Methods for self-aligned self-assembled patterning enhancement
Methods for producing self-aligned, self-assembled sub-ground-rule features without the need to use additional lithographic patterning. Specifically, the present disclosure allows for the creation of assist features that are localized and self-aligned to a given structure. These assist features can either have the same tone or different tone to the given feature.
Latest IBM Patents:
- INTERACTIVE DATASET EXPLORATION AND PREPROCESSING
- NETWORK SECURITY ASSESSMENT BASED UPON IDENTIFICATION OF AN ADVERSARY
- NON-LINEAR APPROXIMATION ROBUST TO INPUT RANGE OF HOMOMORPHIC ENCRYPTION ANALYTICS
- Back-side memory element with local memory select transistor
- Injection molded solder head with improved sealing performance
1. Technical Field
The invention relates generally to micro-scale or nano-scale device fabrication, and more particularly, to methods for forming a mask with self-aligned, self-assembled sub-lithographic features.
2. Background Art
A mask is a glass or quartz plate containing information about the features to be printed on a semiconductor wafer. This information is contained in variations in the plate that create differences in topography, transmittance or phase. The mask is used as a master template to transfer design images onto a wafer either through exposure to radiation (lithography) or through direct contact (nanoimprint). The mask is an intermediate step created to transfer the design to the wafer image, so the mask features are adjusted to create the desired wafer image.
A simple form of altering the mask data is to change the size or shape of the mask feature so that the printed wafer feature size matches the desired feature size and shape. A more complex change to the design is to add sub resolution features (SRAFs) that are too small to transfer to the wafer, but improve the printability of design features. The result is a large increase in very small features that are placed around design features. These small features challenge the resolution of the standard mask fabrication process. If small features are desired in a different material from the main feature, 1st-to-2nd pass pattern alignment is inadequate. These features also consume time in many ways. It takes time to generate sub resolution features and output mask data. The final mask data set is significantly larger than the input design data. The larger the data file size of the mask data, the slower the transfer of data, the slower the fracturing of the data into write-ready form, and the slower the mask fabrication process. If a problem is found with the sub resolution feature placement or size, the entire data processing sequence must be initiated again.
SUMMARY OF THE INVENTIONThis disclosure presents methods for producing self-aligned, self-assembled sub-ground-rule features without the need to use additional lithographic patterning. Specifically, the present disclosure allows for the creation of assist features that are localized and self-aligned to a given structure. These assist features can either have the same tone or different tone to the given feature.
Aspects of the invention provide a method comprising: forming a structure over a mask substrate, the structure including at least one mask material; applying a self-assembly material on the structure; baking the self-assembly material to form at least one pattern that is self-aligned to the structure, the at least one pattern having sub-lithographic dimension; and transferring the structure and the at least one pattern to the mask substrate.
The illustrative aspects of the present invention are designed to solve the problems herein described and/or other problems not discussed.
These and other features of this invention will be more readily understood from the following detailed description of the various aspects of the invention taken in conjunction with the accompanying drawings that depict various embodiments of the invention, in which:
It is noted that the drawings of the invention are not to scale. The drawings are intended to depict only typical aspects of the invention, and therefore should not be considered as limiting the scope of the invention. In the drawings, like numbering represents like elements between the drawings.
DETAILED DESCRIPTIONOne approach in creating assist features is to begin with at least one mask patterned structure or structure 30 on top of a mask substrate 10 as shown in
There are many different types of block copolymers that can be used for practicing the present invention. As long as a block copolymer contains two or more different polymeric block components that are not immiscible with one another, such two or more different polymeric block components are capable of separating into two or more different phases on a nanometer scale and thereby form patterns of isolated nano-sized structural units under suitable conditions.
In one embodiment of the present invention, the block copolymer consists essentially of first and second polymeric block components A and B that are immiscible with each other. The block copolymer may contain any numbers of the polymeric block components A and B arranged in any manner. The block copolymer can have either a linear or a branched structure. Preferably, such a block polymer is a linear diblock copolymer having the formula of A-B. Further, the block copolymer can have any one of the following formula:
Specific examples of suitable block copolymers that can be used for forming the structural units of the present invention may include, but are not limited to: polystyrene-block-polymethylmethacrylate (PS-b-PMMA), polystyrene-block-polyisoprene (PS-b-PI), polystyrene-block-polybutadiene (PS-b-PBD), polystyrene-block-polyvinylpyridine (PS-b-PVP), polystyrene-block-polyethyleneoxide (PS-b-PEO), polystyrene-block-polyethylene (PS-b-PE), polystyrene-b-polyorganosilicate (PS-b-POS), polystyrene-block-polyferrocenyldimethylsilane (PS-b-PFS), polyethyleneoxide-block-polyisoprene (PEO-b-PI), polyethyleneoxide-block-polybutadiene (PEO-b-PBD), polyethyleneoxide-block-polymethylmethacrylate (PEO-b-PMMA), polyethyleneoxide-block-polyethylethylene (PEO-b-PEE), polybutadiene-block-polyvinylpyridine (PBD-b-PVP), and polyisoprene-block-polymethylmethacrylate (PI-b-PMMA).
The specific structural units formed by the block copolymer are determined by the molecular weight ratio between the first and second polymeric block components A and B. For example, when the ratio of the molecular weight of the first polymeric block component A over the molecular weight of the second polymeric block component B is greater than about 80:20, the block copolymer will form an ordered array of spheres composed of the second polymeric block component B in a matrix composed of the first polymeric block component A. When the ratio of the molecular weight of the first polymeric block component A over the molecular weight of the second polymeric block component B is less than about 80:20 but greater than about 60:40, the block copolymer will form an ordered array of cylinders composed of the second polymeric block component B in a matrix composed of the first polymeric block component A. When the ratio of the molecular weight of the first polymeric block component A over the molecular weight of the second polymeric block component B is less than about 60:40 but is greater than about 40:60, the block copolymer will form alternating lamellae composed of the first and second polymeric block components A and B. Therefore, the molecular weight ratio between the first and second polymeric block components A and B can be readily adjusted in the block copolymer of the present invention, in order to form desired structural units.
In one embodiment of the present invention, the ratio of the molecular weight of the first polymeric block component A over the molecular weight of the second polymeric block component B ranges from about 80:20 to about 60:40, so that the block copolymer of the present invention will form an ordered array of lines composed of the second polymeric block component B in a matrix composed of the first polymeric block component A.
Preferably, one of the components A and B can be selectively removable relative to the other, thereby resulting in either isolated and orderly arranged structural units composed of the un-removed component, or a continuous structural layer containing isolated and orderly arranged cavities or trenches left by the removable component.
In one embodiment of the present invention, the block copolymer used for forming the self-assembled periodic patterns of the present invention is PS-b-PMMA with a PS:PMMA molecular weight ratio ranging from about 80:20 to about 60:40.
Typically, mutual repulsion between different polymeric block components in a block copolymer is characterized by the term χN, where χ is the Flory-Huggins interaction parameter and N is the degree of polymerization. The higher χN, the higher the repulsion between the different blocks in the block copolymer, and the more likely the phase separation therebetween. When χN>10 (which is hereinafter referred to as the strong segregation limit), there is a strong tendency for the phase separation to occur between different blocks in the block copolymer.
For a PS-b-PMMA diblock copolymer, χ can be calculated as approximately 0.028+3.9/T, where T is the absolute temperature. Therefore, χ is approximately 0.0362 at 473K (≈200° C.). When the molecular weight (Mn) of the PS-b-PMMA diblock copolymer is approximately 64 Kg/mol, with a molecular weight ratio (PS:PMMA) of approximately 66:34, the degree of polymerization N is about 622.9, so χN is approximately 22.5 at 200° C.
In this manner, by adjusting one or more parameters such as the composition, the total molecular weight, and the annealing temperature, the mutual compulsion between the different polymeric block components in the block copolymer of the present invention can be readily controlled to effectuate desired phase separation between the different block components. The phase separation in turn leads to formation of self-assembled periodic patterns containing ordered arrays of repeating structural units (i.e., spheres, lines, cylinders, or lamellae), as described hereinabove.
In order to form the self-assembled periodic patterns, the block copolymer is first dissolved in a suitable solvent system to form a block copolymer solution, which is then applied onto a surface to form a thin block copolymer layer, followed by annealing of the thin block copolymer layer, thereby effectuating phase separation between different polymeric block components contained in the block copolymer.
The solvent system used for dissolving the block copolymer and forming the block copolymer solution may comprise any suitable solvent, including, but not limited to toluene, propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monomethyl ether (PGME), and acetone. The block copolymer solution may contain the block copolymer at a concentration ranging from about 0.1% to about 2% by total weight of the solution. More specifically, the block copolymer solution may contain the block copolymer at a concentration ranging from about 0.5 wt % to about 1.5 wt %. In one embodiment of the present invention, the block copolymer solution comprises about 0.5 wt % to about 1.5 wt % PS-b-PMMA dissolved in toluene or PGMEA.
The block copolymer solution can be applied to the surface of a device structure by any suitable techniques, including, but not limited to spin casting, coating, spraying, ink coating, dip coating, etc. Preferably, the block copolymer solution is spin cast onto the surface of a device structure to form a thin block copolymer layer thereon.
After application of the thin block copolymer layer onto the device surface, the entire device structure is annealed to effectuate micro-phase segregation of the different block components contained by the block copolymer, thereby forming the periodic patterns with repeating structural units.
The annealing of the block copolymer can be achieved by various methods known in the art, including, but not limited to thermal annealing (either in a vacuum or in an inert atmosphere containing nitrogen or argon), ultra-violet annealing, laser annealing, solvent vapor-assisted annealing (either at or above room temperature), and supercritical fluid-assisted annealing, which are not described in detail here in order to avoid obscuring the invention.
In one embodiment of the present invention, a thermal annealing step is carried out to anneal the block copolymer layer at an elevated annealing temperature that is above the glass transition temperature (Tg) of the block copolymer, but below the decomposition or degradation temperature (Td) of the block copolymer. More preferably, the thermal annealing includes an annealing temperature of about 200° C.-300° C. The thermal annealing may last from less than about 1 hour to about 100 hours, and more typically from about 1 hour to about 15 hours.
In an alternative embodiment of the present invention, the block copolymer layer is annealed by ultra-violet (UV) treatment.
Following the anneal process, one of the components of the block copolymer can be removed utilizing a solvent that is selective to that component relative to the other component of the block copolymer. The type of solvent may vary and can be, for example, selected from the following list: polar and aprotic solvents.
After the self-assembly material 40 is spin-coated as discussed above, the self-assembly material 40 is then baked. As shown in
As shown in
Masking layer 85 then will protect the covered patterns during etching. As shown in
Turning to
The foregoing description of various aspects of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed, and obviously, many modifications and variations are possible. Such modifications and variations that may be apparent to a person skilled in the art are intended to be included within the scope of the invention as defined by the accompanying claims.
Claims
1. A method comprising:
- forming a structure over a temporary image transfer material which is provided over a mask substrate, the structure including at least one mask material;
- applying a self-assembly material on the structure;
- baking the self-assembly material to form at least one pattern that is self-aligned to the structure, the at least one pattern having sub-lithographic dimension; and
- transferring the structure and the at least one pattern to the mask substrate.
2. The method of claim 1, further comprising transferring the at least one pattern to the image transfer material layer.
3. The method of claim 2, further comprising patterning a masking layer to cover at least a portion of the at least one pattern.
4. The method of claim 3, further comprising etching to remove at least a portion of the at least one pattern not covered by the masking layer.
5. The method of claim 1, further comprising transferring the image of the at least one pattern and the mask feature to the mask substrate.
6. The method of claim 1, wherein the mask material is selected from the group consisting of: a quartz mask plate, a photo mask blank, a glass, a doped-glass, a sapphire, an e-beam mask and an x-ray mask.
7. The method of claim 1, wherein the self-assembly material is selected from the group consisting of: polystyrene-block-polymethylmethacrylate (PS-b-PMMA), polystyrene-block-polyisoprene (PS-b-PI), polystyrene-block-polybutadiene (PS-b-PBD), polystyrene-block-polyvinylpyridine (PS-b-PVP), polystyrene-block-polyethyleneoxide (PS-b-PEO), polystyrene-block-polyethylene (PS-b-PE), polystyrene-b-polyorganosilicate (PS-b-POS), polystyrene-block-polyferrocenyldimethylsilane (PS-b-PFS), polyethyleneoxide-block-polyisoprene (PEO-b-PI), polyethyleneoxide-block-polybutadiene (PEO-b-PBD), polyethyleneoxide-block-polymethylmethacrylate (PEO-b-PMMA), polyethyleneoxide-block-polyethylethylene (PEO-b-PEE), polybutadiene-block-polyvinylpyridine (PBD-b-PVP), and polyisoprene-block-polymethylmethacrylate (PI-b-PMMA).
8. The method of claim 1, wherein the self-assembly material includes a polystyrene-polymethylmethacrylate (PS-PMMA) having a molecular weight ratio ranging from about 80:20 to about 60:40.
9. The method of claim 1, wherein the self-assembly material applying includes spin coating such that a thickness of the self-assembly material is thickest next to the structure.
10. A method comprising:
- providing a mask substrate;
- forming a temporary image transfer material layer over the mask substrate;
- forming a structure over the image transfer material, the structure including at least one mask material;
- applying a self-assembly material on the structure;
- baking the self-assembly material to form at least one pattern that is self-aligned to the structure, the at least one pattern having sub-lithographic dimension; and
- transferring the structure and the at least one pattern to the mask substrate and the image transfer material layer.
11. The method of claim 10, further comprising patterning a masking layer to cover at least a portion of the at least one pattern.
12. The method of claim 11, further comprising etching to remove at least a portion of the at least one pattern not covered by the masking layer.
13. The method of claim 10, wherein the mask material is selected from the group consisting of: a quartz mask plate, a photo mask blank, a glass, a doped-glass, a sapphire, an e-beam mask and an x-ray mask.
14. The method of claim 10, wherein the self-assembly material is selected from the group consisting of: polystyrene-block-polymethylmethacrylate (PS-b-PMMA), polystyrene-block-polyisoprene (PS-b-PI), polystyrene-block-polybutadiene (PS-b-PBD), polystyrene-block-polyvinylpyridine (PS-b-PVP), polystyrene-block-polyethyleneoxide (PS-b-PEO), polystyrene-block-polyethylene (PS-b-PE), polystyrene-b-polyorganosilicate (PS-b-POS), polystyrene-block-polyferrocenyldimethylsilane (PS-b-PFS), polyethyleneoxide-block-polyisoprene (PEO-b-PI), polyethyleneoxide-block-polybutadiene (PEO-b-PBD), polyethyleneoxide-block-polymethylmethacrylate (PEO-b-PMMA), polyethyleneoxide-block-polyethylethylene (PEO-b-PEE), polybutadiene-block-polyvinylpyridine (PBD-b-PVP), and polyisoprene-block-polymethylmethacrylate (PI-b-PMMA).
15. The method of claim 10, wherein the self-assembly material includes a polystyrene-polymethylmethacrylate (PS-PMMA) having a molecular weight ratio ranging from about 80:20 to about 60:40.
16. The method of claim 10, wherein the self-assembly material applying includes spin coating such that a thickness of the self-assembly material is thickest next to the structure.
17. A method comprising:
- providing a mask substrate;
- forming an image transfer material layer over the mask substrate;
- forming a structure over the image transfer material, the structure including at least one mask material selected from the group consisting of: a quartz mask plate, a photo mask blank, a glass, a doped-glass, a sapphire, an e-beam mask and an x-ray mask;
- spin coating a self-assembly material on the structure, the self-assembly material including a polystyrene-polymethylmethacrylate (PS-PMMA) having a molecular weight ratio ranging from about 80:20 to about 60:40, wherein a thickness of the self-assembly material is thickest next to the structure;
- baking the self-assembly material to form at least one pattern that is self-aligned to the structure, the at least one pattern having sub-lithographic dimension;
- patterning a masking layer to cover at least a portion of the at least one pattern;
- etching to remove at least a portion of the at least one pattern not covered by the masking layer; and
- transferring the structure and the at least one pattern to the mask substrate and the image transfer material layer.
18. The method of claim 17, wherein the self-assembly material is selected from the group consisting of: polystyrene-block-polymethylmethacrylate (PS-b-PMMA), polystyrene-block-polyisoprene (PS-b-PI), polystyrene-block-polybutadiene (PS-b-PBD), polystyrene-block-polyvinylpyridine (PS-b-PVP), polystyrene-block-polyethyleneoxide (PS-b-PEO), polystyrene-block-polyethylene (PS-b-PE), polystyrene-b-polyorganosilicate (PS-b-POS), polystyrene-block-polyferrocenyldimethylsilane (PS-b-PFS), polyethyleneoxide-block-polyisoprene (PEO-b-PI), polyethyleneoxide-block-polybutadiene (PEO-b-PBD), polyethyleneoxide-block-polymethylmethacrylate (PEO-b-PMMA), polyethyleneoxide-block-polyethylethylene (PEO-b-PEE), polybutadiene-block-polyvinylpyridine (PBD-b-PVP), and polyisoprene-block-polymethylmethacrylate (PI-b-PMMA).
20090042146 | February 12, 2009 | Kim et al. |
20090200646 | August 13, 2009 | Millward et al. |
20090308837 | December 17, 2009 | Albrecht et al. |
Type: Grant
Filed: Jan 20, 2011
Date of Patent: Jul 31, 2012
Assignee: International Business Machines Corporation (Armonk, NY)
Inventors: Larry Clevenger (LaGrangeville, NY), Timothy J. Dalton (Ridgefield, CT), Carl J. Radens (LaGrangeville, NY)
Primary Examiner: Asok Sarkar
Attorney: Hoffman Warnick LLC
Application Number: 13/010,326
International Classification: H01L 21/311 (20060101);