer ceramic electronic component can be improved by using the conductive paste for an internal electrode.
    Type: Application
    Filed: December 21, 2011
    Publication date: February 14, 2013
    Inventors: Hyo Sub KIM, Jeong Ryeol KIM, Sang Hoon KWON, Gun Woo KIM, Chang Hoon KIM
  • Publication number: 20130038818
    Abstract: A display device includes: a light source section that emits excitation light for each pixel; and a light emitting layer that includes a quantum dot and emits emission light for each of the pixels. The quantum dot generates, based on the excitation light, the emission light having a wavelength longer than a wavelength of the excitation light.
    Type: Application
    Filed: July 30, 2012
    Publication date: February 14, 2013
    Applicant: SONY CORPORATION
    Inventors: Atsushi Toda, Teruo Hirayama
  • Publication number: 20130032861
    Abstract: A touch panel includes a first substrate having a plurality of lower electrodes; a second substrate spaced a distance apart from the lower substrate and having a plurality of upper electrodes that correspond to the lower electrodes; a conductive rubber layer interposed between the lower electrodes and the upper electrodes; and a plurality of organic transistors interposed between the lower electrodes and the upper electrodes and to be connected to a top or bottom portion of the conductive rubber layer.
    Type: Application
    Filed: December 7, 2011
    Publication date: February 7, 2013
    Applicant: PANTECH CO., LTD.
    Inventors: Young-Hoon LEE, Myeong-Je KIM
  • Publication number: 20130033840
    Abstract: A method for equipping a film material with at least one electrically conductive conductor structure, wherein a dispersion containing metallic nanoparticles in the form of a conductor structure is applied to a thermostable transfer material and the metallic nanoparticles are sintered to form an electrically conductive conductor structure. The electrically conductive conductor structure of sintered metallic nanoparticles is then transferred from the thermostable transfer material to the non-thermostable film material. A method for producing a laminate material using the film material using at least one electrically conductive conductor structure, and to the corresponding film material and laminate material are described.
    Type: Application
    Filed: April 19, 2011
    Publication date: February 7, 2013
    Applicant: GIESECKE & DEVRIENT GmbH
    Inventor: Ando Welling
  • Publication number: 20130033343
    Abstract: A high power RF energy device component is disclosed that is exposed to high power RF energy in a vacuum environment, and includes a multipactor-inhibiting carbon nanofilm covering at least one surface of the component. A secondary electron efficiency (SEE) coefficient of the multipactor inhibiting carbon nanofilm is desirably less than a SEE coefficient of the underlying surface of the component.
    Type: Application
    Filed: December 28, 2011
    Publication date: February 7, 2013
    Applicant: NOKOMIS, INC.
    Inventors: Patrick J. Fisher, Walter J. Keller, III
  • Publication number: 20130032765
    Abstract: A composite for providing electromagnetic shielding including a plurality of elongate nanostructures; and a plurality of elongate conductive elements.
    Type: Application
    Filed: August 4, 2011
    Publication date: February 7, 2013
    Inventors: Vladimir Alexsandrovich Ermolov, Markku Anttoni Oksanen, Khattiya Chalapat, Gheorghe Sorin Paraoanu
  • Publication number: 20130033739
    Abstract: Systems and methods provide control of nanoparticle coverage of an interface between a first medium and a second medium through variation of an electric potential across such interface; the first medium and the second medium are immiscible media, and transparent or substantially transparent to visible light. The first medium can be a first electrolytic solution and the second medium can be a second electrolytic solution; thus, the interface can become an interface of two immiscible electrolytic solutions (ITIES). The nanoparticle coverage of the interface, e.g., the ITIES, can be regulated to vary between approximately zero and a full or nearly a full monolayer. The nanoparticle coverage of the interface can dictate at least one optical property of the interface, rendering the interface transparent or substantially transparent, or a mirror, or providing Faraday rotation of the optical polarization of light incident normal to the interface and propagating through the interface.
    Type: Application
    Filed: December 22, 2010
    Publication date: February 7, 2013
    Applicants: UNIVERSITY OF IOWA RESEARCH FOUNDATION, RAMOT AT TEL AVIV UNIVERSITY LTD., IMPERIAL INNOVATIONS
    Inventors: Michael E. Flatté, Alexei Kornyshev, Michael Urbakh
  • Patent number: 8368045
    Abstract: The infrared photodetector includes a contact layer formed over a semiconductor substrate 10, a quantum dot stack 24 formed on the contact layer 12 and including intermediate layers 22 and quantum dots 20 which are alternately stacked, and a contact layer 26 formed on the quantum dot stack 24. One of the plurality of intermediate layers, which is in contact with the contact layer, has an n-type impurity doped region 16 formed on a side nearer the interface with the contact layer 12.
    Type: Grant
    Filed: January 28, 2008
    Date of Patent: February 5, 2013
    Assignee: Fujitsu Limited
    Inventor: Yusuke Matsukura
  • Patent number: 8367035
    Abstract: The present invention provides arrays of longitudinally aligned carbon nanotubes having specified positions, nanotube densities and orientations, and corresponding methods of making nanotube arrays using guided growth and guided deposition methods. Also provided are electronic devices and device arrays comprising one or more arrays of longitudinally aligned carbon nanotubes including multilayer nanotube array structures and devices.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: February 5, 2013
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: John A. Rogers, Coskun Kocabas, Moonsub Shim, Seong Jun Kang, Jang-Ung Park
  • Publication number: 20130026029
    Abstract: CO2 conversation into organic molecules is based on the photo-oxidation of water into oxygen gas O2, protons H+, and electrons. The conversion of CO2 occurs at the photo-cathode and involves the generated protons, electrons and the “fuel” CO2.
    Type: Application
    Filed: April 8, 2011
    Publication date: January 31, 2013
    Inventors: Sam Kayaert, Johan Martens, Kasper Masschaele
  • Publication number: 20130027653
    Abstract: A liquid crystal display apparatus includes a liquid crystal display panel which displays an image, a light guide plate, a backlight unit including a light source part which generates and supplies light, and a panel temperature adjusting member on a surface of the liquid crystal display panel. The panel temperature adjusting member includes a transparent resistor, and a power supply which supplies power to the transparent resistor. The transparent resistor emits a larger amount of heat to a region of the liquid crystal display panel, which is distant from the light source part, than to a region close to the light source part, such that the liquid crystal display panel has uniform temperature distribution.
    Type: Application
    Filed: July 11, 2012
    Publication date: January 31, 2013
    Applicant: SAMSUNG DISPLAY CO., LTD.
    Inventors: Yong-Hoon KWON, Byoung Dae YE, JoongHyun KIM, Hyeeun PARK, SungKu BAEK, Young-Jun SEO
  • Publication number: 20130025918
    Abstract: A thermal and electrical conducting apparatus includes a few-layer graphene film having a thickness D where D?1.5 nm and a plurality of carbon nanotubes crystallographically aligned with the few-layer graphene film.
    Type: Application
    Filed: October 1, 2012
    Publication date: January 31, 2013
    Applicant: THE UNIVERSITY OF KENTUCKY RESEARCH FOUNDATION
    Inventors: Douglas Robert Strachan, David Patrick Hunley
  • Publication number: 20130026426
    Abstract: A carbazole derivative represented by the following General Formula (1) where at least one aromatic ring has one to three substituents each represented by the following General Formula (2): in General Formula (1), Ar1 and Ar2 each independently represent a substituted or unsubstituted aryl group which may form a ring with a benzene ring, a substituted or unsubstituted heterocyclic group, a substituted or unsubstituted arylsilyl group, or a hydrogen atom, and Ar3 represents a substituted or unsubstituted aryl group, —X—Y—Z??(2) in General Formula (2), X represents a methylene group, a carbonyloxy group, an oxycarbonyl group, a carbonyl group, an oxygen atom or a sulfur atom, Y represents a substituted or unsubstituted alkylene group, and Z represents a carboxyl group, a hydroxyl group or a thiol group.
    Type: Application
    Filed: March 29, 2012
    Publication date: January 31, 2013
    Inventors: Shigeyuki HARADA, Masaomi Sasaki
  • Publication number: 20130020877
    Abstract: At least one graphene layer is formed to laterally surround a tube so that the basal plane of each graphene layer is tangential to the local surface of the tube on which the graphene layer is formed. An electrically conductive path is provided around the tube for providing high conductivity electrical path provided by the basal plane of each graphene layer. The high conductivity path can be employed for high frequency applications such as coupling coils for wireless power transmission to overcome skin depth effects and proximity effects prevalent in high frequency alternating current paths.
    Type: Application
    Filed: June 19, 2012
    Publication date: January 24, 2013
    Applicant: UT-BATTELLE, LLC
    Inventor: John M. Miller
  • Publication number: 20130020113
    Abstract: The present invention provides an electrode which comprises (a) a supporting substrate, and (b) nanoparticle composition comprising optically transparent conductive nanoparticles. In one embodiment, the nanoparticles are selected from tin-doped indium oxide (ITO), fluorine doped tin oxide (FTO), antimony tin oxide (ATO), gallium zinc oxide (GZO), indium zinc oxide (IZO), copper aluminum oxide, fluorine-doped zinc oxide and aluminum zinc oxide (AZO) nanoparticles and combinations thereof. In one embodiment, the electrode further comprises a transition metal catalyst, and the catalyst is absorbed to the surface of the nanoparticles.
    Type: Application
    Filed: January 21, 2011
    Publication date: January 24, 2013
    Inventors: Javier Jesus Concepcion Corbea, Jonah Wesley Jurss, Paul Hoertz, Thomas J. Meyer
  • Publication number: 20130022755
    Abstract: A method is described for depositing nanostructures of conducting polymers, nanostructures, particularly carbon nanostructures and combinations thereof. The process comprises placing the nanostructures in a liquid composition comprising an immiscible combination of aqueous phase and an organic phase. The mixture is mixed for a period of time sufficient to form an emulsion and then allowed to stand undisturbed so that the phases are allowed to separate. As a result the nanostructure materials locate at the interface of the forming phases and are uniformly dispersed along that interface. A film of the nanostructure materials will then form on a substrate intersecting the interface, said substrate having been placed in the mixture before the phases are allowed to settle and separate.
    Type: Application
    Filed: January 13, 2011
    Publication date: January 24, 2013
    Inventor: Julio M. D'Arcy
  • Publication number: 20130016942
    Abstract: Waveguide designs and fabrication methods provide adiabatic waveguide eigen mode conversion and can be applied to monolithic vertical integration of active and passive elements in PICs. An advantage of the designs and methods is a simple fabrication procedure with only a single etching step in combination with subsequent well-controllable selective oxidation. As a result, improved manufacturability and reliability can be achieved.
    Type: Application
    Filed: July 13, 2012
    Publication date: January 17, 2013
    Applicant: INNOLUME GMBH
    Inventors: Alexey Gubenko, Igor Krestnikov, Sergey Mikhrin, Daniil Livshits, Greg Wojcik, Alexey Kovsh