Refining Patents (Class 208/177)
  • Publication number: 20130036671
    Abstract: A method of refining hydrocarbon material includes transporting a mobile refinery to a harvesting site, at least partially refining raw hydrocarbon material at the harvesting site, and transporting the at least partially refined hydrocarbon material to a remote location. A hydrocarbon material refining system includes a mobile refinery adapted to be transported to a harvesting site and to at least partially refine raw hydrocarbon material at the harvesting site, and a mobile storage module adapted to store the at least partially refined hydrocarbon material for transport to a remote location.
    Type: Application
    Filed: August 8, 2011
    Publication date: February 14, 2013
    Inventors: Vito R. Saccheri, Phil De Palm
  • Publication number: 20130008829
    Abstract: The invention relates to a catalyst usable in hydrotreatment processes, which comprises an alumina-based amorphous support, phosphorus, a C1-C4 dialkyl succinate, acetic acid and a hydro-dehydrogenizing function comprising at least one group VIII element and at least one group VIB element, preferably made up of cobalt and molybdenum, a catalyst whose Raman spectrum comprises the most intense bands characteristic of the Keggin heteropolyanions (974 and/or 990 cm?1), C1-C4 dialkyl succinate and acetic acid (896 cm?1). Preferably, the dialkyl succinate concerned is dimethyl succinate and its main band is at 853 cm?1. The invention also relates to the method of preparing said catalyst, wherein a catalytic precursor comprising the group VIB and group VIII elements, in particular the molybdenum-cobalt pair, and phosphorus, introduced by impregnation, then dried at a temperature below 180° C.
    Type: Application
    Filed: December 8, 2010
    Publication date: January 10, 2013
    Applicants: IFP Energies nouvelles, TOTAL RAFFINAGE MARKETING
    Inventors: Karin Marchand, Bertrand Guichard, Mathieu Digne, Michael Rebeilleau, Sylvie Lopez, Antoine Hugon
  • Publication number: 20120322119
    Abstract: The present invention discloses a new type of polyimide membrane with high permeances and high selectivities for gas separations and particularly for CO2/CH4 and H2/CH4 separations. The polyimide membranes have CO2 permeability of 50 Barrers or higher and single-gas selectivity for CO2/CH4 of 15 or higher at 50° C. under 791 kPa for CO2/CH4 separation. The polyimide membranes have UV cross-linkable functional groups and can be used for the preparation of UV cross-linked polyimide membranes having CO2 permeability of 20 Barrers or higher and single-gas selectivity for CO2/CH4 of 35 or higher at 50° C. under 791 kPa for CO2/CH4 separation.
    Type: Application
    Filed: October 21, 2011
    Publication date: December 20, 2012
    Applicant: UOP LLC
    Inventors: Chunqing Liu, Travis C. Bowen, Emily G. Harbert, Raisa Minkov, Syed A. Faheem, Zara Osman
  • Publication number: 20120238483
    Abstract: This invention relates to novel compounds derived from the reaction of diamines or polyamines with alkylene oxides. The invention also relates to novel compounds derived from the reaction of amine terminated polyethers with epoxide functional compounds. The novel compounds of the invention are particularly useful as wetting and foam control agents. The disclosed compounds exhibit exceptional antifoaming and defoaming activity while simultaneously reducing the dynamic surface tension when incorporated at low levels in water-based systems.
    Type: Application
    Filed: June 4, 2012
    Publication date: September 20, 2012
    Applicant: Ethox Chemicals, LLC.
    Inventors: James T Tanner, Charles F. Palmer, JR., Calvin M. Wicker, JR.
  • Patent number: 8216449
    Abstract: Provided is a bubble generating process used to treat dewaxed lube base stocks to improve their filterability, hazy appearance or both. In one form, the process for improving at least one of haze appearance and filterability of a dewaxed lubricating oil basestock contained in a storage vessel includes contacting the lubricating oil basestock with gas bubbles passed through a gas distribution grid for a time sufficient to form a mixture of froth and gas treated basestock, allowing the mixture of froth and gas treated basestock to settle for a time sufficient to form a froth layer and a gas treated basestock layer, and separating the froth layer from the gas treated basestock layer, wherein a basestock having improved haze, improved filterability or both may be isolated from the gas treated basestock layer.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: July 10, 2012
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: James William Gleeson, Charles Lambert Baker, Jr.
  • Publication number: 20120152807
    Abstract: A method for processing an acidic hydrocarbon feed comprising a hydrocarbon material and an acidic constituent soluble in the feed is provided. The method may comprise contacting the feed under a first condition with an active agent having an initial solubility in the feed and the acidic constituent and providing a second condition wherein the active agent has a secondary solubility in the feed lesser than the initial solubility to form a separable enriched active agent phase. The acidic constituent solubility in the active agent may be greater than its solubility in the hydrocarbon material under both the first and second conditions such that the acidic constituent dissolves in the active agent. The acidic constituent solubility in the active agent under the second condition may be greater than its solubility in the active agent under the first condition.
    Type: Application
    Filed: August 27, 2010
    Publication date: June 21, 2012
    Applicant: SUNCOR ENERGY INC.
    Inventor: Richard A. McFarlane
  • Patent number: 8168557
    Abstract: A method of restoring catalytic activity to a spent hydroprocessing catalyst that has a first carbon concentration. The concentration of carbon on the spent hydroprocessing catalyst is reduced to provide a carbon-reduced catalyst having a second carbon concentration that is less than the first carbon concentration. The carbon-reduced catalyst is exposed to a solution, comprising a chelating agent and a solvent, for an aging time period sufficient to provide for a restored catalytic activity thereby resulting in an aged catalyst having incorporated therein the chelating agent and the solvent. The aged catalyst is exposed to conditions, including a drying temperature, so as to remove from the aged catalyst a portion of the solvent without removing a significant portion of the chelating agent from the aged catalyst thereby resulting in a dried aged catalyst. The dried aged catalyst is then sulfur treated to thereby provide a restored catalyst.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: May 1, 2012
    Assignee: Shell Oil Company
    Inventors: Josiane Marie-Rose Ginestra, James Dallas Seamans, Kenneth Scott Lee
  • Publication number: 20120074044
    Abstract: The invention provides for processing a dehydrated and salty hydrocarbon feed having a solid salt dispersed in a hydrocarbon material by contacting the feed with an active agent under a first operating condition under which the active agent has an initial active agent solubility in the hydrocarbon material, and modulating operating conditions to provide a second operating condition under which the active agent has a secondary active agent solubility in the hydrocarbon material that is less than the initial active agent solubility so as to form a separable active agent phase, wherein the salt solubility in the active agent is substantially greater than the salt solubility in the hydrocarbon material under both the first and second operating conditions such that the salt dissolves in the active agent, allowing the separable active agent phase to separate from the hydrocarbon material depleted in the salt.
    Type: Application
    Filed: April 16, 2010
    Publication date: March 29, 2012
    Applicant: SUNCOR ENERGY INC.
    Inventor: Richard A. MCfarlane
  • Patent number: 8137536
    Abstract: Methods and systems for contacting a crude feed that has a total acid number (TAN) of at least 0.3 with one or more catalysts produces a total product that includes a crude product are described. The one or more catalysts may include a first catalyst and a second catalyst. The crude product is a liquid mixture at 25° C. and 0.101 MPa and the crude product has a TAN of at most 90% of the TAN of the crude feed. One or more other properties of the crude product may be changed by at least 10% relative to the respective properties of the crude feed.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: March 20, 2012
    Assignee: Shell Oil Company
    Inventors: Opinder Kishan Bhan, Scott Lee Wellington
  • Publication number: 20120024776
    Abstract: One aspect of the present invention relates to mesostructured zeolites. The invention also relates to a method of preparing mesostructured zeolites, as well as using them as cracking catalysts for organic compounds and degradation catalysts for polymers.
    Type: Application
    Filed: August 8, 2011
    Publication date: February 2, 2012
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventor: Javier Garcia-Martinez
  • Publication number: 20120024757
    Abstract: The present invention relates to a method for forming a catalyst comprising catalytic nanoparticles and a catalyst support, wherein the catalytic nanoparticles are embedded in the catalyst support, comprising forming the catalytic nanoparticles on carbon particle, dispersing the carbon particle in a solution comprising precursors of the catalyst support to form a suspension, heating the suspension to form a gel, subjecting the gel to incineration to form a powder, and sintering the powder to form the catalyst.
    Type: Application
    Filed: July 13, 2011
    Publication date: February 2, 2012
    Inventors: Zetao Xia, Liang Hong, Wei Wang, Zhao Lin Liu
  • Publication number: 20110319698
    Abstract: A process is presented for the removal of oxygen from a hydrocarbon stream. The oxygen can react and cause polymerization of the hydrocarbons when the hydrocarbon stream is heated. Controlling the removal of the oxygen from the hydrocarbon stream produces a hydrocarbon stream that is substantially free of oxygen and has a reduced activity for generating undesired compounds.
    Type: Application
    Filed: June 7, 2011
    Publication date: December 29, 2011
    Applicant: UOP LLC
    Inventors: Stephen W. Sohn, Steven P. Lankton, Joao Jorge da Silva Ferreira Alves
  • Patent number: 8080155
    Abstract: A process to upgrade heavy oil and convert the heavy oil into lower boiling hydrocarbon products is provided. The process employs a catalyst slurry comprising catalyst particles with an average particle size ranging from 1 to 20 microns. In the upgrade process, spent slurry catalyst in heavy oil is generated as an effluent stream, which is subsequently recovered/separated from the heavy oil via a filtration assembly. The filtration assembly has a least a filtration unit employing at least a membrane for separating heavy oil from the catalyst particles. Valuable metals can be recovered from catalyst particles for subsequent re-use in a catalyst synthesis unit, generating a fresh slurry catalyst.
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: December 20, 2011
    Assignee: Chevron U.S.A. Inc.
    Inventors: Andre R. Da Costa, Christopher Alan Powers, Bruce Reynolds, Seyi A. Odueyungbo
  • Patent number: 8080154
    Abstract: A process to upgrade heavy oil and convert the heavy oil into lower boiling hydrocarbon products is provided. The process employs a catalyst slurry comprising catalyst particles with an average particle size ranging from 1 to 20 microns. In the upgrade process, spent slurry catalyst in heavy oil is generated as an effluent stream, which is subsequently recovered/separated from the heavy oil via membrane filtration. In one embodiment, filtration sedimentation is used for the separation of the heavy oil from the catalyst particles. Valuable metals can be recovered from catalyst particles for subsequent re-use in a catalyst synthesis unit, generating a fresh slurry catalyst.
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: December 20, 2011
    Assignee: Chevron U.S.A. Inc.
    Inventor: Seyi A. Odueyungbo
  • Publication number: 20110297586
    Abstract: Separation of bitumen from mined ore employs cooling of the mined ore at a temperature where all the species contained in the ore become solid and brittle. Ore is maintained solid by appropriate continuous injection of cold air and/or carbon dioxide in the processing plant through the process. Difference in thermal expansion coefficient between bitumen and other ore species creates thermal stresses at interfaces of bitumen and other materials. The stresses favor separation of bitumen from other materials along species interfaces during comminution. The breaking of existing ore particles tends to occur at interfaces between different species, creating a mix of particles where bitumen particles are not aggregated with any other ore constituents such as ice or sand particles. The particles are maintained cold, loose and unattached. Ore particles are sorted and separated while still frozen in solid phase, creating a stream of frozen bitumen particles.
    Type: Application
    Filed: April 21, 2011
    Publication date: December 8, 2011
    Inventor: Jean-Francois Leon
  • Patent number: 8057664
    Abstract: The present invention relates to a process for reducing the Bromine Index of a hydrocarbon feedstock having at least 50 wt. % of C8 aromatics, comprising the step of contacting the hydrocarbon feedstock with a catalyst at conversion conditions, wherein the catalyst includes a molecular sieve having a zeolite structure type of MWW.
    Type: Grant
    Filed: November 17, 2005
    Date of Patent: November 15, 2011
    Assignee: ExxonMobil Chemical Patents, Inc.
    Inventors: Stephen H. Brown, James R. Waldecker, Khavinet Lourvanij
  • Patent number: 8048294
    Abstract: A process for reducing the Bromine Index of a hydrocarbon feedstock, the process comprising the step of contacting the hydrocarbon feedstock with a catalyst at conversion conditions, wherein the catalyst includes at least one molecular sieve and at least one clay, and wherein said catalyst is sufficient to reduce more than 50% of the Bromine Index of a hydrocarbon feedstock.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: November 1, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Stephen Harold Brown, Gary David Mohr, Michael Christopher Clark, Selma Lawrence
  • Patent number: 8048295
    Abstract: A process for reducing the Bromine Index of a hydrocarbon feed containing bromine-reactive contaminants that has improved cycle length and utilizes a crystalline molecular sieve catalyst. The process is carried out by contacting the hydrocarbon feed under conversion conditions with a catalyst shaped in the form of an elongated aggregate comprising a crystalline molecular sieve having a MWW or *BEA framework type. The shortest cross-sectional dimension of the elongated aggregate is less about 1/10 inch (2.54 millimeters).
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: November 1, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Stephen H. Brown, Jose G. Santiesteban, Bryson J. Sundberg, Terry E. Helton, Daria N. Lissy, Jean W. Beeckman, Arthur P. Werner
  • Publication number: 20110259794
    Abstract: A process is presented for treating crude oil that contains a clathrate hydrate inhibitor. In the process, a crude oil contaminated with the inhibitor is maintained in a vessel at inhibitor removal conditions to produce a treated crude oil having a reduced methanol concentration.
    Type: Application
    Filed: April 23, 2010
    Publication date: October 27, 2011
    Inventors: Tecle S. Rufael, Rebecca A. Hicks, Robert G. Shong
  • Publication number: 20110247964
    Abstract: Process for removing asphaltenic particles from a hydrocarbon feed containing asphaltenic particles by treating the feed in a filter unit comprising a perforated tube surrounded by hollow longitudinal projections comprising a filter having openings of at most 50 micrometer diameter in which the internal space of each of the hollow projections is in fluid communication with the inside of the perforated tube and which filter is regularly subjected to cleaning by treating each of the projections with cleaning fluid wherein the flow of cleaning fluid is opposite to the direction of normal flow.
    Type: Application
    Filed: December 17, 2009
    Publication date: October 13, 2011
    Inventors: Johannes Leendert Willem Cornelis Den Boestert, Duurt Renkema, Marco Jordi In Het Veld
  • Publication number: 20110226673
    Abstract: There is provided a portable oil isolation and decontamination system comprising a plurality of high heat energy generators that supply high heat energy to an oil isolation and decontamination unit. Each heat energy generator comprises a chamber for gasifying used rubber tires, waste oil, coal or other combustible materials for the production of volatile gases and high energy heat. The oil extractor unit comprises a pair of parallel, elongate rotating cylinders that each rotate within a common closed housing. Oil-rich material such as oilsands, oilshale, contaminated soil or used oil is introduced into one end of each rotating cylinder and is caused to migrate to the opposite end in cascading fashion as the cylinder rotates. High energy heat from the generators is directed at the rotating cylinders to indirectly heat the oil-rich material therein to vaporize the hydrocarbons as the rotating drum migrates the oil-rich material towards its collection end.
    Type: Application
    Filed: September 11, 2009
    Publication date: September 22, 2011
    Inventor: Louis Bilhete
  • Patent number: 8007663
    Abstract: One aspect of the present invention relates to mesostructured zeolites. The invention also relates to a method of preparing mesostructured zeolites, as well as using them as cracking catalysts for organic compounds and degradation catalysts for polymers.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: August 30, 2011
    Assignee: Massachusetts Institute of Technology
    Inventors: Jackie Y. Ying, Javier García-Martinez
  • Publication number: 20110203968
    Abstract: The present invention relates to a method of processing oil refining waste, the method comprising feeding the waste into a vessel and heating the waste such that it liberates volatile hydrocarbons, wherein the waste is heated using far infrared radiation, and wherein the liberated volatile hydrocarbons are collected for subsequent use.
    Type: Application
    Filed: July 7, 2009
    Publication date: August 25, 2011
    Inventor: John Scheirs
  • Patent number: 7947169
    Abstract: A gas generated from a first crude oil and containing volatile organic compounds and a second crude oil are supplied to an absorber 16, thereby absorbing the volatile organic compounds in the gas into the second crude oil.
    Type: Grant
    Filed: August 23, 2006
    Date of Patent: May 24, 2011
    Assignees: Nippon Oil Corporation, Nippon Oil Staging Terminal Co., Ltd.
    Inventors: Wataru Sahara, Shunji Nario, Ichirou Nakagama, Koichi Iwamoto
  • Patent number: 7927480
    Abstract: A process for the desulfurization of a fluid catalytically cracked naphtha wherein the valuable olefins are retained and recombinant mercaptans are prevented from forming, resulting in a low sulfur naphtha. Embodiments disclosed herein may allow for more flexibility in varying the end point of the naphtha used in gasoline blending.
    Type: Grant
    Filed: January 29, 2008
    Date of Patent: April 19, 2011
    Assignee: Catalytic Distillation Technologies
    Inventor: Gary G. Podrebarac
  • Patent number: 7922895
    Abstract: A method of mixing a catalyst with a heavy oil to create a heavy oil/catalyst mixture. This is followed by combining the heavy oil/catalyst mixture with supercritical water to form light hydrocarbon products and heavy hydrocarbon products. By doing so the light hydrocarbon products can be separated into a gaseous top product, an upgraded liquid hydrocarbon product and a water phase.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: April 12, 2011
    Assignee: ConocoPhillips Company
    Inventor: Dwijen K. Banerjee
  • Patent number: 7923595
    Abstract: Process for treating a product stream typically from an autothermal cracking process, the product stream comprising one or more olefins, hydrogen, carbon monoxide, carbon dioxide and one or more oxygenates, by contacting the product stream with at least one compound selected from (1) H2N—OR1, and (2) H2N—NR2R3, where R1, R2 and R3 may each be independently selected from H and carbon-containing substituents.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: April 12, 2011
    Assignee: Ineos Europe Limited
    Inventor: Vaughan Clifford Williams
  • Patent number: 7917307
    Abstract: In an oil sample analysis calculator (100) for analyzing results of oil samples from an engine, the oil sample analysis calculator (100) includes an input module (110) which receives an input data set (140), a processing module (130) which receives the input data set (140) from the input module (110) and corrects the input data set (140) based on at least one of an amount of oil added to the engine and an amount of oil removed from the engine, and an output module (120) which receives the input data set (140) corrected by the processing module (130) and outputs an output data set (150).
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: March 29, 2011
    Assignee: Alstom Transportation Inc.
    Inventor: Donald W. Bolt
  • Publication number: 20110062058
    Abstract: A method for determining asphaltene stability in a hydrocarbon-containing material having solvated asphaltenes therein is disclosed. The method involves the steps of: (a) precipitating an amount of the asphaltenes from a liquid sample of the hydrocarbon-containing material with an alkane mobile phase solvent in a column; (b) dissolving a first amount and a second amount of the precipitated asphaltenes by gradually and continuously changing the alkane mobile phase solvent to a final mobile phase solvent having a solubility parameter at least 1 MPa0.5 higher than the alkane mobile phase solvent; (c) monitoring the concentration of eluted fractions from the column; (d) creating a solubility profile of the dissolved asphaltenes in the hydrocarbon-containing material; and (e) determining one or more asphaltene stability parameters of the hydrocarbon-containing material.
    Type: Application
    Filed: July 9, 2010
    Publication date: March 17, 2011
    Inventors: Estrella Rogel, Cesar Ovalles, Michael Moir
  • Publication number: 20110036751
    Abstract: A contactor/separator is formed from a vessel; an inlet for receiving a vapor/liquid mixture; an inlet for receiving a superheated vapor; a hub located within the vessel, the hub including a plurality of vanes for imparting a centrifugal motion to the vapor/liquid mixture or the superheated vapor; an outlet in a bottom of the vessel for removing liquid; and an outlet for removing vapor from the vessel. A method is also provided for heating and separating liquid and vapor from a hydrocarbon feedstock comprising introducing a hydrocarbon feedstock into a contactor/separator: introducing a superheated vapor into the contactor/separator such that it contacts and vaporizes a portion of the feedstock within the contactor/separator; separating unvaporized feedstock from vaporized feedstock in the contactor/separator; removing the vaporized feedstock and the superheated vapor through a first outlet; and removing the unvaporized feedstock through a second outlet.
    Type: Application
    Filed: October 25, 2010
    Publication date: February 17, 2011
    Inventors: Louis Edward STEIN, Danny Yuk Kwan Ngan, Arthur James Baumgartner, Karl Gregory Anderson, Raul Jasso Garcia, SR., Richard Rodriguez
  • Publication number: 20110031164
    Abstract: A method of upgrading a heteroatom-containing hydrocarbon feed by removing heteroatom contaminants is disclosed. The method includes contacting the heteroatom-containing hydrocarbon feed with an oxidant to oxidize the heteroatoms, contacting the oxidized-heteroatom-containing hydrocarbon feed with caustic and a selectivity promoter, and removing the heteroatom contaminants from the heteroatom-containing hydrocarbon feed. The oxidant may be used in the presence of a catalyst.
    Type: Application
    Filed: October 14, 2010
    Publication date: February 10, 2011
    Applicant: AUTERRA INC.
    Inventors: Kyle E. Litz, Jennifer L. Vreeland, Jonathan P. Rankin, Mark N. Rossetti, Tracey M. Jordan
  • Patent number: 7820034
    Abstract: An apparatus and process for partially upgraded heavy oil diluent production. A crude heavy oil and/or bitumen feed is supplied to an FCC unit having a low activity catalyst and low conversion number. A distillate fraction is supplied for use as diluent to end users. The distillate fraction and FCC unit gas oil products can be supplied to a hydrotreater for upgrading and collected as a synthetic crude product stream. An asphaltene fraction can be supplied to a gasifier for the recovery of power, steam and hydrogen, which can be supplied to the hydrotreater or otherwise within the process or exported.
    Type: Grant
    Filed: October 9, 2006
    Date of Patent: October 26, 2010
    Assignee: Kellogg Brown & Root LLC
    Inventor: Gerard Bruha
  • Patent number: 7811444
    Abstract: A method for processing asphaltenes is disclosed. The method can include separating asphaltenes from an asphaltene-containing composition and oxidizing the separated asphaltenes to form oxidation products. Alternatively, the method can include oxidizing asphaltenes within an asphaltene-containing composition without first separating the asphaltenes. Once formed, the oxidation products can be combined with other hydrocarbons. The amount of oxidation can be limited to an amount sufficient to produce a mixture suitable for the desired application. This method can be used to upgrade asphaltenes from a variety of sources, including oil sands. The oxidation step can be performed, for example, by introducing an oxidizing agent and, in some cases, a catalyst into the asphaltenes. A solvent or miscibility agent also can be introduced to improve mixing between the oxidizing agent and the asphaltenes.
    Type: Grant
    Filed: June 8, 2006
    Date of Patent: October 12, 2010
    Assignee: Marathon Oil Canada Corporation
    Inventors: Willem P. C. Duyvesteyn, Raymond L. Morley
  • Publication number: 20100252481
    Abstract: A reformed fuel oil capable of enhancing combustion efficiency. The reforming is performed by circulating a fuel oil required times through a primary reform treatment in which the fuel oil is caused to undergo not only flow by centrifugal force but also meandering flow made while repeating flow split and confluence in a direction crossing the direction of the centrifugal force flow and a secondary reform treatment in which the fuel oil having undergone the primary reform treatment is caused to undergo not only flow by pressure feed force but also meandering flow made while repeating flow split and confluence in a direction crossing the direction of the pressure feed force flow.
    Type: Application
    Filed: October 21, 2008
    Publication date: October 7, 2010
    Applicants: MG GROW UP CORP., MARUFUKUSUISAN CORP.
    Inventors: Kenichi Mogami, Hidehiro Kumazawa
  • Publication number: 20100236990
    Abstract: Provided is a bubble generating process used to treat dewaxed lube base stocks to improve their filterability, hazy appearance or both. In one form, the process for improving at least one of haze appearance and filterability of a dewaxed lubricating oil basestock contained in a storage vessel includes contacting the lubricating oil basestock with gas bubbles passed through a gas distribution grid for a time sufficient to form a mixture of froth and gas treated basestock, allowing the mixture of froth and gas treated basestock to settle for a time sufficient to form a froth layer and a gas treated basestock layer, and separating the froth layer from the gas treated basestock layer, wherein a basestock having improved haze, improved filterability or both may be isolated from the gas treated basestock layer.
    Type: Application
    Filed: March 17, 2009
    Publication date: September 23, 2010
    Inventors: James William Gleeson, Charles Lambert Baker, JR.
  • Publication number: 20100236987
    Abstract: A method for the integrated production and utilization of synthesis gas for production of mixed alcohols, for hydrocarbon recovery, and for gasoline/diesel refinery, has the following steps: forming a hydrocarbon fuel including coal and/or gas oil; gasifying the hydrocarbon fuel to form synthesis gas that includes hydrogen and carbon monoxide; directing the carbon monoxide and a stoichiometric amount of the hydrogen to an alcohol synthesis unit for the synthesis of mixed alcohols; combusting the remaining hydrogen with oxygen via a downhole gas combustion unit; and adding the water to the combustion to produce high-pressure steam for the recovery of crude oil from the hydrocarbon bearing formation.
    Type: Application
    Filed: March 16, 2010
    Publication date: September 23, 2010
    Inventor: Leslie Wayne Kreis
  • Patent number: 7799213
    Abstract: Reactive phosphorus species can be removed or transferred from a hydrocarbon phase to a water phase in an emulsion breaking process by using a composition that contains water-soluble hydroxyacids. Suitable water-soluble hydroxyacids include, but are not necessarily limited to glycolic acid, gluconic acid, C2-C4 alpha-hydroxy acids, poly-hydroxy carboxylic acids, thioglycolic acid, chloroacetic acid, polymeric forms of the above hydroxyacids, poly-glycolic esters, glycolate ethers, and ammonium salt and alkali metal salts of these hydroxyacids, and mixtures thereof. The composition may optionally include a mineral acid to reduce the pH of the desalter wash water. A solvent may be optionally included in the composition. The invention permits transfer of reactive phosphorus species into the aqueous phase with little or no hydrocarbon phase undercarry into the aqueous phase. The composition is particularly useful in treating crude oil emulsions, and in removing calcium and other metals therefrom.
    Type: Grant
    Filed: July 8, 2005
    Date of Patent: September 21, 2010
    Assignee: Baker Hughes Incorporated
    Inventors: Lawrence N. Kremer, Tran M. Nguyen, Jerry J. Weers
  • Publication number: 20100205856
    Abstract: The present invention is directed to providing a method of producing synthetic fuels and organic chemicals from atmospheric carbon dioxide. Carbon dioxide gas is extracted from the atmosphere, hydrogen gas is obtained by splitting water, a mixture of the carbon dioxide gas and the hydrogen gas (synthesis gas) is generated, and the synthesis gas is converted into synthetic fuels and/or organic products. The present invention is also directed to utilizing a nuclear power reactor to provide power for the method of the present invention.
    Type: Application
    Filed: August 13, 2008
    Publication date: August 19, 2010
    Applicant: LOS ALAMOS NATIONAL SECURITY LLC
    Inventors: William Louis Kubic, F. Jeffrey Martin
  • Publication number: 20100200467
    Abstract: A method of recovering hydrocarbons from hydrocarbonaceous materials can include forming a constructed permeability control infrastructure. This constructed infrastructure defines a substantially encapsulated volume. A comminuted hydrocarbonaceous material can be introduced into the control infrastructure to form a permeable body of hydrocarbonaceous material. The permeable body can be heated sufficient to remove hydrocarbons therefrom. During heating and removal of hydrocarbons and subsequent thereto a positive pressure can be maintained within the encapsulated volume by means of a non-oxidizing gas to expedite flushing of hydrocarbonaceous material, inhibit unwanted entry of oxygen into the encapsulated volume and remove recoverable hydrocarbons following the heating process.
    Type: Application
    Filed: February 10, 2010
    Publication date: August 12, 2010
    Inventors: Todd Dana, James W. Patten
  • Publication number: 20100200468
    Abstract: A constructed permeability control infrastructure can include a permeability control impoundment, which defines a substantially encapsulated volume. The infrastructure can also include a comminuted hydrocarbonaceous material within the encapsulated volume. The comminuted hydrocarbonaceous material can form a permeable body of hydrocarbonaceous material. The infrastructure can further include at least one convection driving conduit oriented in a lower portion of the permeable body to generate bulk convective flow patterns throughout the permeable body. An associated method of recovering hydrocarbons from hydrocarbonaceous materials can include forming a constructed permeability control infrastructure, which defines a substantially encapsulated volume. A comminuted hydrocarbonaceous material can be introduced into the control infrastructure to form a permeable body of hydrocarbonaceous material.
    Type: Application
    Filed: February 12, 2010
    Publication date: August 12, 2010
    Inventors: Todd Dana, James W. Patten
  • Publication number: 20100200464
    Abstract: A method of preventing egress of a vapor from an encapsulated volume can include forming a substantially impermeable vapor barrier along an inner surface of the encapsulated volume. The encapsulated volume includes a permeable body of comminuted hydro carbonaceous material. Further, the vapor barrier can include an insulating layer capable of maintaining a temperature gradient of at least 400° F. across the insulating layer. The permeable body can be heated sufficient to liberate hydrocarbons therefrom and the hydrocarbons can be collected from the permeable body. The vapor barrier layer can be a single or multiple layer construction, depending on the specific materials chosen.
    Type: Application
    Filed: February 5, 2010
    Publication date: August 12, 2010
    Inventors: Todd Dana, James W. Patten
  • Publication number: 20100200465
    Abstract: A method of sequestering carbon dioxide emissions during recovery of hydrocarbons from hydrocarbonaceous materials can include forming a constructed permeability control infrastructure. This constructed infrastructure defines a substantially encapsulated volume. A comminuted hydrocarbonaceous material can be introduced into the control infrastructure to form a permeable body of hydrocarbonaceous material. The permeable body can be heated sufficient to remove hydrocarbons therefrom. During heating, the hydrocarbonaceous material is substantially stationary as the constructed infrastructure is a fixed structure. Additionally, during heating, any carbon dioxide that is produced can be sequestered. Removed hydrocarbons can be collected for further processing, use in the process, and/or use as recovered.
    Type: Application
    Filed: February 5, 2010
    Publication date: August 12, 2010
    Inventors: Todd Dana, James W. Patten
  • Publication number: 20100140139
    Abstract: A method of absorbing gases into a liquid comprising providing a stream of at least one desirable gas and at least one undesirable gas, exposing the gas stream to a liquid, so that the liquid absorbs more of the desirable gas than the undesirable gas, and releasing the liquid and gas mixture into an underground formation.
    Type: Application
    Filed: February 14, 2008
    Publication date: June 10, 2010
    Inventors: Zaida Diaz, Raymond Nicholas French, Dean Chien Wang, Geoffrey Matthew Warren
  • Patent number: 7731839
    Abstract: A process for reducing the Bromine Index of a hydrocarbon feedstock, the process comprising the step of contacting the hydrocarbon feedstock with a catalyst at conversion conditions, wherein the catalyst includes at least one molecular sieve and at least one clay, and wherein said catalyst is sufficient to reduce more than 50% of the Bromine Index of a hydrocarbon feedstock.
    Type: Grant
    Filed: May 27, 2005
    Date of Patent: June 8, 2010
    Assignee: Exxonmobil Chemical Patents Inc.
    Inventors: Stephen Harold Brown, Gary David Mohr, Michael Christopher Clark, Selma Lawrence
  • Publication number: 20100038286
    Abstract: Performance of equipment, such as a desalter, in a refinery is monitored in real-time and on-line to minimize fouling of downstream equipment. Using an instrument to measure particles and droplets in-process allows monitoring of the various operations to optimize performance. Such measurement can also be used during crude oil blending to detect asphaltene precipitates that can cause fouling and can be used for monitoring other fouling streams.
    Type: Application
    Filed: December 18, 2007
    Publication date: February 18, 2010
    Inventors: Mark A. Greaney, Glen B. Brons, Chris A. Wright, Daniel P. Leta
  • Publication number: 20100031908
    Abstract: Liquefied petroleum coke (LPC) comprises diesel engine fuel grade petroleum coke that is produced by subjecting crude oil refinery feedstock to de-salting, coking, micronization, de-ashing, and slurrification processes to reduce impurities such as metallic components and make the LPC suitable for use in internal combustion engines, such as diesel engine systems.
    Type: Application
    Filed: August 11, 2009
    Publication date: February 11, 2010
    Inventors: Alfred Jorgensen, Roger J. Swenson
  • Publication number: 20100025304
    Abstract: The present invention provides methods for decomposing and extracting compositions for the recovery of petroleum-based materials from composites comprising those petroleum-based materials, comprising subjecting the compositions and/or composites to microwave radiation, wherein the microwave radiation is in the range of from about 4 GHz to about 18 GHz. The present invention also provides for products produced by the methods of the present invention and for apparatuses used to perform the methods of the present invention.
    Type: Application
    Filed: October 12, 2009
    Publication date: February 4, 2010
    Applicant: GLOBAL RESOURCES CORPORATION
    Inventors: Carl Everleigh, Julian Forthe, Frank G. Pringle
  • Publication number: 20100018902
    Abstract: Method of producing a total product are described. A method includes providing a feed and a supported inorganic salt catalyst to a contacting zone. Contact of the supported inorganic salt catalyst with the feed in the presence of a hydrogen source and steam in the contacting zone at a temperature of at most 1000° C. and a total operating pressure of at most 4 MPa produces the total product.
    Type: Application
    Filed: September 30, 2009
    Publication date: January 28, 2010
    Inventors: Thomas Fairchild Brownscombe, Scott Lee Wellington, Eswarachandra Kumar Paruchuri, Weijian Mo, William Douglas Gillespie, Chen Elizabeth Ramachandran, Susan Secor Pfrehm, David William Wallace
  • Patent number: 7651604
    Abstract: Two-stage low pressure catalytic hydrotreatment of heavy petroleum hydrocarbons having a high content of contaminants (metals and asphaltenes), is conducted under operating conditions with low-pressure, in a fixed bed or ebullated bed reactor to limit the formation of sediments and sludge in the product and obtain a hydrotreated hydrocarbon of improved properties, with levels of contaminants, API gravity and distillates within the ranges commonly reported in the feedstocks typical to refining schemes. A hydrotreatment catalyst, whose principal effect is the hydrodemetallization and the hydrocracking of asphaltenes of the heavy hydrocarbons of petroleum is used in the first stage, and the second reaction stage employs a hydrotreatment catalyst for a deeper effect of hydrodesulfurization of the heavy petroleum hydrocarbon whose content of total sulfur is reduced to a level required for its treatment in the conventional refining process or for its sale as a hydrocarbon of petroleum with improved properties.
    Type: Grant
    Filed: July 9, 2003
    Date of Patent: January 26, 2010
    Assignee: Instituto Mexicano del Petroleo
    Inventors: Jorge Ancheyta Juárez, Gerardo Betancourt Rivera, Gustavo Jesús Marroquín Sánchez, Guillermo Centeno Nolasco, José Antonio Domingo Muñoz Moya, Frenando Alonso Martínez
  • Patent number: 7638040
    Abstract: A process for the recovery and purification of a contaminated hydrocarbons, wherein the contamination includes metals, finely divided solids and non-distillable components. The process further includes hydroprocessing the oil to remove deleterious compounds, to produce high quality reusable lubricants, solvents and fuels and to improve the quality of water byproduct.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: December 29, 2009
    Assignee: UOP LLC
    Inventors: Mark Van Wees, Robert B. James, Jr., Tom N. Kalnes, Gavin P. Towler