Metal Compound Containing Patents (Class 252/518.1)
  • Patent number: 6780347
    Abstract: A method is disclosed for preparing cathodes loaded with manganese oxide that are suitable for use in metal-air cells. The manganese oxide is prepared from the reduction of potassium permanganate by sodium formate at a substantially neutral pH level to produce manganese oxide sols. The sols are then mixed with a carbon slurry to produce a colloidal suspension. The suspension is subsequently waterproofed before being filtered, washed, dried, and rolled to produce the active catalyst layer for the cathode during discharge of the cell. The catalyst layer is then laminated with a current collector and air diffusion layer. A separator is then added to provide a carbon-based air cathode loaded with manganese oxide.
    Type: Grant
    Filed: February 4, 2002
    Date of Patent: August 24, 2004
    Assignee: Rayovac Corporation
    Inventor: Ernest Ndzebet
  • Patent number: 6777477
    Abstract: The invention relates to a coating solution for forming transparent conductive tin oxide film, a method for producing transparent conductive tin oxide film, and transparent conductive tin oxide film. The coating solution is capable of forming, from an inexpensive starting material such as tin oxide or tin chloride, strong tin oxide film endowed with excellent conductivity and transparency. The coating solution, which is intended to be used for forming, by way of coating, transparent conductive film predominantly containing tin oxide, contains stannic acid as its major component, and a water-soluble polymer having a polar group which is dissolved in the presence of at least one compound selected from the group consisting of ammonia and water-soluble amines.
    Type: Grant
    Filed: July 17, 2001
    Date of Patent: August 17, 2004
    Assignee: Toyo Gosei Kogyo Co., Ltd.
    Inventors: Kazuma Niume, Takashi Uchida, Masateru Kimura
  • Patent number: 6773635
    Abstract: Materials, both glass and glass-ceramic, that exhibit UV-induced changes in light transmission and electrical conductivity behavior. The materials consist essentially, in mole %, of 20-40% SiO2, 10-20% AlO1.5, 35-55% SiO2+AlO1.5, at least 30% CdF2, 0-20% PbF2, and/or ZnF2, 0-15% rare earth metal fluoride, and 45-65% total metal fluorides.
    Type: Grant
    Filed: February 26, 2001
    Date of Patent: August 10, 2004
    Assignee: Corning Incorporated
    Inventors: Nicholas F. Borrelli, Lauren K. Cornelius, Dennis W. Smith, Paul A. Tick
  • Patent number: 6758991
    Abstract: Ceramic inert anodes useful for the electrolytic production of aluminum are disclosed. The inert anodes comprise an oxide of Ni and Fe having a controlled Ni/(Ni+Fe) mole ratio which results in a single-phase structure at the operation temperatures of aluminum production cells. The Ni and Fe oxide material may also have a single-phase structure at the sintering temperature of the material. The single-phase inert anode materials maintain sufficient electrical conductivity at the operating temperatures of the cell, and also possess good mechanical stability.
    Type: Grant
    Filed: November 8, 2002
    Date of Patent: July 6, 2004
    Assignee: Alcoa Inc.
    Inventors: Robert A. DiMilia, Joseph M. Dynys, Douglas A. Weirauch, Jr., Siba P. Ray, Xinghua Liu, Frankie E. Phelps
  • Patent number: 6759083
    Abstract: A material having a conductive pattern, the material comprising a support and a conductive element, the conductive element being 500 nm thick or less and containing a polyanion and an intrinsically conductive polymer, characterized in that one surface of the conductive element is an outermost surface of the material and the other surface of the conductive element is contiguous with a patterned surface, the patterned surface consisting of at least two types of surface element, and those parts of the conductive element contiguous with a type A surface element exhibiting a surface resistance at least a factor of ten greater than those parts of the conductive element contiguous with a type B surface element; a material for making a conductive pattern, the material comprising a support and a conductive element, the conductive element containing a polyanion and an intrinsically conductive polymer, characterized in that one surface of the conductive element is an outermost surface of the material, the other surface
    Type: Grant
    Filed: August 12, 2003
    Date of Patent: July 6, 2004
    Assignee: Agfa-Gevaert
    Inventors: Johan Lamotte, David Terrell
  • Patent number: 6749966
    Abstract: Laser pyrolysis can be used to produce directly metal vanadium oxide composite nanoparticles. To perform the pyrolysis a reactant stream is formed including a vanadium precursor and a second metal precursor. The pyrolysis is driven by energy absorbed from a light beam. Metal vanadium oxide nanoparticles can be incorporated into a cathode of a lithium based battery to obtain increased energy densities. Implantable defibrillators can be constructed with lithium based batteries having increased energy densities.
    Type: Grant
    Filed: April 1, 2002
    Date of Patent: June 15, 2004
    Assignee: NanoGram Devices Corporation
    Inventors: Hariklia Dris Reitz, James P. Buckley, Sujeet Kumar, Yu K. Fortunak, Xiangxin Bi
  • Patent number: 6749776
    Abstract: A method of making an electron emissive material using combinatorial chemistry techniques is provided. The method includes providing a plurality of pixels of the electron emissive material, each pixel having at least one different characteristic from any other one of the plurality of pixels, and measuring at least one property of each pixel. The measurement may include a measurement of the electron emissive material work function using a Kelvin probe or other work function measurement systems.
    Type: Grant
    Filed: December 4, 2000
    Date of Patent: June 15, 2004
    Assignee: General Electric Company
    Inventors: Sung Su Han, Sylvain Simon Coulombe
  • Patent number: 6746751
    Abstract: A material for making a conductive pattern, the material comprising a support and a conductive element, the conductive element containing a polyanion and an intrinsically conductive polymer, characterized in that one surface of the conductive element is an outermost surface of the material, the other surface of the conductive element is contiguous with a patterned surface, the patterned surface consisting of at least two types of surface element, and those parts of the conductive element contiguous with one type of the surface elements are capable of being at least partially removed by a developer.
    Type: Grant
    Filed: June 20, 2002
    Date of Patent: June 8, 2004
    Assignee: Agfa-Gevaert
    Inventors: Johan Lamotte, David Terrell
  • Patent number: 6743381
    Abstract: A process for forming a thixotropic ink for use in manufacturing the ceramic of a zinc oxide varistor where the ceramic includes zinc, oxygen and a plurality of additive elements. The process includes the steps of calcining a mixture of powders of zinc oxide and the additive elements to form a calcined product having a particle size larger than the particle size of the zinc ozide powders, mixing said calcined product with an organic liquid, mechanically working the mixture to produce a calcined particulate material in the organic liquid having a particle size less than the particle size of said calcined product, adding an organic binder to the mixture and mixing the composition to produce said ink.
    Type: Grant
    Filed: September 4, 2001
    Date of Patent: June 1, 2004
    Assignee: Littlefuse, Inc.
    Inventors: Stephen P. Cowman, Derek A. Nicker, John M. Shreeve
  • Patent number: 6743379
    Abstract: This invention relates to a powder coating composition comprising a mixture of conventional, possibly coloured, non-conductive thermosetting powder coating compositions with highly conductive thermosetting powder coating compositions so as to produce a coating having an electrical surface resistance of less than 1010 &OHgr; (ohm), preferably of less than 108 &OHgr; (ohm), and to the substrates coated therewith. This invention also relates to using a mixture of non-conductive and conductive powder coating compositions to produce a coated surface having an electrical surface resistance sufficiently low to possess antistatic properties.
    Type: Grant
    Filed: November 4, 2002
    Date of Patent: June 1, 2004
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Peter Gottschling, Zbigniew Stachyra, Maria Strid
  • Patent number: 6740261
    Abstract: The thermistor element of the present invention is composed of a mixed sintered body aM1M2O3bY2O3 of a composition M1M2O3 (wherein M1 is Y, and M2 is at least one element selected from the elements such as Cr, Mn, Ti, etc.) as a perovskite compound and Y2O3, wherein molar fractions a and b satisfy the relations 0.05≦a<1.0, 0<b≦0.95 and a+b=1. Another wide-range type thermistor element of the present invention is composed of a perovskite compound M1 (M2M3)O3, wherein M1 is at least one element selected from the elements of the groups II and IIIA excluding La in the Periodic Table, and each of M2 and M3 is at least one element selected from the elements of the groups IIB, IIIB, IVA, VA, VIA, VIIA and VIII. a and b satisfy the relations a+b=1 and 0<b<0.1, where a is a molar fraction of M2 and b is a molar fraction of M3 in M1(M2M3)O3.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: May 25, 2004
    Assignees: Denso Corporation, Nippon Soken, Inc.
    Inventors: Itsuhei Ogata, Takumi Kataoka, Eturo Yasuda, Kaoru Kuzuoka, Masanori Yamada
  • Patent number: 6740259
    Abstract: A method of manufacture of a ceramic material comprises the steps of preparing a melt of the ceramic materials, cooling the melt slowly through the freezing point of the material to initiate solidification, holding the melt at a temperature below the freezing point of the material whilst solidification progresses and characterised in that during solidification an ultrasonic field is applied to the melt. The melt composition may be selected to include an excess of one or more ceramic materials so as to produce a second phase dispersed in the solidified product during solidification. Also claimed is a ceramic material produced by the method described. The ceramic material may be a superconductor.
    Type: Grant
    Filed: November 8, 2001
    Date of Patent: May 25, 2004
    Assignee: Qinetiq Limited
    Inventors: Jonathan C Fitzmaurice, David R Moore
  • Patent number: 6720111
    Abstract: The present invention provides a single-phase lithium ferrite based oxide which is suitable as a cathode material for a secondary battery, a process for preparing the oxide, and its uses, the oxide having a layered rock salt-type structure and comprising lithium ferrite (LiFeO2)−Li2-xMO3-y solid solution wherein M is at least one species selected from the group consisting of Mn, Ti and Sn, 0≦x<2, 0≦y≦1 such that the proportion of iron is 0.1≦Fe/(Fe+M)≦0.9.
    Type: Grant
    Filed: December 19, 2000
    Date of Patent: April 13, 2004
    Assignee: Secretary, Agency of Industrial Science and Technology
    Inventors: Mitsuharu Tabuchi, Kazuaki Ado, Hironori Kobayashi, Hikari Sakaebe, Hiroyuki Kageyama
  • Patent number: 6719924
    Abstract: There is provided a superconducting device including a substrate, a first superconductor layer supported by the substrate and containing Ln, AE, M and O, and a second superconductor layer containing a material represented by a formula of (Yb1−yLn′y)AE′2M′3Oz, the first and second superconductor layers forming a junction, and atomic planes each including M and O in the first superconductor layer and atomic planes each including M′ and O in the second superconductor layer being discontinuous to each other in a position of the junction, wherein each of Ln and Ln′ represents at least one metal of Y and lanthanoids, each of AE and AE′ represents at least one of alkaline earth metals, each of M and M′ represents a metal which contains 80 atomic % or more of Cu, y represents a value between 0 and 0.9, and z represents a value between 6.0 and 8.0.
    Type: Grant
    Filed: October 30, 2001
    Date of Patent: April 13, 2004
    Assignees: Kabushiki Kaisha Toshiba, International Superconductivity Technology Center
    Inventors: Toshihiko Nagano, Jiro Yoshida
  • Patent number: 6716372
    Abstract: The invention provides novel lithium-mixed metal materials which, upon electrochemical interaction, release lithium ions, and are capable of reversibly cycling lithium ions. The invention provides a rechargeable lithium battery which comprises an electrode formed from the novel lithium-mixed metal materials. Methods for making the novel lithium-mixed metal materials and methods for using such lithium-mixed metal materials in electrochemical cells are also provided. The lithium-mixed metal materials comprise lithium and at least one other metal besides lithium. Preferred materials are lithium-mixed metal phosphates which contain lithium and two other metals besides lithium.
    Type: Grant
    Filed: October 19, 2001
    Date of Patent: April 6, 2004
    Assignee: Valence Technology, Inc.
    Inventors: Jeremy Barker, M. Yazid Saidi, Jeffrey Swoyer
  • Patent number: 6712999
    Abstract: The present invention relates to an electrochronic element including the following elements: an electrode (E1), an electrochromic functional layer (FS), an ion-conducting electrolyte (EY) a layer with high electrical charge capacity (SK), a counter-electrode (E2), the electrochromic functional layer (FS) being a nanoporous doped semiconductor layer having structure sizes smaller than 50 nm.
    Type: Grant
    Filed: March 11, 2002
    Date of Patent: March 30, 2004
    Assignee: DaimlerChrysler AG
    Inventors: Jochen Haering, Thomas Kraenzler, Werner Scherber, Horst Weller, Markus Haase, Ulf Zum Felde
  • Patent number: 6706219
    Abstract: An interface material comprising a resin mixture and at least one solder material is herein described. The resin material may comprise any suitable resin material, but it is preferred that the resin material be silicone-based comprising one or more compounds such as vinyl silicone, vinyl Q resin, hydride functional siloxane and platinum-vinylsiloxane. The solder material may comprise any suitable solder material, such as indium, silver, copper, aluminum and alloys thereof, silver coated copper, and silver coated aluminum, but it is preferred that the solder material comprise indium or indium-based compounds and/or alloys. The interface material, or polymer solder, has the capability of enhancing heat dissipation in high power semiconductor devices and maintains stable thermal performance. The interface material may be formulated by mixing the components together to produce a paste which may be applied by dispensing methods to any particular surface and cured at room temperature or elevated temperature.
    Type: Grant
    Filed: May 7, 2001
    Date of Patent: March 16, 2004
    Assignee: Honeywell International Inc.
    Inventor: My Nguyen
  • Patent number: 6702961
    Abstract: The invention provides novel lithium-mixed metal materials which, upon electrochemical interaction, release lithium ions, and are capable of reversibly cycling lithium ions. The invention provides a rechargeable lithium battery which comprises an electrode formed from the novel lithium-mixed metal materials. Methods for making the novel lithium-mixed metal materials and methods for using such lithium-mixed metal materials in electrochemical cells are also provided. The lithium-mixed metal materials comprise lithium and at least one other metal besides lithium. Preferred materials are lithium-mixed metal phosphates which contain lithium and two other metals besides lithium.
    Type: Grant
    Filed: June 13, 2003
    Date of Patent: March 9, 2004
    Assignee: Valence Technology, Inc.
    Inventors: Jeremy Barker, M. Yazid Saidi, Jeffrey Swoyer
  • Patent number: 6695985
    Abstract: An electromagnetic wave suppressor sheet formed into a sheet-like shape out of a material made of synthetic resin in which powder of conjugated magnetic particles surface-treated with an insulating inorganic material has been dispersed.
    Type: Grant
    Filed: June 11, 2002
    Date of Patent: February 24, 2004
    Assignees: Nitto Denko Corporation, Sony Corporation
    Inventors: Kazumasa Igarashi, Junichi Toyoda, Katsumi Okayama
  • Patent number: 6692665
    Abstract: The invention provides a lithium manganese oxide spinel suited as a cathode active material for lithium ion secondary batteries showing excellent high-temperature cycling behavior. The lithium manganese oxide is represented by the following general formula (1): Li1+&agr;Mn2−&agr;−yMyO4−&dgr; wherein O≦&agr;≦0.5, 0.005≦y≦0.5, −0.1≦&dgr;÷0.1, and M represents a metal element other than Li and Mn, and which shows the ratio of a main peak intensity at 5±40 ppm to a main peak intensity at 525+40 ppm (I0ppm/I500ppm), each intensity being obtained by 7Li-NMR measurement according to the following measuring method, falling within the following range: I0ppm/I500ppm≦0.65y+0.02.
    Type: Grant
    Filed: April 30, 2001
    Date of Patent: February 17, 2004
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Koji Shima, Akira Utsunomiya, Yasushi Tsurita
  • Patent number: 6682824
    Abstract: An adhesion-resistant oxygen-free roughly drawn copper wire having an oxygen concentration of 1 to 10 ppm and a hydrogen concentration of 1 ppm or less, has a surface oxide film having a total thickness of 50 to 500 angstroms, in which 0.2 to 90% of the total thickness of the oxide film is Cu2O. The adhesion-resistant oxygen-free roughly drawn copper wire is prepared using a continuous casting process, in which the molten copper is agitated and dehydrogenated in a casting trough containing weirs, and the thickness of the oxide layer is controlled by alcohol cleaning the cast copper bar material prior to rolling.
    Type: Grant
    Filed: April 11, 2001
    Date of Patent: January 27, 2004
    Assignee: Mitsubishi Materials Corporation
    Inventors: Yutaka Koshiba, Tutomu Masui, Kazumasa Hori, Yoshiaki Hattori
  • Patent number: 6677278
    Abstract: An Oxide Precursor Powder from the Pb—Bi—Sr—Ca—Cu—O 2223 System can be produced by heat treating powder, produced using the Spray Pyrolysis Process as described in: GB2210605 or EP0681989 between 700° C. and 850° C. in an atmosphere containing between 0.1% and 21% O2. Heat Treatment of the pyrolysis powder under controlled conditions produces a powder with a particular phase composition, that is highly homogeneous and has a small particle size distribution, that is inherently more reactive than powders heat treated in the same way but produced using other processes.
    Type: Grant
    Filed: June 6, 2002
    Date of Patent: January 13, 2004
    Assignee: Merck Patent GmbH
    Inventors: Lee Woodall, Ru-Shi Liu, Ya-Wei Hsueh, Wolfgang Wilhelm Schmahl, Sebastian Raeth
  • Publication number: 20040004209
    Abstract: This invention provides a low-temperature sintering conductive paste for high density circuit printing which can form a fine circuit having good adhesive force, a smooth surface and low resistance when applied on a substrate and then baked; the conductive paste of the invention uses, as conductive media, in combination with metal fillers having an average particle diameter of 0.
    Type: Application
    Filed: April 21, 2003
    Publication date: January 8, 2004
    Inventors: Yorishige Matsuba, Yoshihisa Misawa, Hideyuki Goto, Masayuki Ueda, Katsuhisa Oosako, Masaaki Oda, Norimichi Saito, Toshihiro Suzuki, Noriyuki Abe
  • Patent number: 6673273
    Abstract: Electrolyte compositions for use in cells and batteries that include a crosslinked solid ionically conductive polymer having urethane groups, urea groups, thiocarbamate groups, or combinations thereof, particles, and a salt. Certain electrolyte compositions include a liquid thereby forming a gel electrolyte composition.
    Type: Grant
    Filed: October 24, 2001
    Date of Patent: January 6, 2004
    Assignee: 3M Innovative Properties Company
    Inventors: Dinh Ba Le, Jerome Edward Scanlan, Ravindra L. Arudi
  • Patent number: 6666994
    Abstract: The present invention provides a conductive adhesive and a packaging structure that can keep moisture-proof reliability even when a multipurpose base metal electrode is used. A conductive adhesive according to the present invention includes first particles having a standard electrode potential that is equal to or higher than a standard electrode potential of silver, and second particles having a standard electrode potential lower than a standard electrode potential of silver. A metal compound coating having a potential higher than that of metal particles as the first particles can be formed on a surface of an electrode having a potential lower than that of the metal particles.
    Type: Grant
    Filed: December 3, 2002
    Date of Patent: December 23, 2003
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Hiroaki Takezawa, Takashi Kitae, Yukihiro Ishimaru, Tsutomu Mitani, Tousaku Nishiyama
  • Patent number: 6663794
    Abstract: This invention provides a reducing-atmosphere-resistant thermistor element, the resistance of which does not greatly change even when the element is exposed to a reducing atmosphere, and which has high accuracy and exhibits excellent resistance value stability. The thermistor element has a construction in which an oxygen occlusion-release composition, having oxygen occlusion-release characteristics, such as CeO2 is dispersed in a composition containing a mixed sintered body (M1 M2)O3.AOx as a principal component. The oxygen occlusion-release composition emits absorbed oxygen in a reducing atmosphere and suppresses migration of oxygen from the composition constituting the element. Therefore, the resistance value does not greatly change even when the element is exposed to a reducing atmosphere, and the element can accurately detect the temperature for a long time. The present invention can thus provide a temperature sensor having high reliability.
    Type: Grant
    Filed: August 9, 2001
    Date of Patent: December 16, 2003
    Assignees: Nippon Soken, Inc., Denso Corporation
    Inventors: Itsuhei Ogata, Daisuke Makino, Kaoru Kuzuoka, Atsushi Kurano
  • Patent number: 6664004
    Abstract: An electrode composition that includes a plurality of composite particles and a plurality of electrically conductive diluent particles admixed with the composite particles. Each of the composite particles includes an electrochemically active metal particle and an electrically conductive layer partially covering the particle. In one aspect, the layer is present in an amount no greater than about 75 wt. % of the composite, while in another aspect the layer is present in an amount no greater than about 75 vol. % of the composite. Also featured are lithium ion batteries featuring electrodes made from these compositions.
    Type: Grant
    Filed: June 18, 2001
    Date of Patent: December 16, 2003
    Assignee: 3M Innovative Properties Company
    Inventors: Larry J. Krause, James R. Landucci, Kevin W. Eberman
  • Patent number: 6663793
    Abstract: The present invention relates to a method for producing a low temperature 0-3 composite material, comprising the steps of providing a mixture, wherein the mixture comprises a liquid phase and a particulate phase and wherein the liquid phase comprises a reactive metal alkoxide; depositing the mixture on to a plastic substrate; and consolidating the mixture to provide a 0-3 composite material, wherein the 0-3 composite material is suitable for use as an electronic component.
    Type: Grant
    Filed: February 7, 2001
    Date of Patent: December 16, 2003
    Assignee: Sciperio, Inc.
    Inventors: Robert L. Parkhill, Steven M. Coleman, Edward T. Knobbe
  • Patent number: 6656390
    Abstract: A process is provided for the preparation of a metallic oxide composite including mixing an aqueous solution of a water-soluble metal compound and colloidal silica, depositing the mixture upon a substrate, heating the mixture-coated substrates at temperatures from about 150° C. to about 300° C. for time sufficient to form a metallic oxide film, and, removing the silica from the metallic oxide film whereby a porous metal oxide structure is formed.
    Type: Grant
    Filed: January 21, 2003
    Date of Patent: December 2, 2003
    Assignee: The Regents of the University of California
    Inventors: Lin Song Li, Quanxi Jia
  • Patent number: 6649325
    Abstract: Methods and formulations for use in preparing thermally conductive dielectric mounts for heat generating semi-conductor devices and associated circuitry. The formulations include a thermoplastic resin selected from the group consisting of polysulfone, poly-ethersulfone, poly-phenylsulfone, and poly-etherimides, with these resins being applied as a dispersion onto the surfaces of opposed metallic members. The dispersion is dried and thereafter treated under heat and pressure at temperatures greater than the glass transition temperature under unit pressures of between 100 psi and 800 psi and for periods in excess of about 30 minutes. The polymer resin may be filled with solid particulate such as alumina and/or boron nitride.
    Type: Grant
    Filed: May 25, 2001
    Date of Patent: November 18, 2003
    Assignee: The Bergquist Company
    Inventors: Benjamin P. Gundale, Sanjay Misra
  • Patent number: 6635193
    Abstract: In a dielectric composition for use in formation of a dielectric layer in a plasma display panel, comprising glass powder, the glass powder is powder of glass which contains PbO of 50% or less and CuO as one of essential elements contained in the glass for preventing color change of the dielectric layer from being caused due to reaction with Ag electrodes in the plasma display panel. Ceramics powder can be mixed with the glass powder. The dielectric composition can also be provided in a form of paste, alternatively in a form of a green sheet.
    Type: Grant
    Filed: August 11, 2000
    Date of Patent: October 21, 2003
    Assignee: Nippon Electric Glass Co., Ltd.
    Inventors: Norikazu Fukushima, Hiroyuki Oshita, Takayuki Mito, Masahiko Ouji, Kazuo Hadano
  • Patent number: 6627120
    Abstract: In order to achieve miniaturization and an increase in the capacitance of a monolithic ceramic capacitor, a conductive paste suitable for forming an internal conductor film is provided, the layer thickness of the internal conductor film being decreased with a decrease in the layer thickness of a dielectric ceramic layer. The conductive paste contains a conductive powder, such as a nickel powder, an organic vehicle, an organic acid barium salt and an organic zirconium compound. Each of the organic acid barium salt in terms of barium atom and the organic zirconium compound in terms of zirconium atom is about 0.05 to 1.00 mol per mol of the conductive powder, and the content of the organic zirconium compound in terms of zirconium atom is about 0.98 to 1.02 mol per mol of the organic acid barium salt in terms of barium atom.
    Type: Grant
    Filed: January 30, 2003
    Date of Patent: September 30, 2003
    Assignee: Murata Manufacturing Co. Ltd.
    Inventor: Motohiro Shimizu
  • Patent number: 6627100
    Abstract: A current/voltage non-linear resistor comprises a sintered body having a main component of ZnO, an electrode applied to a surface of the sintered body and an insulation material applied to another surface of the sintered body. The main component containing, as auxiliary components, Bi, Co, Mn, Sb, Ni and Al, and the contents of the auxiliary components are respectively expressed as Bi2O3, Co2O3, MnO, Sb2O3, NiO and Al3+, of Bi2O3: 0.3 to 2 mol %, Co2O3: 0.3 to 1.5 mol %, MnO: 0.4 to 6 mol %, Sb2O3: 0.8 to 7 mol %, NiO: 0.5 to 5 mol % and Al3+: 0.001 to 0.02 mol %; a Bi2O3 crystalline phase in the sintered body including an &agr;-Bi2O3 phase representing at least 80% of the total Bi2O3 phase.
    Type: Grant
    Filed: April 25, 2001
    Date of Patent: September 30, 2003
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hideyasu Ando, Takeshi Udagawa, Yoshiyasu Ito, Hironori Suzuki, Hiroyoshi Narita, Koji Higashibata, Toshiya Imai, Kiyokazu Umehara, Yoshikazu Tanno
  • Patent number: 6623662
    Abstract: A two-layer coating for the outer surface of the display screen of a color cathode ray tube (CRT) includes an inner carbon black-based layer and an outer silica-based layer. The inner layer is antistatic, while the outer layer is antireflective. To compensate for the increased absorption of blue light by the carbon black particles, which results in a color video image having a yellowish tint, a blue additive, such as a pigment or dye, is added to the coating to adjust its light absorbance characteristics and provide uniform light absorbance over the entire visible spectrum of 400-700 nm for improved color video image presentation.
    Type: Grant
    Filed: May 23, 2001
    Date of Patent: September 23, 2003
    Assignee: Chunghwa Picture Tubes, Ltd.
    Inventors: Kuo-Chu Wang, Chun-Min Hu
  • Patent number: 6623656
    Abstract: Chemical vapor deposition (CVD) precursor compositions for forming Zr/Hf doped gate dielectric, ferroelectric, or high dielectric constant (k) metal oxide thin films. The precursor composition in one embodiment comprises a metal precursor having a general formula M(&bgr;-diketonate)2(OR)2, wherein M is Zr or Hf, and R is t-butyl. The precursor composition may also comprise a solvent medium selected from the group consisting of ethers, glymes, tetraglymes, amines, polyamines, alcohols, glycols, aliphatic hydrocarbon solvents, aromatic hydrocarbon solvents, cyclic ethers, and compatible combinations of two or more of the foregoing.
    Type: Grant
    Filed: February 26, 2001
    Date of Patent: September 23, 2003
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Thomas H. Baum, Chongying Xu, Witold Paw, Bryan C. Hendrix, Jeffrey F. Roeder, Ziyun Wang
  • Patent number: 6623663
    Abstract: An electroconductive paste is provided containing from about 5% to 18% by weight of an organic vehicle comprising a solvent and a binder, from about 80% to 93% by weight of an electroconductive metal powder in a spherical or granular shape and with a particle diameter in the range of about 0.1 to 50 &mgr;m, and from about 2% to 10% by weight of a resin powder with a particle diameter in the range of about 0.1 to 50 &mgr;m which is insoluble in the solvent and has a low level of water absorption. When this paste is used for forming via hole conductors to be converted to external electrode terminals, there is no problem of shape deformation of the via hole conductors. Furthermore, it is possible to restrict crack generation on the sintered electroconductive metal and to restrict breakage of the ceramic areas in the vicinity of the via hole conductors.
    Type: Grant
    Filed: August 24, 2001
    Date of Patent: September 23, 2003
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Kazuhito Oshita, Yoshiki Nakagawa
  • Publication number: 20030168644
    Abstract: Provided a transparent conductive layer and an image display device employing the transparent conductive layer. The transparent conductive layer includes a conductive layer containing a metal oxide and a protective layer formed on the conductive layer. The protective layer contains a hydrolyzed and polycondensated product of silicon alkoxide and at least one of mercapto compound and its hydrolyzed and polyocndensated product.
    Type: Application
    Filed: February 12, 2002
    Publication date: September 11, 2003
    Applicant: Samsung SDI Co., Ltd.
    Inventors: Sang-min Lee, Ji-won Lee, Kang-il Seo, Jae-man Choi
  • Patent number: 6616857
    Abstract: A ferroelectric Pb5Ge3O11 (PGO) thin film is provided with a metal organic vapor deposition (MOCVD) process and RTP (Rapid Thermal Process) annealing techniques. The PGO film is substantially crystallization with c-axis orientation at temperature between 450 and 650° C. The PGO film has an average grain size of about 0.5 microns, with a deviation in grain size uniformity of less than 10%. Good ferroelectric properties are obtained for a 150 nm thick film with Ir electrodes. The films also show fatigue-free characteristics: no fatigue was observed up to 1×109 switching cycles. The leakage currents increase with increasing applied voltage, and are about 3.6×10−7 A/cm2 at 100 kV/cm. The dielectric constant shows a behavior similar to most ferroelectric materials, with a maximum dielectric constant of about 45. These high quality MOCVD Pb5Ge3O11 films can be used for high density single transistor ferroelectric memory applications because of the homogeneity of the PGO film grain size.
    Type: Grant
    Filed: August 29, 2001
    Date of Patent: September 9, 2003
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Tingkai Li, Fengyan Zhang, Yoshi Ono, Sheng Teng Hsu
  • Patent number: 6613123
    Abstract: Variable melting point solders and brazes having compositions comprising a metal or metal alloy powder having a low melting point with a metal powder having a higher melting point. Upon heating, in-situ alloying occurs between the low and high melting point powders such that solidification occurs at the solder or braze temperature thus creating a new, higher solidus (or melting) temperature with little or no intermetallic formation. A solder comprising Sn powder mixed with a Sn—Bi eutectic powder having a composition of 63 wt % Sn:57 wt % Bi such that the bulk composition of the mixture is 3 wt % Bi has an initial melting point of 140° C. and a re-melt temperature of 220° C. after heating due to in-situ alloying. A composition of Pb powder mixed with a Pb—Sn eutectic powder having a composition of 62 wt % Sn:58 wt % Pb such that the bulk composition of the mixture is 15 wt % Sn has an initial melting point of 183° C. and a re-melt temperature of 250° C.
    Type: Grant
    Filed: May 24, 2001
    Date of Patent: September 2, 2003
    Inventors: Stephen F. Corbin, Douglas J. McIsaac, Xin Qiao
  • Patent number: 6607679
    Abstract: In an organic PTC thermistor comprising a matrix of at least two high-molecular weight compounds, a low-molecular weight organic compound, and conductive particles having spiky protuberances, a thermoplastic elastomer is contained in the matrix whereby the thermistor is improved in reliability and performance stability.
    Type: Grant
    Filed: January 12, 2001
    Date of Patent: August 19, 2003
    Assignee: TDK Corporation
    Inventors: Tokuhiko Handa, Yukie Yoshinari
  • Publication number: 20030131878
    Abstract: Thermoelectric material is produced through a process sequence including a liquid quenching, a primary solidification such as a hot pressing or extrusion and an upset forging; although the C-planes of the crystal grains are directed in parallel to the direction in which the force is exerted on flakes during the hot pressing/extrusion, the a-axes are randomly directed; the a-axes are oriented in a predetermined direction through the upset forging; this results in improvement of electric resistivity without reduction in the figure of merit.
    Type: Application
    Filed: December 12, 2002
    Publication date: July 17, 2003
    Inventors: Yuma Horio, Junya Suzuki
  • Patent number: 6589447
    Abstract: Provided is a compound semiconductor single crystal and a fabrication process for a compound semiconductor device capable of forming a prescribed pattern without requirement of many steps. A group V element component in a III-V compound semiconductor single crystal or a group VI element component in the II-VI compound semiconductor single crystal is reduced less than a composition ratio expressed by a chemical formula of a corresponding compound semiconductor single crystal in a pattern-shaped portion.
    Type: Grant
    Filed: December 18, 2000
    Date of Patent: July 8, 2003
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Junya Ishizaki, Nobuhiko Noto
  • Patent number: 6585916
    Abstract: An electrically conductive paste which ensures formation of a dense electrode film even in a low-oxygen-concentration atmosphere without strict control of the atmosphere is described. The electrically conductive paste comprising Cu powder, glass frit and an organic binder resin, wherein the glass frit comprises Zn- and Cu-containing borosilicate glass and in the melt state has a contact angle with respect to Cu of 90° or less as measured in a nitrogen atmosphere.
    Type: Grant
    Filed: January 10, 2001
    Date of Patent: July 1, 2003
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Yukio Sanada, Hiromasa Takahashi, Shinichiro Kuroiwa, Masaki Fujiyama, Kunihiko Hamada, Akira Otani
  • Publication number: 20030118865
    Abstract: Transparent conducting oxide compositions having enhanced work function, for use with anode structures and light-emitting diode devices.
    Type: Application
    Filed: August 27, 2002
    Publication date: June 26, 2003
    Inventors: Tobin J. Marks, He Yan, Jun Ni, Ji Cul, Anchuan Wang, Nikki L. Edleman
  • Patent number: 6579475
    Abstract: The present invention includes lithium cobalt oxides having hexagonal layered crystal structures and methods of making same. The lithium cobalt oxides of the invention have the formula LiwCo1−xAxO2+y wherein 0.96≦w≦1.05, 0≦x≦0.05, −0.02≦y≦0.02 and A is one or more dopants. The lithium cobalt oxides of the invention preferably have a position within the principal component space defined by the relationship axi+byi≦c, wherein xi={right arrow over (S)}i&Circlesolid;{right arrow over (P)}c1; yi={right arrow over (S)}i&Circlesolid;{right arrow over (P)}c2; the vector {right arrow over (S)}i is the x-ray spectrum for the LiwCo1−xAxO2+y compound; the vectors {right arrow over (P)}c1 and {right arrow over (P)}c2 defining the principal component space are determined by measuring the x-ray powder diffraction values {right arrow over (S)}i between 15° and 120° using a 0.
    Type: Grant
    Filed: December 7, 2000
    Date of Patent: June 17, 2003
    Assignee: FMC Corporation
    Inventors: Yuan Gao, Marina Yakovleva, John L. Burba, III, John F. Engel
  • Patent number: 6579474
    Abstract: A conductive composition, and articles and methods using the conductive composition are disclosed.
    Type: Grant
    Filed: February 12, 2001
    Date of Patent: June 17, 2003
    Assignee: Fujitsu Limited
    Inventors: Mark Thomas McCormack, Hunt Hang Jiang, Solomon I. Beilin, Albert Wong Chan, Yasuhito Takahashi
  • Patent number: 6576159
    Abstract: The invention is related to ionic compounds, derivatives of malononitrile, in which the anionic load has been displaced. An ionic compound disclosed by the invention includes an anionic portion combined with at least one cationic portion M+m in sufficient number to ensure overall electronic neutrality; the compound is further comprised of M as a hydroxonium, a nitrosonium NO+, an ammonium —NH4+, a metallic cation with the valence m, an organic cation with the valence m, or an organometallic cation with the valence m. The anionic portion corresponds to one of the formulas RD—Y—C(C≡N)2− or Z—C(C≡N)2− in which Z is an electroattractive group, RD is an organic radical, and Y is a carbonyl, a thiocarbonyl, a sulfonyl, a sulfinyl, or a phosphonyl. The compounds can be used notably for ionic conducting materials, electronic conducting materials, colorants, and the catalysis of various chemical reactions.
    Type: Grant
    Filed: August 9, 2000
    Date of Patent: June 10, 2003
    Assignees: Hydro-Quebec, Centre National de la Recherche Scientifique
    Inventors: Christophe Michot, Michel Armand, Michel Gauthier, Yves Choquette
  • Patent number: 6576336
    Abstract: A coating composition having a water soluble emulsion polymer binder. The binder is a blend of a first emulsion containing a conjugated diene as monomer or comonomer, and a second emulsion containing an acrylic polymer. An effective amount of electrically conductive particles is dispersed in the binder. The particles include a combination of graphite particles, and metal containing particles. A solvent effective amount of water is also present.
    Type: Grant
    Filed: September 11, 1998
    Date of Patent: June 10, 2003
    Assignee: Unitech Corporation, LLC
    Inventor: Wayne B. LeGrande
  • Patent number: 6569360
    Abstract: The present invention provides a generic method of preparing a metal matrix composite with a textured compound. A “roller-skate” structure starting powder with a mixture of plate-like particles and smaller particles provides better flow compatibility, higher packing density, better densification and texture formation in preparing a metal matrix composite with a textured compound. In particular, the invention provides a method of preparing a textured superconducting composite wire with an improved critical current density.
    Type: Grant
    Filed: July 25, 2002
    Date of Patent: May 27, 2003
    Inventor: Hengning Wu
  • Patent number: 6558582
    Abstract: A semiconductive ceramic contains a compound of MgO and SiO2 as a main component, and an iron oxide such as FeO, Fe2O3, and Fe3O4 as an electric conductivity provider. According to necessity, the semiconductive ceramic further contains at least one of zinc oxide, niobium oxide, and chromium oxide as an electric conductivity provider. The semiconductive ceramic has a desired electric conductivity and a mechanical strength required for structural material, thus being usable in various applications.
    Type: Grant
    Filed: November 6, 2000
    Date of Patent: May 6, 2003
    Assignee: Kyocera Corporation
    Inventors: Tetsuji Hayasaki, Masahiro Okumura