Metal Compound Containing Patents (Class 252/518.1)
  • Patent number: 8080182
    Abstract: The oxide sintered body mainly consists of gallium, indium, and oxygen, and a content of the gallium is more than 65 at. % and less than 100 at. % with respect to all metallic elements, and the density of the sintered body is 5.0 g/cm3 or more. The oxide film is obtained using the oxide sintered body as a sputtering target, and the shortest wavelength of the light where the light transmittance of the film itself except the substrate becomes 50% is 320 nm or less. The transparent base material is obtained by forming the oxide film on one surface or both surfaces of a glass plate, a quartz plate, a resin plate or resin film where one surface or both surfaces are covered by a gas barrier film, or on one surface or both surfaces of a transparent plate selected from a resin plate or a resin film where the gas barrier film is inserted in the inside.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: December 20, 2011
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Tokuyuki Nakayama, Yoshiyuki Abe
  • Patent number: 8080181
    Abstract: Improved coextruded ribbons of material, such as can be used for making relatively fine conductive or ceramic lines or structures, having relatively high aspect ratios, are provided. The inks used to form the coextruded structures lack a yield stress and a high viscosity, but react at their interface to form a material having a finite yield stress or a high viscosity. This material then supports the shape of the extruded ink such that structures can be formed therefrom.
    Type: Grant
    Filed: May 13, 2008
    Date of Patent: December 20, 2011
    Assignee: SolarWorld Innovations GmbH
    Inventors: David K. Fork, Ranjeet Rao, Frank Benner
  • Patent number: 8075915
    Abstract: The present invention provides a physiologically compatible conductive agent comprising (a) a long chain water-soluble ionic polymeric thickening agent selected from the group consisting of a copolymer of methyl vinyl ether and maleic anhydride, carboxy polymethylene polymer, and mixtures thereof, present in an amount from about 0.05 wt. % to about 10 wt. %; (b) an unbranched or branched alcohol having from 1 to about 4 carbon atoms present in an amount up to about 70 wt. %; and (c) the balance water. The present invention also provides a physiologically compatible conductive agent comprising long chain water-soluble ionic polymeric thickening agent selected from the group consisting of a copolymer of methyl vinyl ether and maleic anhydride, carboxy polymethylene polymer, and mixtures thereof, present in an amount from about 0.05 wt. % to about 10 wt. %; (b) a surface tension reducing amount of a surfactant; and (c) the balance water.
    Type: Grant
    Filed: September 28, 2005
    Date of Patent: December 13, 2011
    Inventor: Gilbert Buchalter
  • Publication number: 20110297202
    Abstract: A thermoelectric material including: a nanostructure; a discontinuous area disposed in the nanostructure, and an uneven portion disposed on the nano structure.
    Type: Application
    Filed: May 24, 2011
    Publication date: December 8, 2011
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Eun-kyung LEE, Byoung-lyong CHOI, Jun-ho LEE, Dong-mok WHANG, Jong-woon LEE
  • Patent number: 8066913
    Abstract: The present invention relates to Li—Ni composite oxide particles for a non-aqueous electrolyte secondary cell which have a large charge/discharge capacity, an excellent packing density and excellent storage performance. The Li—Ni composite oxide particles for a non-aqueous electrolyte secondary cell which have a composition represented by the formula: LixNi1-y-zCoyAlz02 in which 0.9<x<1.3; 0.1<y<0.3; and 0<z<0.3, wherein the composite oxide particles have a rate of change in specific surface area of not more than 10% as measured between before and after applying a pressure of 1 t/cm2 thereto, and a sulfate ion content of not more than 1.0%, can be produced by mixing Ni—Co hydroxide particles having a sulfate ion content of not more than 1.0% whose surface is coated with an Al compound having a primary particle diameter of not more than 1 ?m, with a lithium compound; and calcining the resulting mixture.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: November 29, 2011
    Assignee: Toda Kogyo Corporation
    Inventors: Kazuhiko Kikuya, Osamu Sasaki, Teruaki Santoki, Hiroshi Yamamoto
  • Publication number: 20110278509
    Abstract: To provide a method for preparing a mayenite-containing oxide containing a mayenite type compound and having a hydride ion density of at least 1×1018/cm3 without need for expensive facilities, control of complicated reaction conditions or a long period of reaction time. A method for preparing a mayenite-containing oxide, which comprises a firing step of heating a starting material having a molar ratio of CaO:Al2O3 being from 9:10 to 14:5 based on the oxides at a temperature of from 900 to 1,300° C. to obtain a fired powder and a hydrogenation step of firing the fired powder at a temperature of at least 1,210° C. and lower than 1,350° C.
    Type: Application
    Filed: July 28, 2011
    Publication date: November 17, 2011
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Kazuhiro ITO, Satoru Watanabe, Naomichi Miyakawa, Setsuro Ito, Kazunari Watanabe
  • Patent number: 8057780
    Abstract: Disclosed herein is a method for synthesizing a nanoparticle using a carbene derivative. More specifically, provided is a method for synthesizing a nanoparticle by adding one or more precursors to an organic solvent to grow a crystal, wherein a specific carbene derivative is used as the precursor.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: November 15, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Eun Joo Jang, Seung Uk Son
  • Patent number: 8057710
    Abstract: Disclosed are a composite which can be used as an electrode active material for a secondary battery, and the secondary battery comprising the same. The composite includes: a first material selected from the group consisting of metals and metalloids capable of being reversibly alloyed with lithium; a second material selected from the group consisting of metals incapable of being alloyed with lithium, compounds containing the metals, and compounds containing metals or metalloids capable of being irreversibly alloyed with lithium; and a third material which is at least one kind of metal having a higher electrical conductivity than the second material, wherein a content of the third material ranges from 10 to 10,000 ppm based on the total weight of the composite.
    Type: Grant
    Filed: May 4, 2010
    Date of Patent: November 15, 2011
    Assignee: LG Chem, Ltd.
    Inventors: Yongju Lee, Insung Uhm, Seungyoun Choi, Jeyoung Kim, Dong Sub Jung
  • Patent number: 8044358
    Abstract: A neutron sensing material detector includes an anode; a cathode; and a semiconductor material disposed between the anode and the cathode. An electric field is applied between the anode and cathode. The semiconductor material is composed of a ternary composition of stoichiometry LiM2+GV and exhibits an antifluorite-type ordering, where the stoichiometric fractions are Li=1, M2+=1, and GV=1. Electron-hole pairs are created by absorption of radiation, and the electron-hole pairs are detected by the current they generate between the anode and the cathode. The anode may include an array of pixels to provide improved spatial and energy resolution over the face of the anode. The signal value for each pixel can be mapped to a color or grey scale normalized to all the other pixel signal values for a particular moment in time. A guard ring or guard grid may be provided to reduce leakage current.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: October 25, 2011
    Assignee: General Electric Company
    Inventors: Adrian Ivan, Daniel Bruno McDevitt, Brent Allen Clothier
  • Patent number: 8038857
    Abstract: Provided are a thin film transistor substrate having a transparent electroconductive film in which residues and so on resulting etching are hardly generated; a process for producing the same; and a liquid crystal display using this thin film transistor substrate. A thin film transistor substrate, comprising a transparent substrate, a source electrode formed over the transparent substrate, a drain electrode formed over the transparent substrate, and a transparent pixel electrode formed over the transparent substrate, wherein the transparent pixel electrode is a transparent electroconductive film which is made mainly of indium oxide, and further comprises one or two or more oxides selected from tungsten oxide, molybdenum oxide, nickel oxide and niobium oxide, and the transparent pixel electrode is electrically connected to the source electrode or the drain electrode; a process for producing the same; and a liquid crystal display using this thin film transistor substrate.
    Type: Grant
    Filed: March 2, 2005
    Date of Patent: October 18, 2011
    Assignee: Idemitsu Kosan Co., Ltd.
    Inventors: Kazuyoshi Inoue, Shigekazu Tomai, Masato Matsubara
  • Patent number: 8034260
    Abstract: Disclosed is a gel electrolyte for a photosensitive dye and method for manufacturing the same. First, bismaleimide and barbituric acid are dissolved in Brönsted base solution to form a gelling additive. Subsequently, the gelling additive is added into an ionic liquid electrolyte. The liquid electrolyte is then gelled at room temperature to form a gel electrolyte for the photosensitive dye utilized in dye sensitized solar cells. In addition, barbituric acid is further added into the gelling additive to enhance the gelling rate of the ionic liquid electrolyte.
    Type: Grant
    Filed: April 16, 2009
    Date of Patent: October 11, 2011
    Assignee: Industrial Technology Research Institute
    Inventors: Yueh-Wei Lin, Ya-Tin Hsu, Tsung-Hsiung Wang, Jing-Pin Pan, Meng-Chin Tsui
  • Publication number: 20110233480
    Abstract: There is provided a producing method of metal fine particles or metal oxide fine particles for producing metal fine particles or metal oxide fine particles by atomizing raw materials by performing processes including an oxidizing process and a reducing process to the raw materials composed of metal or a metal compound.
    Type: Application
    Filed: March 23, 2011
    Publication date: September 29, 2011
    Applicants: HITACHI CABLE, LTD., TOHOKU UNIVERSITY
    Inventors: Yamato HAYASHI, Yoshihiro SEKIGUCHI, Hirotsugu TAKIZAWA, Dai ISHIKAWA, Tomiya ABE
  • Publication number: 20110227007
    Abstract: A method of manufacturing a quantum dot, the method including: mixing of a Group II precursor and a Group III precursor in a solvent to prepare a first mixture; heating the first mixture at a temperature of about 200° C. to about 350° C.; adding a Group V precursor and a Group VI precursor to the first mixture while maintaining the first mixture at the temperature of about 200° C. to about 350° C. to prepare a second mixture; and maintaining the second mixture at the temperature of about 200° C. to about 350° C. to form a quantum dot.
    Type: Application
    Filed: October 19, 2010
    Publication date: September 22, 2011
    Applicants: SAMSUNG ELECTRONICS CO., LTD., SNU R&DB FOUNDATION
    Inventors: Jong Hyuk KANG, Junghan SHIN, Jae Byung PARK, Dong-Hoon LEE, Minki NAM, Kookheon CHAR, Seonghoon LEE, WanKi BAE, Jaehoon LIM, Joohyun JUNG
  • Publication number: 20110229793
    Abstract: A metal oxide electrode catalyst which includes a metal oxide (Y) obtained by heat treating a metal compound (X) under an oxygen-containing atmosphere. The valence of the metal in the metal compound (X) is smaller than the valence of the metal in the metal oxide (Y). Further, the metal oxide electrocatalyst has an ionization potential in the range of 4.9 to 5.5 eV.
    Type: Application
    Filed: July 23, 2008
    Publication date: September 22, 2011
    Applicant: SHOWA DENKO K.K.
    Inventors: Tadatoshi Kurozumi, Toshikazu Shishikura, Hiroshi Konuma
  • Publication number: 20110229737
    Abstract: Provided is a method for producing a transparent conductive film which is formed via a coating step, a drying step and a baking step, wherein the baking step is characterized in that the dried coating film containing the organic metal compound as the main component is baked by being heated to a baking temperature or higher, at which at least the inorganic component is crystallized, under an oxygen-containing atmosphere having a dewpoint of ?10° C. or lower, whereby an organic component contained in the dried coating film is removed therefrom by a heat decomposition, a combustion or the combination thereof to thereby form a conductive oxide microparticle layer densely filled with conductive oxide microparticles containing the metal oxide as a main component.
    Type: Application
    Filed: December 1, 2009
    Publication date: September 22, 2011
    Inventors: Masaya Yukinobu, Yoshihiro Otsuka
  • Publication number: 20110223480
    Abstract: The present invention refers to a nanostructured material comprising nanoparticles bound to its surface. The nanostructured material comprises nanoparticles which are bound to the surface, wherein the nanoparticles have a maximal dimension of about 20 nm. Furthermore, the nanostructured material comprises pores having a maximal dimension of between about 2 nm to about 5 ?m. The nanoparticles bound on the surface of the nanostructured material are noble metal nanoparticles or metal oxide nanoparticles or mixtures thereof. The present invention also refers to a method of their manufacture and the use of these materials as electrode material.
    Type: Application
    Filed: September 7, 2009
    Publication date: September 15, 2011
    Inventors: Tsyh Ying Grace Wee, Nopphawan Phonthammachai, Madhavi Srinivasan, Subodh Mhaisalkar, Yin Chiang Freddy Boey
  • Publication number: 20110220186
    Abstract: Provided is a method of forming a nanocomposite solution, and a nanocomposite photovoltaic device. In the method, a metal oxide nanorod solution is prepared and a nanoparticle solution is prepared. The metal oxide nanorod solution and the nanoparticle solution are mixed to form a nanocomposite solution.
    Type: Application
    Filed: August 20, 2010
    Publication date: September 15, 2011
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventor: Jonghyurk PARK
  • Publication number: 20110215282
    Abstract: A method of adsorbing dye to a metal oxide particle by using a supercritical fluid, and a solar cell prepared using the method.
    Type: Application
    Filed: July 21, 2010
    Publication date: September 8, 2011
    Inventors: Byong-Cheol Shin, Ji-Won Lee, Moon-Sung Kang, Jae-Do Nam, Jun-Ho Lee
  • Patent number: 8012377
    Abstract: A method of synthesizing doped semiconductor nanocrystals.
    Type: Grant
    Filed: February 4, 2009
    Date of Patent: September 6, 2011
    Assignee: The Board of Trustees of the University of Arkansas
    Inventors: Xiaogang Peng, Narayan Pradhan
  • Patent number: 8012380
    Abstract: A multi-phase proton conducting material comprising a proton-conducting ceramic phase and a stabilizing ceramic phase. Under the presence of a partial pressure gradient of hydrogen across the membrane or under the influence of an electrical potential, a membrane fabricated with this material selectively transports hydrogen ions through the proton conducting phase, which results in ultrahigh purity hydrogen permeation through the membrane. The stabilizing ceramic phase may be substantially structurally and chemically identical to at least one product of a reaction between the proton conducting phase and at least one expected gas under operating conditions of a membrane fabricated using the material. In a barium cerate-based proton conducting membrane, one stabilizing phase is ceria.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: September 6, 2011
    Assignee: Ceramatec, Inc.
    Inventors: S. Elangovan, Balakrishnan G. Nair, Troy Small, Brian Heck
  • Publication number: 20110212382
    Abstract: Dielectric compositions that include compound of the formula [(M?)1?x(A?)x][(M?)1?y?z,(B?)y(C?)z]O3??(VO)? and protonated dielectric compositions that include a protonated dielectric compound within the formula [(M?)1?x(A?)x](M?)1?y?z(B?)y(C?)z]O3??+h(Vo)?(H*)2h are disclosed. Composite materials that employ one or more of these dielectric compounds together with an electrolyte also are disclosed. Composite material that employs one or more of these dielectric compounds together with an electrochemally active material also are disclosed.
    Type: Application
    Filed: October 7, 2010
    Publication date: September 1, 2011
    Applicants: The Penn State Research Foundation, Recapping, Inc.
    Inventors: Clive A. Randall, Leslie E. Cross, Aram Yang, Niall J. Donnelly, Ramakrishnan Rajagopalan, Amanda Lou Baker
  • Patent number: 8007692
    Abstract: It is aimed at providing: a coating liquid for nickel film formation suitable for forming a nickel film combinedly possessing an excellent electroconductivity and an excellent film-forming ability (surface flatness), by a coating method, particularly inkjet printing; a nickel film obtained by using the nickel film formation coating liquid; and a production method of such a nickel film. A coating liquid for nickel film formation comprises: nickel formate; and an amine based solvent having a boiling point within a range between 180° C. inclusive and 300° C. exclusive, as a main solvent, thereby allowing obtainment of a coating liquid for nickel film formation suitable for inkjet printing; and there can be obtained a uniform and flat nickel film having a low resistance and being excellent in film strength (adhesion force), by coating the nickel film formation coating liquid onto a substrate; drying the coated coating liquid; and subsequently calcining the dried coating liquid at a temperature of 200° C.
    Type: Grant
    Filed: June 16, 2006
    Date of Patent: August 30, 2011
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Yoshihiro Otsuka, Masaya Yukinobu
  • Patent number: 7998367
    Abstract: According to various embodiments of the present teachings, there is a metal-carbon nanotubes composite and methods of making it. A method of forming a metal-carbon nanotube composite can include providing a plurality of carbon nanotubes and providing a molten metal. The method can also include mixing the plurality of carbon nanotubes with the molten metal to form a mixture of the carbon nanotubes and the molten metal and solidifying the mixture of the carbon nanotubes and the molten metal to form a metal-carbon nanotube composite.
    Type: Grant
    Filed: June 20, 2007
    Date of Patent: August 16, 2011
    Assignee: STC.UNM
    Inventors: Tariq A. Khraishi, Marwan S. Al-Haik
  • Patent number: 7998603
    Abstract: A transparent conductive film which is amorphous, has a high transmittance of light in the visible region of short wavelengths, and is hard to beak with respect to bending is provided. The transparent conductive film is an amorphous oxide film composed of Ga, In, and O, in which a Ga content ranges from 35 at. % to 45 at. % with respect to all metallic atoms, a resistivity ranges 1.2×10?3?·cm to 8.0×10?3?·cm, a film thickness is 500 nm or less, and a transmittance of light at a wavelength of 380 nm is 45% or more.
    Type: Grant
    Filed: October 14, 2009
    Date of Patent: August 16, 2011
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Tokuyuki Nakayama, Yoshiyuki Abe
  • Publication number: 20110195542
    Abstract: A method of providing solar cell electrode by electroless plating and an activator used therein are disclosed. The method of the present invention can be performed without silver paste, and comprises steps: (A) providing a silicon substrate; (B) contacting the silicon substrate with an activator, wherein the activator comprises: a noble metal or a noble metal compound, a thickening agent, and water; (C) washing the silicon substrate by a cleaning agent; (D) dipping the silicon substrate in an electroless nickel plating solution to perform electroless plating. The method of providing solar cell electrode by electroless plating of the present invention has high selectivity between silicon nitride and silicon, large working window, and is steady, easily to be controlled, therefore is suitable for being used in the fabrication of the electrodes of the solar cell substrate.
    Type: Application
    Filed: January 26, 2011
    Publication date: August 11, 2011
    Applicant: E-CHEM ENTERPRISE CORP.
    Inventors: Chia Wei Chou, Su-Fei Hsu, Michael Liu
  • Patent number: 7988888
    Abstract: A conductive pattern forming ink for forming a conductive pattern on a substrate by a droplet discharge method includes: metal particles; an aqueous dispersion medium in which the metal particles are dispersed; galactitol; and a polyglycerol compound having a polyglycerol skeleton. In the ink, H shown in the following formula (I) is 0.10 to 0.
    Type: Grant
    Filed: December 2, 2008
    Date of Patent: August 2, 2011
    Assignee: Seiko Epson Corporation
    Inventor: Naoyuki Toyoda
  • Patent number: 7988886
    Abstract: A conductive pattern forming ink for forming a conductive pattern on a substrate by a droplet discharge method includes: metal particles; an aqueous dispersion medium in which the metal particles are dispersed; inositol; and a polyglycerol compound having a polyglycerol skeleton. In the ink, H shown in the following formula (I) is 0.050 to 0.
    Type: Grant
    Filed: December 2, 2008
    Date of Patent: August 2, 2011
    Assignee: Seiko Epson Corporation
    Inventor: Naoyuki Toyoda
  • Patent number: 7988880
    Abstract: In order to provide a novel spinel type lithium transition metal oxide (LMO) having excellent power performance characteristics, in which preferably both the power performance characteristics and the cycle performance at high temperature life characteristics may be balanced, a novel spinel type lithium transition metal oxide with excellent power performance characteristics is proposed by defining the inter-atomic distance Li—O to be 1.978 ? to 2.006 ? as measured by the Rietveld method using the fundamental method in a lithium transition metal oxide represented by the general formula Li1+xM2?xO4 (where M is a transition metal consisting of three elements Mn, Al and Mg and x is 0.01 to 0.08).
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: August 2, 2011
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Naoki Kumada, Shinya Kagei, Yoshimi Hata, Kenji Sasaki, Yasuhiro Ochi, Keisuke Miyanohara
  • Publication number: 20110180198
    Abstract: A purpose of the present invention is to provide a conductive paste which is capable to prevent the structural defect and to provide a method for producing electronic components including an internal electrode layer formed by the conductive paste. A conductive paste comprises metallic particles, solvent, rein, a first inhibitor, a second inhibitor and a third inhibitor, wherein sintering start temperatures of the first inhibitor, the second inhibitor and the third inhibitor are higher than a sintering start temperature of the metallic particles, when an average particle size of the first inhibitor is defined as “a”, an average particle size of the second inhibitor is defined as “b”, an average particle size of the third inhibitor is defined as “c”, “a”, “b” and “c” fulfill a predetermined relation.
    Type: Application
    Filed: January 13, 2011
    Publication date: July 28, 2011
    Inventors: Sanshiro AMAN, Satoshi Takagi, Yuki Kamada
  • Patent number: 7985476
    Abstract: The present invention provides a transparent inorganic oxide dispersion which makes it possible to improve the refractive index and mechanical characteristics and to maintain transparency by modifying the surface of inorganic oxide particles with a surface modifier having one or more reactive functional groups; and an inorganic oxide particle-containing resin composition in which the transparent inorganic oxide dispersion and a resin are compositely integrated by the polymerization reaction, a composition for sealing a light emitting element, a light emitting element, and a method for producing an inorganic oxide particle-containing resin composition; and a hard coat film which has high transparency and makes it possible to improve a refractive index and tenacity, an optical functional film, an optical lens and an optical component.
    Type: Grant
    Filed: October 24, 2006
    Date of Patent: July 26, 2011
    Assignee: Sumitomo Osaka Cement Co., Ltd.
    Inventors: Yasuyuki Kurino, Toru Kinoshita, Naoki Takamiya, Yoshitaka Yamamoto, Tsuyoshi Kawase, Yoshizumi Ishikawa, Yoichi Sato, Ryosuke Nakamura, Yuko Katsube
  • Patent number: 7985503
    Abstract: The invention relates to a method for preparing multiple metal oxides and intermediate compound, i.e. spherical nickelous hydroxide which is lopped. The intermediate compound is prepared by: mixing bivalent nickel salt, cobalt salt, ammonia water and ammonium salt to form solution containing complex; then adding the said solution containing complex with the mixture solution of metal salt(s) and alkali into reaction vessel in parallel flow, stirring to form precipitate of spherical nickelous hydroxide which is dopped, and washing to remove the impurities. The resulting spherical nickelous hydroxide which is dopped, as an intermediate compound, can be used to produce multiple metal oxides. The resulting multiple metal oxides can be used as anode active material. The spherical nickelous hydroxide has advantages of uniform size and narrow size distribution. The multiple metal oxides has high electric conductivity and cycle performance, particularly, is suitable to be used as anode material.
    Type: Grant
    Filed: June 27, 2005
    Date of Patent: July 26, 2011
    Assignee: Shenzhen Bak Battery Co., Ltd
    Inventors: Long Li, Can Ren
  • Patent number: 7981327
    Abstract: Disclosed is a method for producing a metal particle dispersion wherein a metal compound is reduced by using carbodihydrazide represented by the formula (1) below or a polybasic acid polyhydrazide represented by the formula (2) below (wherein R represents an n-valent polybasic acid residue) in a liquid medium. By reducing the metal compound in the presence of a compound having a function preventing discoloration of the metal, there can be obtained a metal particle dispersion having excellent discoloration preventing properties. Metal particles produced by such methods have a uniform particle diameter and are excellent in dispersion stability. By using a conductive resin composition or conductive ink containing a metal particle dispersion obtained by such production methods, there can be formed a conductive coating film, such as a conductive circuit or an electromagnetic layer, having good characteristics.
    Type: Grant
    Filed: October 13, 2006
    Date of Patent: July 19, 2011
    Assignee: Toyo Ink Mfg. Co. Ltd.
    Inventors: Kaori Sakaguchi, Kinya Shiraishi
  • Patent number: 7981546
    Abstract: A lithium-containing composite oxide represented by the formula 1: LixNi1-y-z-v-wCoyAlzM1vM2wO2 is used as a positive electrode active material for a non-aqueous electrolyte secondary battery. The element M1 is at least one selected from the group consisting of Mn, Ti, Y, Nb, Mo, and W. The element M2 includes at least two selected from the group consisting of Mg, Ca, Sr, and Ba, and the element M2 includes at least Mg and Ca. The formula 1 satisfies 0.97?x?1.1, 0.05?y?0.35, 0.005?z?0.1, 0.0001?v?0.05, and 0.0001?w?0.05. The primary particles have a mean particle size of 0.1 ?m or more and 3 ?m or less, and the secondary particles have a mean particle size of 8 ?m or more and 20 ?m or less.
    Type: Grant
    Filed: April 17, 2006
    Date of Patent: July 19, 2011
    Assignees: Panasonic Corporation, Sumitomo Metal Mining Co., Ltd.
    Inventors: Takashi Takeuchi, Akihiro Taniguchi, Shuji Tsutsumi, Kensuke Nakura, Hiroshi Matsuno, Hideo Sasaoka, Satoshi Matsumoto
  • Patent number: 7972539
    Abstract: A process for producing a metallic-nanoparticle inorganic composite 10 includes an oxide film formation step in which an oxide film 14 having micropores is formed on a substrate by a sol-gel method in which a metal alkoxide is partly hydrolyzed by the action of an acid catalyst, a tin deposition step in which the oxide film 14 is brought into contact with an acidic aqueous solution of tin chloride, an excess Sn2+ ion removal step in which Sn2+ ions are removed from the micropores, a metallic-nanoparticle deposition step in which the oxide film 14 is brought into contact with an aqueous solution of a metal chelate to deposit metallic nanoparticles 12 in the micropores, and an excess metal ion removal step in which metal ions are removed from the micropores; and a metallic-nanoparticle inorganic composite 10 is produced by this process.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: July 5, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Miho Maruyama, Kenji Todori, Tsukasa Tada, Reiko Yoshimura, Yasuyuki Hotta, Ko Yamada, Masakazu Yamagiwa
  • Publication number: 20110147679
    Abstract: The present invention provides a method for recovering an oxide-containing battery material from a waste battery material. The recovery method includes steps (1) and (2) in this order: (1) a step of immersing a base taken out of the waste battery material and the base having an oxide-containing battery material, in a solvent that does not substantially dissolve the oxide, and stripping the battery material from the base thereby, and (2) a step of separating the battery material from the base.
    Type: Application
    Filed: June 30, 2009
    Publication date: June 23, 2011
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Hiroshi Inukai, Toshinori Isobe, Kenji Nakane
  • Patent number: 7964116
    Abstract: An aqueous primer composition comprising (A) a modified polyolefin aqueous dispersion, (B) an aqueous urethane resin and/or aqueous acrylic resin, (C) a conductive metal oxide and (D) aluminum flakes, characterized in that the solid mass ratio of component (A)/component (B) is in the range of 15/85-80/20, component (C) is present in a range of 50-300 parts by mass with respect to 100 parts by mass of the total resin solid portion in the composition, and component (D) is present in a range of 1-30 parts by mass with respect to 100 parts by mass of the total resin solid portion in the composition. It is possible to form high-brightness and high-chroma paint colors on plastic molded articles such as automobile bumpers, and to form primer coating films with sufficient conductivity and excellent water resistance and humidity resistance.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: June 21, 2011
    Assignee: Kansai Paint Co., Ltd.
    Inventors: Hideaki Katsuta, Masaharu Ishiguro
  • Patent number: 7964117
    Abstract: The present invention includes an electrochemical redox active material. The electrochemical redox active material includes a cocrystalline metallic compound having a general formula AxMO4-yXOy.M?O, where A is at least one metallic element selected from a group consisting of alkali metals, M and M? may be identical or different and independently of one another at least one selected from a group consisting of transition metals and semimetals, X is P or As, 0.9?x?1.1, and 0<y<4.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: June 21, 2011
    Assignee: Advanced Lithium Electrochemistry Co., Ltd.
    Inventors: Ben-Jie Liaw, Yu-Fang Chen, Wen-Ren Liu, Sheng-Shih Chang
  • Patent number: 7959833
    Abstract: A thermoelectric conversion material contains a metal oxide comprising M1, M2 and oxygen, wherein M1 is at least one selected from the group consisting of Ca, Sr and Ba and may contain an element selected from the group consisting of Li, Na, K, Mg, La, Ce, Nd, Sm, Bi and Pb, and wherein M2 comprises Cu as an essential element and may contain an element selected from the group consisting of Ti, V, Cr, Mn, Fe, Co and Ni. The mole ratio of M2 to M1 (M2/M1) is 1.2 to 2.2.
    Type: Grant
    Filed: April 11, 2006
    Date of Patent: June 14, 2011
    Assignee: Sumitomo Chemical Co., Ltd.
    Inventors: Tetsuro Tohma, Kazuo Sadaoka, Yoshio Uchida
  • Patent number: 7959832
    Abstract: The present invention is a transparent conductor containing electrically conductive particles, a binder, and an ultraviolet absorber. The transparent conductor of the present invention is so arranged that the ultraviolet absorber in the transparent conductor absorbs ultraviolet light even during irradiation of the transparent conductor with ultraviolet light, and is thus able to suppress influence of ultraviolet light on the electrically conductive particles.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: June 14, 2011
    Assignee: TDK Corporation
    Inventors: Noriyuki Yasuda, Chieko Yamada
  • Patent number: 7960059
    Abstract: Methods for producing an electrode active material precursor, comprising; a) producing a mixture comprising particles of lithium hydrogen phosphate, having a first average particle size, and a metal hydroxide, having a second average particle size; and b) grinding said mixture in a jet mill for a period of time suitable to produce a generally homogeneous mixture of particles having a third average size smaller than said first average size. The precursor may be used as a starting material for making electrode active materials for use in a battery, comprising lithium, a transition metal, and phosphate or a similar anion.
    Type: Grant
    Filed: March 12, 2008
    Date of Patent: June 14, 2011
    Assignee: Valence Technology, Inc.
    Inventors: George Adamson, Jeremy Barker, Allan Dirilo, Titus Faulkner, M. Yazid Saidi, Jeffrey Swoyer
  • Patent number: 7960033
    Abstract: A transparent conductive film which is amorphous, has a high transmittance of light in the visible region of short wavelengths, and is hard to beak with respect to bending is provided. The transparent conductive film is an amorphous oxide film composed of Ga, In, and O, in which a Ga content ranges from 35 at. % to 45 at. % with respect to all metallic atoms, a resistivity ranges 1.2×10?3 ?·cm to 8.0×10?3 ?·cm a film thickness is 500 nm or less, and a transmittance of light at a wavelength of 380 nm is 45% or more.
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: June 14, 2011
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Tokuyuki Nakayama, Yoshiyuki Abe
  • Patent number: 7960027
    Abstract: Transparent conductors and methods for fabricating transparent conductors are provided. In one exemplary embodiment, a transparent conductor comprises a substrate having a surface and a transparent conductive coating disposed on the surface of the substrate. The transparent conductive coating has a plurality of conductive components of at least one type and an aliphatic isocyanate-based polyurethane component.
    Type: Grant
    Filed: January 28, 2008
    Date of Patent: June 14, 2011
    Assignee: Honeywell International Inc.
    Inventors: James V. Guiheen, Yubing Wang, Peter A. Smith, Kwok Wai Lem
  • Patent number: 7955528
    Abstract: The present invention relates to a variety of conductive ink compositions comprising a metal complex compound having a special structure and an additive and a method for preparing the same, more particularly to conductive ink compositions comprising a metal complex compound obtained by reacting a metal or metal compound with an ammonium carbamate- or ammonium carbonate-based compound and an additive and a method for preparing the same.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: June 7, 2011
    Assignee: Inktec Co., Ltd
    Inventors: Kwang-Choon Chung, Hyun-Nam Cho, Myoung-Seon Gong, Yi-Sup Han, Jeong-Bin Park, Dong-Hun Nam, Seong-Yong Uhm, Young-Kwan Seo, Nam-Boo Cho
  • Patent number: 7951311
    Abstract: A non-lead composition for use as a thick-film resistor paste in electronic applications. The composition comprises particles of Li2RuO3 of diameter between 0.5 and 5 microns and a lead-free frit. The particles have had the lithium at or near primarily the surface of the particle at least partially exchanged for atoms of other metals.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: May 31, 2011
    Assignee: E.I. du Pont de Nemours and Company
    Inventors: Paul Douglas Vernooy, Alfred T. Walker, Kenneth Warren Hang
  • Publication number: 20110108776
    Abstract: There are disclosed insulated ultrafine powder comprising electroconductive ultrafine powder which is in the form of sphere, spheroid or acicular each having a minor axis in the range of 1 to 100 nm and an insulating film applied thereto; a process for producing the same which is capable of covering the surfaces of the insulated ultrafine powder with the insulating film having a thickness in the range of 0.3 to 100 nm without causing any clearance or vacancy; and a resin composite material which uses the same. A high dielectric constant of the material is assured by adding a small amount of insulated ultrafine powder wherein an insulating film is applied to the electroconductive ultrafine powder, while maintaining the processability and moldability that are the characteristics inherent in a resin material.
    Type: Application
    Filed: January 19, 2011
    Publication date: May 12, 2011
    Inventors: Takahiro MATSUMOTO, Toshiaki Yamada, Hirotaka Tsuruya
  • Patent number: 7938988
    Abstract: Provided are: a paste composition which is capable of keeping a desired function for a backside electrode of a solar cell and strengthening the bond between an aluminum electrode layer and a p type silicon semiconductor substrate even if glass frit as a substance giving a bad effect on the environment is not incorporated into the composition or the content of glass frit as a substance giving a bad effect on the environment therein is decreased; and a solar cell element provided with an electrode formed by use of the composition. The paste composition is a paste composition for forming an aluminum electrode layer (8) over a p type silicon semiconductor substrate (1), comprising aluminum powder, an organic vehicle, and a metal alkoxide. The solar cell element provided with the aluminum electrode layer (8) formed by applying the paste composition having the above-mentioned characteristic to the p type silicon semiconductor substrate (1) and then firing the resultant.
    Type: Grant
    Filed: June 23, 2005
    Date of Patent: May 10, 2011
    Assignee: Toyo Aluminium Kabushiki Kaisha
    Inventors: Takashi Watsuji, Haruzo Katoh, Ken Kikuchi
  • Patent number: 7938987
    Abstract: This invention relates generally to organized assemblies of carbon and non-carbon compounds and methods of making such organized structures. In preferred embodiments, the organized structures of the instant invention take the form of nanorods or their aggregate forms. More preferably, a nanorod is made up of a carbon nanotube filled, coated, or both filled and coated by a non-carbon material. This invention is further drawn to the separation of single-wall carbon nanotubes. In particular, it relates to the separation of semiconducting single-wall carbon nanotubes from conducting (or metallic) single-wall carbon nanotubes. It also relates to the separation of single-wall carbon nanotubes according to their chirality and/or diameter.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: May 10, 2011
    Assignee: Yazaki Corporation
    Inventors: Leonid Grigorian, Steven G. Colbern, Alex E. Moser, Robert L. Gump, Daniel A. Niebauer, Sean Imtiaz Brahim
  • Publication number: 20110101283
    Abstract: An electrically conductive composition and a fabrication method thereof are provided. The electrically conductive structure includes a major conductive material and an electrically conductive filler of an energy delivery character dispersed around the major conductive material. The method includes mixing a major conductive material with an electrically conductive filler of an energy delivery character to form a mixture, coating the mixture on a substrate, applying a second energy source to the mixture while simultaneously applying a first energy source for sintering the major conductive material to form an electrically conductive composition with a resistivity smaller than 10×10?3?·cm.
    Type: Application
    Filed: June 11, 2010
    Publication date: May 5, 2011
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chun-An Lu, Hong-Ching Lin
  • Publication number: 20110104571
    Abstract: This invention provides a nano-structured anode composition for a lithium metal cell. The composition comprises: (a) an integrated structure of electrically conductive nanometer-scaled filaments that are interconnected to form a porous network of electron-conducting paths comprising interconnected pores, wherein the nano-filaments have a transverse dimension less than 500 nm; and (b) micron- or nanometer-scaled particles of lithium, a lithium alloy, or a lithium-containing compound wherein at least one of the particles is surface-passivated or stabilized and the weight fraction of these particles is between 1% and 99% based on the total weight of these particles and the integrated structure together. Also provided is a lithium metal cell or battery, or lithium-air cell or battery, comprising such an anode. The battery exhibits an exceptionally high specific capacity, an excellent reversible capacity, and a long cycle life.
    Type: Application
    Filed: November 2, 2009
    Publication date: May 5, 2011
    Inventors: Aruna Zhamu, Bor Z. Jang
  • Patent number: 7935325
    Abstract: Rare earth-activated aluminum nitride powders are made using a solution-based approach to form a mixed hydroxide of aluminum and a rare earth metal, the mixed hydroxide is then converted into an ammonium metal fluoride, preferably a rare earth-substituted ammonium aluminum hexafluoride ((NH4)3Al1-xRExF6), and finally the rare earth-activated aluminum nitride is formed by ammonolysis of the ammonium metal fluoride at a high temperature. The use of a fluoride precursor in this process avoids sources of oxygen during the final ammonolysis step which is a major source of defects in the powder synthesis of nitrides. Also, because the aluminum nitride is formed from a mixed hydroxide co-precipitate, the distribution of the dopants in the powder is substantially homogeneous in each particle.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: May 3, 2011
    Assignees: OSRAM SYLVANIA Inc., The Regents of the University of California
    Inventors: Bing Han, Jonathan H. Tao, Madis Raukas, Keith A. Klinedinst, Jan B. Talbot, Kailash A. Mishra