Variable Threshold (e.g., Floating Gate Memory Device) Patents (Class 257/314)
  • Patent number: 10153194
    Abstract: An array of gated devices includes a plurality of gated devices arranged in rows and columns and individually including an elevationally inner region, a mid region elevationally outward of the inner region, and an elevationally outer region elevationally outward of the mid region. A plurality of access lines are individually laterally proximate the mid regions along individual of the rows. A plurality of data/sense lines are individually elevationally outward of the access lines and electrically coupled to the outer regions along individual of the columns. A plurality of metal lines individually extends along and between immediately adjacent of the rows elevationally inward of the access lines. The individual metal lines are directly against and electrically coupled to sidewalls of the inner regions of each of immediately adjacent of the rows. The metal lines are electrically isolated from the data/sense lines. Other arrays of gated devices and methods of forming arrays of gated devices are disclosed.
    Type: Grant
    Filed: May 2, 2017
    Date of Patent: December 11, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Marcello D. Mariani, Anna Maria Conti, Sara Vigano
  • Patent number: 10153290
    Abstract: The present disclosure provides an integrated circuit. The integrated circuit includes a substrate; a field effect transistor disposed in a periphery region of the substrate, the field effect transistor including a gate electrode, a first source, a first drain; a floating gate non-volatile memory device disposed in a memory region of the substrate, the floating gate non-volatile memory device including a second source, a third source, and a second drain, wherein the second source, the third source, and the second drain are disposed along an axis; and a floating gate electrode in the memory region including a first portion, a second portion, and a third portion, wherein the first portion, the second portion, and the third portion are electrically connected, wherein the first portion, the second portion and the third portion extend perpendicular to the axis.
    Type: Grant
    Filed: September 15, 2015
    Date of Patent: December 11, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Felix Ying-Kit Tsui, Huang-Wen Tseng
  • Patent number: 10147732
    Abstract: Embodiments of source structure of a three-dimensional (3D) memory device and method for forming the source structure of the 3D memory device are disclosed. In an example, a NAND memory device includes a substrate, an alternating conductor/dielectric stack, a NAND string, a source conductor layer, and a source contact. The alternating conductor/dielectric stack includes a plurality of conductor/dielectric pairs above the substrate. The NAND string extends vertically through the alternating conductor/dielectric stack. The source conductor layer is above the alternating conductor/dielectric stack and is in contact with an end of the NAND string. The source contact includes an end in contact with the source conductor layer. The NAND string is electrically connected to the source contact by the source conductor layer. In some embodiments, the source conductor layer includes one or more conduction regions each including one or more of a metal, a metal alloy, and a metal silicide.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: December 4, 2018
    Assignee: Yangtze Memory Technologies Co., Ltd.
    Inventors: Yushi Hu, Zhenyu Lu, Qian Tao, Jun Chen, Simon Shi-Ning Yang, Steve Weiyi Yang
  • Patent number: 10145880
    Abstract: An electric field sensor has a semiconductor stack, a first electrode, and a second electrode. The semiconductor stack includes a first semiconductor layer of a first conductive type and a second semiconductor layer of a conductive type opposite to the first conductive type stacked on the first semiconductor layer. The first electrode is arranged on one side of the semiconductor stack in the lamination direction. The second electrode is arranged on the other side of the semiconductor stack in the lamination direction. The electric field sensor detects the intensity of an electric field in the direction orthogonal to the lamination direction based on a current passing through the semiconductor stack.
    Type: Grant
    Filed: February 21, 2018
    Date of Patent: December 4, 2018
    Assignee: KYOCERA DOCUMENT SOLUTIONS INC.
    Inventor: Keunmoon Yoo
  • Patent number: 10147736
    Abstract: According to one embodiment, a semiconductor memory device includes a substrate; a stacked body including a plurality of electrode layers; a semiconductor film extending in stacking direction of the stacked body; an interconnect layer extending in the stacking direction of the stacked body and a first direction crossing the stacking direction; and an insulating film. The interconnect layer includes: a core film extending in the stacking direction and the first direction; an intermediate film provided integrally between the core film and the plurality of electrode layers and between the core film and the substrate; and a first conductive film provided integrally between the intermediate film and the plurality of electrode layers and between the intermediate film and the substrate, being in contact with the substrate, and having an upper surface flush with an upper surface of the intermediate film.
    Type: Grant
    Filed: November 6, 2015
    Date of Patent: December 4, 2018
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventor: Toshihiko Iinuma
  • Patent number: 10141331
    Abstract: A three-dimensional memory device includes an alternating stack of insulating layers and electrically conductive layers located over a substrate, the alternating stack containing a memory array region and a terrace region. Memory stack structures containing a memory film and a vertical semiconductor channel extend through the memory array region of the alternating stack. Support pillar structures extending through the terrace region of the alternating stack. The support pillar structures have different heights from each other.
    Type: Grant
    Filed: May 29, 2017
    Date of Patent: November 27, 2018
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Hiromasa Susuki, Masanori Tsutsumi, Shigehisa Inoue, Junji Oh, Kensuke Yamaguchi, Seiji Shimabukuro, Yuji Fukano, Ryoichi Ehara, Youko Furihata
  • Patent number: 10141221
    Abstract: A method of manufacturing a three-dimensional (3D) stacked semiconductor structure is provided. A multi-layered stack is formed above a substrate, and the multi-layered stack comprises a plurality of nitride layers and polysilicon layers arranged alternately. Several channel holes are formed vertically to the substrate. The multi-layered stack is patterned to form linear spaces between the channel holes, wherein the linear spaces extend downwardly for being vertical to the substrate and to expose sidewalls of the nitride layers and the polysilicon layers. Then, the polysilicon layers are replaced with insulating layers having air-gaps through the linear spaces, and the nitride layers are replaced with conductive layers through the linear spaces.
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: November 27, 2018
    Assignee: MACRONIX INTERNATIONAL CO., LTD.
    Inventors: Erh-Kun Lai, Hsiang-Lan Lung
  • Patent number: 10136825
    Abstract: Field effect devices, such as capacitors and field effect transistors, are used to interact with neurons. Cubic silicon carbide is biocompatible with the neuronal environment and has the chemical and physical resilience required to withstand the body environment and does not produce toxic byproducts. It is used as a basis for generating a biocompatible semiconductor field effect device that interacts with the brain for long periods of time. The device signals capacitively and receives signals using field effect transistors. These signals can be used to drive very complicated systems such as multiple degree of freedom limb prosthetics, sensory replacements, and may additionally assist in therapies for diseases like Parkinson's disease.
    Type: Grant
    Filed: January 14, 2014
    Date of Patent: November 27, 2018
    Assignee: University of South Florida
    Inventors: Christopher Leroy Frewin, Stephen E. Saddow
  • Patent number: 10141061
    Abstract: According to one embodiment, a memory system includes a semiconductor memory and a controller. The semiconductor memory is configured to execute a first to third read operations. In the first read operation, a first voltage is applied to a selected word line. In the second read operation, a second voltage different from the first voltage and a third voltage are applied to the selected word line. In the third read operation, a fourth voltage different from the first to third voltages and a fifth voltage are applied to the selected word line. An absolute value of a difference between the second voltage and the fourth voltage is different from an absolute value of a difference between the third voltage and the fifth voltage.
    Type: Grant
    Filed: September 13, 2017
    Date of Patent: November 27, 2018
    Assignee: Toshiba Memory Corporation
    Inventors: Marie Takada, Masanobu Shirakawa, Tsukasa Tokutomi
  • Patent number: 10134749
    Abstract: A semiconductor memory device comprises a memory block including conductive layers at different levels from a substrate and separated from each other by a first insulation material. A memory pillar extends through the first conductive layers. A hookup region is adjacent to the memory block and includes conductive layers stacked on the substrate at levels from the substrate that corresponds to the conductive layers in the memory block. An isolation region is between the memory block and the hookup region and includes first insulating layers of a second insulating material different than the first insulating material. Each first insulating layer is at a level from the substrate that corresponds to one of the first conductive layers and each first insulating layer is between one of the conductive layers in the memory block and one of the conductive layers in hookup region.
    Type: Grant
    Filed: April 18, 2017
    Date of Patent: November 20, 2018
    Assignee: Toshiba Memory Corporation
    Inventors: Mitsuhiro Noguchi, Yoshitaka Kubota, Yasuyuki Baba
  • Patent number: 10134597
    Abstract: Various embodiments include apparatuses and electronic devices. One such apparatus can include a first dielectric material and a second dielectric material, and a conductive material between the first dielectric material and the second dielectric material. A charge storage element, such as a floating gate or charge trap, is located between the first dielectric material and the second dielectric material and adjacent to the conductive material. The charge storage element has a first surface and a second surface. The first and second surfaces are substantially separated from the first dielectric material and the second dielectric material, respectively, by a first gap and a second gap. In various embodiments, the gaps are air gaps. Additional apparatuses and methods are disclosed.
    Type: Grant
    Filed: June 12, 2017
    Date of Patent: November 20, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Minsoo Lee, Akira Goda
  • Patent number: 10134672
    Abstract: A semiconductor storage device includes a substrate, a stack of first insulating layers and conductive layers that are alternately formed on the substrate in a memory region and a peripheral region and electrically insulated from each other, a second insulating layer covering the stack of the first insulating layers and the conductive layers in the peripheral region, and a plurality of contact wirings formed in the peripheral region, each contact wiring extending from an upper surface of the second insulating layer towards the substrate and electrically connected to a corresponding one of the conductive layers. In the peripheral region, each conductive layer has an extended portion that covers side and upper surfaces of an end portion of a first insulating layer that is formed immediately thereabove, and each contact wiring is in direct contact with the extended portion of the corresponding conductive layer.
    Type: Grant
    Filed: January 18, 2017
    Date of Patent: November 20, 2018
    Assignee: Toshiba Memory Corporation
    Inventor: Takuya Inatsuka
  • Patent number: 10135333
    Abstract: A technique for enhancing the conduction of a p-channel device is disclosed. Specifically, a negative charge pump is configured to provide a gate drive voltage to a p-channel device. The negative charge pump creates a negative voltage potential below ground and facilitates increased gate drive for the p-channel device. The gate drive voltage output by the negative charge pump may be selected such that it is optimal for the p-channel device operation.
    Type: Grant
    Filed: October 6, 2014
    Date of Patent: November 20, 2018
    Assignee: Silego Technology, Inc.
    Inventor: Tom Truong
  • Patent number: 10127987
    Abstract: A method for operating a NVM cell is disclosed. The NVM cell includes a select transistor and a floating gate transistor serially connected to the select transistor on an N well. The floating gate transistor includes a floating gate and a floating gate extension capacitively coupled to an erase gate region. The method includes erasing the NVM cell by applying an N well voltage VNW to the N well, wherein VNW>0V; applying a source line voltage VSL to a source doping region of the select transistor, wherein VSL=0V; applying a word line voltage VWL to a select gate of the select transistor, wherein VWL=0V; applying a bit line voltage VBL to a drain doping region of the floating gate transistor, wherein VBL=0V; and applying an erase line voltage VEL to the erase gate region, wherein VEL=VEE.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: November 13, 2018
    Assignee: eMemory Technology Inc.
    Inventors: Chia-Jung Hsu, Wein-Town Sun
  • Patent number: 10121797
    Abstract: According to an embodiment, a semiconductor memory device comprises: a stacked body including control gate electrodes stacked upwardly of a substrate; a semiconductor layer facing the control gate electrodes; and a gate insulating layer provided between the control gate electrode and the semiconductor layer. The stacked body comprises: a first metal layer configuring the control gate electrode; a first barrier metal layer contacting an upper surface of this first metal layer; a first silicon nitride layer contacting an upper surface of this first barrier metal layer; a first inter-layer insulating layer contacting an upper surface of this first silicon nitride layer; a second barrier metal layer contacting a lower surface of the first metal layer; a second silicon nitride layer contacting a lower surface of this second barrier metal layer; and a second inter-layer insulating layer contacting a lower surface of this second silicon nitride layer.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: November 6, 2018
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventors: Shigeki Kobayashi, Satoshi Konagai, Atsushi Konno, Kenta Yamada, Masaaki Higuchi, Masao Shingu, Soichiro Kitazaki, Yoshimasa Mikajiri
  • Patent number: 10121554
    Abstract: Multi-gate NOR flash thin-film transistor (TFT) string arrays (“multi-gate NOR string arrays”) are organized as stacks of horizontal active strips running parallel to the surface of a silicon substrate, with the TFTs in each stack being controlled by vertical local word-lines provided along one or both sidewalls of the stack of active strips. Each active strip includes at least a channel layer formed between two shared source or drain layers. Data storage in the TFTs of an active strip is provided by charge-storage elements provided between the active strip and the control gates provided by the adjacent local word-lines. Each active strip may provide TFTs that belong to one or two NOR strings, depending on whether one or both sides of the active strip are used.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: November 6, 2018
    Assignee: SUNRISE MEMORY CORPORATION
    Inventor: Eli Harari
  • Patent number: 10115807
    Abstract: At least one method, apparatus and system disclosed herein fin field effect transistor (finFET) comprising a tall fin having a plurality of epitaxial regions. A first fin of a transistor is formed. The first fin comprising a first portion comprising silicon, a second portion comprising silicon germanium and a third portion comprising silicon. A gate structure above the third portion is formed. An etching process is performed for removing the silicon germanium of the second portion that is not below the gate structure. A first epitaxy region is formed above the first portion. A second epitaxy region is formed vertically aligned with the first epitaxy region and above the silicon germanium of the second portion that is below the gate structure.
    Type: Grant
    Filed: November 4, 2016
    Date of Patent: October 30, 2018
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Hui Zang, Min-Hwa Chi, Jinping Liu
  • Patent number: 10115730
    Abstract: A three-dimensional memory device includes an alternating stack of insulating layers and electrically conductive layers located over a semiconductor surface, a memory opening extending through the alternating stack, a semiconductor pedestal channel portion located at a bottom portion of the memory opening and contacting a top surface of the semiconductor surface, and a memory stack structure located in the memory opening and contacting a top surface of the pedestal channel portion. The memory stack structure includes a memory film and a vertical semiconductor channel located inside the memory film. A maximum lateral extent of the pedestal channel portion is greater than a maximum lateral dimension of an entire interface between the pedestal channel portion and the memory stack structure.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: October 30, 2018
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Ashish Baraskar, Naohiro Hosoda, Yanli Zhang, Raghuveer S. Makala, Hiroyuki Tanaka, Ryo Nakamura, Tadashi Nakamura
  • Patent number: 10115733
    Abstract: A semiconductor memory device includes a connecting member including a semiconductor material, a first electrode film, a first insulating film, a stacked body and three or more semiconductor pillars. The stacked body includes second electrode films and second insulating films that alternately stacked. The semiconductor pillars are arrayed along two or more directions, extend in a stacking direction, pierce through the stacked body and the first insulating film, and are connected to the connecting member. The device includes a third insulating film provided between the semiconductor pillars and the stacked body and between the connecting member and the first electrode film. A charge storage layer is provided at least between one of the second electrode films and the third insulating film.
    Type: Grant
    Filed: November 8, 2016
    Date of Patent: October 30, 2018
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventors: Yoshiaki Fukuzumi, Shinya Arai, Masaki Tsuji, Hideaki Aochi, Hiroyasu Tanaka
  • Patent number: 10109643
    Abstract: According to one embodiment, a semiconductor memory device includes a substrate; an insulating layer provided on the substrate; a conductive layer provided on the insulating layer; a stacked body provided on the conductive layer and including a plurality of electrode layers and a plurality of insulating layers respectively provided among the plurality of electrode layers; a columnar section piercing through the stacked body to reach the conductive layer and extending in a first direction in which the stacked body is stacked; and a source layer. The columnar section includes a channel body and a charge storage film provided between the channel body and the respective electrode layers. The conductive layer includes a first film having electric conductivity and in contact with the lower end portion of the channel body; and an air gap provided to be covered by the first film.
    Type: Grant
    Filed: November 4, 2016
    Date of Patent: October 23, 2018
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventor: Shinya Arai
  • Patent number: 10109345
    Abstract: Techniques efficiently assist in performing write operations in memories with resistive bit lines. A memory can comprise memory cells associated with respective word lines and bit lines. A write assist component can be associated with a subset of the memory cells associated with a bit line. Configuration of the write assist component can be based on the type of transistors employed by write circuits associated with the memory cells. During a write operation, the write assist component adds an additional current path to the ground, or the power supply, or both, at or in proximity to the far end of the write bit line when an appropriate write polarity is applied to the bit line by the driver at the other end of the bit line. This mitigates the effects of resistance of the bit line, which mitigates IR loss of the write signal.
    Type: Grant
    Filed: May 15, 2018
    Date of Patent: October 23, 2018
    Assignee: AMPERE COMPUTING LLC
    Inventors: Russell Homer, Abhiram Saligram Chandrashekar, Alfred Yeung
  • Patent number: 10103161
    Abstract: Die cracking of a three dimensional memory device may be reduced by adding offsets to backside contact via structures. Each backside contact via structure can include laterally extending portions that extend along a first horizontal direction adjoined by adjoining portions that extend along a horizontal direction other than the first horizontal direction. In order to preserve periodicity of memory stack structures extending through an alternating stack of insulating layers and electrically conductive layers, the distance between an outermost row of a string of memory stack structures between a pair of backside contact via structures and a most proximal backside contact via structure can vary from a laterally extending portion to another laterally extending portion within the most proximal backside contact via structure. Source shunt lines that are parallel to bit lines can be formed over a selected subset of offset portions of the backside contact via structures.
    Type: Grant
    Filed: June 28, 2016
    Date of Patent: October 16, 2018
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Fumitoshi Ito, Masaaki Higashitani, Cheng-Chung Chu, Jayavel Pachamuthu, Tuan Pham
  • Patent number: 10096718
    Abstract: Reducing the power consumption of a transistor and stably controlling its threshold value. Providing a transistor comprising a first conductive layer, a first insulating layer and a second insulating layer over the first conductive layer, a semiconductor layer over the first insulating layer, a third insulating layer over the first conductive layer and the semiconductor layer, a second conductive layer over the second insulating layer, and a gate electrode over the third insulating layer. The first conductive layer is in an electrically floating state. The first conductive layer has a region overlapping with the semiconductor layer with the first insulating layer provided therebetween, a region overlapping with the second conductive layer with the second insulating layer provided therebetween, and a region overlapping with the gate electrode with the third insulating layer provided therebetween.
    Type: Grant
    Filed: June 8, 2017
    Date of Patent: October 9, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Yoshinobu Asami
  • Patent number: 10096773
    Abstract: Embodiments of the present invention provide systems and methods for the fabrication of a crossbar array fabrication of resistive random access memory (RRAM) cells. The array structure contains large grain copper and its alloy or silver and its alloy. A metal cap and spacer are used to protect copper or silver from chemical modifications during memory cell patterning.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: October 9, 2018
    Assignee: International Business Machines Corporation
    Inventors: Takashi Ando, Marwan H. Khater, Seyoung Kim, Hiroyuki Miyazoe
  • Patent number: 10090323
    Abstract: A semiconductor device includes a stack structure on a substrate, the stack structure including interlayer insulating layers and first gate electrodes alternately stacked on each other, a semiconductor layer in an opening penetrating through the stack structure, a first dielectric layer between the semiconductor layer and the stack structure, and a lower pattern closer to the substrate than to the first gate electrodes in the stack structure, the lower pattern including a first surface facing the first dielectric layer, and a second surface facing the stack structure, the second surface defining an acute angle with the first surface, wherein the first dielectric layer includes a first portion facing the stack structure, and a second portion facing the first surface of the lower pattern, the second portion having a thickness greater than a thickness of the first portion.
    Type: Grant
    Filed: April 11, 2017
    Date of Patent: October 2, 2018
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Ji Hoon Choi, Sung Gil Kim, Seulye Kim, Jung Ho Kim, Hong Suk Kim, Phil Ouk Nam, Jae Young Ahn, Han Jin Lim
  • Patent number: 10083983
    Abstract: According to one embodiment, a semiconductor memory device includes a substrate, a stacked body, a semiconductor pillar, a charge storage film, and at least one columnar member. The stacked body is provided on the substrate. In the stacked body, a plurality of insulating films and a plurality of electrode films are layered together alternately. The semiconductor pillar is provided in the stacked body and extends in a stacking direction of the stacked body. The charge storage film is provided between the semiconductor pillar and the stacked body. The columnar member is provided in the stacked body and extends in the stacking direction. A lower portion of the columnar member is provided in the substrate.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: September 25, 2018
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventors: Kotaro Noda, Kyoko Noda, Aya Minemura, Kenji Sawamura
  • Patent number: 10084002
    Abstract: Disclosed herein is a solid-state imaging apparatus including: a semiconductor base; a photodiode created on the semiconductor base and used for carrying out photoelectric conversion; a pixel section provided with pixels each having the photodiode; a first wire created by being electrically connected to the semiconductor base for the pixel section through a contact section and being extended in a first direction to the outside of the pixel section; a second wire made from a wiring layer different from the first wire and created by being extended in a second direction different from the first direction to the outside of the pixel section; and a contact section for electrically connecting the first and second wires to each other.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: September 25, 2018
    Assignee: Sony Corporation
    Inventors: Mikiko Kobayashi, Kazuyoshi Yamashita
  • Patent number: 10084049
    Abstract: A semiconductor device includes: a substrate having an active region; a gate structure disposed in the active region; source/drain regions respectively formed within portions of the active region disposed on both sides of the gate structure; a metal silicide layer disposed on a surface of each of the source/drain regions; and contact plugs disposed on the source/drain regions and electrically connected to the source/drain regions through the metal silicide layer, respectively. The metal silicide layer is formed so as to have a monocrystalline structure.
    Type: Grant
    Filed: August 24, 2017
    Date of Patent: September 25, 2018
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jin Bum Kim, Gyeom Kim, Seok Hoon Kim, Tae Jin Park, Jeong Ho Yoo, Cho Eun Lee, Hyun Jung Lee, Sun Jung Kim, Dong Suk Shin
  • Patent number: 10083984
    Abstract: Some embodiments include an integrated structure having a first opening extending through a stack of alternating insulative levels and conductive levels. A nitride structure is within the first opening and narrows the first opening to form a second opening. Detectable oxide is between the nitride structure and one or more of the conductive levels. Some embodiments include an integrated structure having a conductive material, a select device gate material over the conductive material, and vertically-stacked conductive levels over the select device gate material. A first opening extends through the vertically-stacked levels to the conductive material and has opposing sidewalls along a cross-section. Nitride liners are along the sidewalls of the first opening. Detectable oxide is between at least one of the nitride liners and one or more of the vertically-stacked conductive levels. Some embodiments include methods for forming integrated structures.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: September 25, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Jie Li, James Mathew, Kunal Shrotri, Luan C. Tran, Gordon A. Haller, Yangda Zhang, Hongpeng Yu, Minsoo Lee
  • Patent number: 10074664
    Abstract: Disclosed is a semiconductor memory device, including: a slimming structure extended from a cell structure in a direction parallel to the semiconductor substrate, the cell structure having a plurality of cell transistors stacked over a semiconductor substrate; vertical insulating materials extended in a direction crossing the semiconductor substrate and configured to divide the cell structure and the slimming structure into a plurality of memory blocks; contact plugs passing through the vertical insulating materials, respectively, within an area in which the slimming structure is formed; and junctions formed within the semiconductor substrate under the vertical insulating materials, in which the junctions are coupled to the contact plugs, respectively.
    Type: Grant
    Filed: October 9, 2015
    Date of Patent: September 11, 2018
    Assignee: SK Hynix Inc.
    Inventor: Dae Sung Eom
  • Patent number: 10068911
    Abstract: According to one embodiment, a semiconductor device includes a stacked body, a columnar portion, a first charge storage portion, and a second charge storage portion. The stacked body includes a plurality of electrode layers stacked in a first direction. The plurality of electrode layers includes a first electrode layer, and a second electrode layer. The columnar portion extends in the first direction in the stacked body. The first charge storage portion provides between the first electrode layer and the columnar portion. The second charge storage portion provides between the second electrode layer and the columnar portion. A first thickness in a second direction intersecting the first direction of the first charge storage portion between the first electrode layer and the columnar portion is thicker than a second thickness in the second direction of the second charge storage portion between the second electrode layer and the columnar portion.
    Type: Grant
    Filed: March 16, 2017
    Date of Patent: September 4, 2018
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventor: Wataru Sakamoto
  • Patent number: 10068915
    Abstract: According to one embodiment, a semiconductor device includes a stacked body of N (N is an integer of 2 or more) layers stacked on a semiconductor substrate and openings different in depth surrounded by the stacked body and separated from each other.
    Type: Grant
    Filed: December 12, 2016
    Date of Patent: September 4, 2018
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventors: Satoshi Nagai, Eiji Yoneda, Kentaro Matsunaga, Koutarou Sho
  • Patent number: 10062707
    Abstract: Provided here may be a semiconductor device and a method of manufacturing the same. The semiconductor device may include a first source seed layer, a second source seed layer disposed over the first source seed layer at a position spaced apart from the first source seed layer with a source area interposed between the first source seed layer and the second source seed layer, cell plugs configured to penetrate through the second source seed layer and extend into the source area, the cell plugs being disposed at positions spaced apart from the first source seed layer. The semiconductor device may also include an interlayer source layer configured to fill the source area.
    Type: Grant
    Filed: May 22, 2017
    Date of Patent: August 28, 2018
    Assignee: SK hynix Inc.
    Inventor: Hyun Ho Lee
  • Patent number: 10056400
    Abstract: According to one embodiment, a semiconductor device includes a semiconductor substrate, a stacked body, and a first insulating film. The stacked body is provided on the semiconductor substrate. The stacked body includes first films, and second films being conductive. The first films and the second films are stacked alternately. The first insulating film extends in a stacking direction of the stacked body. The second films include a first portion and a second portion. The first portion is positioned between the first films. The second portion has a surface contacting the first insulating film in a direction perpendicular to the stacking direction.
    Type: Grant
    Filed: March 3, 2016
    Date of Patent: August 21, 2018
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventors: Fumie Kikushima, Keisuke Kikutani
  • Patent number: 10050050
    Abstract: A semiconductor device includes a substrate, at least one split gate memory device, and at least one logic device. The split gate memory device is disposed on the substrate. The logic device is disposed on the substrate. A select gate or a main gate of the split gate memory device and a logic gate of the logic device are both made of metal, and the other gate of the split gate memory device is made of nonmetal.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: August 14, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Harry Hak-Lay Chuang, Wei-Cheng Wu, Ya-Chen Kao
  • Patent number: 10050052
    Abstract: A semiconductor device includes interlayer insulating layers and conductive patterns alternately stacked over a pipe gate, a first slit and a second slit penetrating the interlayer insulating layers and the conductive patterns and crossing each other, an etch stop pad groove overlapping an intersection of the first slit and the second slit, arranged in the pipe gate, and connected to the first slit or the second slit, and slit insulating layers filling the first slit, the second slit and the etch stop pad groove.
    Type: Grant
    Filed: August 8, 2016
    Date of Patent: August 14, 2018
    Assignee: SK Hynix Inc.
    Inventors: Myeong Seong Yoon, Il Seok Seo
  • Patent number: 10049725
    Abstract: Techniques efficiently assist in performing write operations in memories with resistive bit lines. A memory can comprise memory cells associated with respective word lines and bit lines. A write assist component can be associated with a subset of the memory cells associated with a bit line. Configuration of the write assist component can be based on the type of transistors employed by write circuits associated with the memory cells. During a write operation, the write assist component adds an additional current path to the ground, or the power supply, or both, at or in proximity to the far end of the write bit line when an appropriate write polarity is applied to the bit line by the driver at the other end of the bit line. This mitigates the effects of resistance of the bit line, which mitigates IR loss of the write signal.
    Type: Grant
    Filed: December 8, 2016
    Date of Patent: August 14, 2018
    Assignee: AMPERE COMPUTING LLC
    Inventors: Russell Homer, Abhiram Saligram Chandrashekar, Alfred Yeung
  • Patent number: 10050129
    Abstract: A method of forming fine patterns including forming a plurality of first sacrificial patterns on a target layer, the target layer on a substrate, forming first spacers on respective sidewalls of the first sacrificial patterns, removing the first sacrificial patterns, forming a plurality of second sacrificial patterns, the second sacrificial patterns intersecting with the first spacers, each of the second sacrificial patterns including a line portion and a tab portion, and the tab portion having a width wider than the line portion, forming second spacers on respective sidewalls of the second sacrificial patterns, removing the second sacrificial patterns, and etching the target layer through hole regions, the hole regions defined by the first spacers and the second spacers, to expose the substrate may be provided.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: August 14, 2018
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-Bum Lim, Jong-Ryul Jun, Eun-A Kim, Jong-Min Lee
  • Patent number: 10041639
    Abstract: A night light includes a housing, a dimmable light source operatively connected to a rotatable light source controller rotatable about an axis and at least one first sensor mounted within the housing operative to sense rotation of the rotatable light source. The at least one first sensor outputs a signal representative of the rotation. Further, the rotatable light source can be rotated by a hand of a user. Still further, the light night can be controlled via wireless communication.
    Type: Grant
    Filed: April 12, 2017
    Date of Patent: August 7, 2018
    Assignee: 1842728 Ontario Inc
    Inventors: Mitch Thompson, David Snaith, Daniel Kowalewski, Steve A. Copeland
  • Patent number: 10043808
    Abstract: According to one embodiment, a semiconductor memory includes: a first gate of a first select transistor and a second gate of a second select transistor on a gate insulating film on a semiconductor layer; an oxide semiconductor layer above the semiconductor layer; a first control gate of a first cell and a second control gate of a second cell on an insulating layer on the oxide semiconductor layer; a third gate of a first transistor between the first control gate and the second control gate; a fourth gate of a second transistor between a first end of the oxide semiconductor layer and the second control gate; an interconnect connected to the first end; a source line connected to the first select transistor; and a bit line connected to the second select transistor.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: August 7, 2018
    Assignee: Toshiba Memory Corporation
    Inventors: Tsutomu Tezuka, Fumitaka Arai, Keiji Ikeda, Tomomasa Ueda, Nobuyoshi Saito, Chika Tanaka, Kentaro Miura
  • Patent number: 10042755
    Abstract: Some embodiments include apparatuses, and methods of forming and operating the apparatuses. Some of the apparatuses include a pillar including a length, a memory cell string and control lines located along a first segment of the pillar, and select lines located along a second segment of the pillar. The control lines include at least a first control line and a second control line. The first control line is adjacent the second control line. The first control line is separated from the second control line by a first distance in a direction of the length of the pillar. The select lines include at least a first select line and a second select line. The first select line is separated from the second select line by a second distance in the direction of the length of the pillar. The second distance is less than the first distance.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: August 7, 2018
    Assignee: Micron Technology, Inc.
    Inventor: Koji Sakui
  • Patent number: 10038101
    Abstract: A voltage applied to a bit line or to a source line is reduced to a value allowing a first or second select gate structure to block electrical connection between the bit line and a channel layer or between the source line and the channel layer, irrespective of a voltage needed to inject charge into a charge storage layer by a quantum tunneling effect. In accordance with the reduction in voltage(s) applied to the bit line and the source line, thickness of each of a first and second select gate insulating films of the first and second select gate structure is reduced. High-speed operation is achieved correspondingly. With the reduction in voltage(s) applied to the bit and source lines, thickness of a gate insulating film of a field effect transistor in a peripheral circuit controlling a memory cell is reduced. The area of the peripheral circuit is reduced correspondingly.
    Type: Grant
    Filed: October 6, 2015
    Date of Patent: July 31, 2018
    Assignee: FLOADIA CORPORATION
    Inventors: Yutaka Shinagawa, Yasuhiro Taniguchi, Hideo Kasai, Ryotaro Sakurai, Yasuhiko Kawashima, Tatsuro Toya, Kosuke Okuyama
  • Patent number: 10038006
    Abstract: A three dimensional NAND memory device includes word line driver devices located on or over a substrate, an alternating stack of word lines and insulating layers located over the word line driver devices, a plurality of memory stack structures extending through the alternating stack, each memory stack structure including a memory film and a vertical semiconductor channel, and through-memory-level via structures which electrically couple the word lines in a first memory block to the word line driver devices. The through-memory-level via structures extend through a through-memory-level via region located between a staircase region of the first memory block and a staircase region of another memory block.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: July 31, 2018
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Yoko Furihata, Jixin Yu, Hiroyuki Ogawa, James Kai, Jin Liu, Johann Alsmeier
  • Patent number: 10038003
    Abstract: A single-poly nonvolatile memory cell includes an SOI substrate having a semiconductor layer, a first OD region and a second OD region on the semiconductor layer, an isolation region separating the first OD region from the second OD region, a PMOS select transistor disposed on the first OD region, and a PMOS floating gate transistor disposed on the first OD region. The PMOS floating gate transistor is serially connected to the PMOS select transistor. The PMOS floating gate transistor comprises a floating gate overlying the first OD region. A floating gate extension is continuously extended from the floating gate to the second OD region and is capacitively coupled to the second OD region.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: July 31, 2018
    Assignee: eMemory Technology Inc.
    Inventors: Wein-Town Sun, Wei-Ren Chen, Ying-Je Chen
  • Patent number: 10038007
    Abstract: A three-dimensional semiconductor device includes an upper structure on a lower structure, the upper structure including conductive patterns, a semiconductor pattern connected to the lower structure through the upper structure, and an insulating spacer between the semiconductor pattern and the upper structure, a bottom surface of the insulating spacer being positioned at a vertical level equivalent to or higher than an uppermost surface of the lower structure.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: July 31, 2018
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Changhyun Lee, Chanjin Park, Byoungkeun Son, Sung-Il Chang
  • Patent number: 10032791
    Abstract: A three-dimensional semiconductor memory device includes a substrate including a cell array region and a connection region and an electrode structure including first and second electrodes alternatingly and vertically stacked on the substrate and having a stair-step structure on the connection region. Each of the first and second electrodes may include electrode portions provided on the cell array region to extend in a first direction and to be spaced apart from each other in a second direction perpendicular to the first direction, an electrode connecting portion provided on the connection region to extend in the second direction and to horizontally connect the electrode portions to each other, and protrusions provided on the connection region to extend from the electrode connecting portion in the first direction and to be spaced apart from each other in the second direction.
    Type: Grant
    Filed: January 11, 2017
    Date of Patent: July 24, 2018
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang-Sup Lee, Sung-Hun Lee, Joonhee Lee, Seong Soon Cho
  • Patent number: 10032772
    Abstract: Methods of fabricating integrated circuits and integrated circuits fabricated by those methods are provided. In an exemplary embodiment, a method includes providing a substrate having a first and second device wells, a gate dielectric overlying the first and second device wells, a first gate electrode layer overlying the gate dielectric, and a shallow trench isolation structure between the first and second device wells. An insulating dielectric layer is formed only partially overlying the first gate electrode layer. A second gate electrode material is deposited overlying at least the insulating dielectric layer to form a second gate electrode layer. The layers are patterned to form a second gate structure overlying the second device well. A contact is formed on the second gate electrode layer of the second gate structure with the contact overlying dielectric material of at least one of the insulating dielectric layer or the shallow trench isolation structure.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: July 24, 2018
    Assignee: GLOBALFOUNDRIES SINGAPORE PTE. LTD.
    Inventors: Xinshu Cai, Fan Zhang, Danny Pak-Chum Shum
  • Patent number: 10032794
    Abstract: A semiconductor device includes a plurality of gates formed upon a semiconductor substrate that includes a plurality of outer active areas (e.g. CMOS/PMOS areas, source/drain regions, etc.) and one or more inner active areas. An isolator is formed upon one or more inner gates associated with the one or more inner active areas. A contact bar electrically connects the outer active areas and/or outer gates and is formed upon the isolator. The isolator electrically insulates the contact bar from the one or more inner active areas and/or the one or more inner gates.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: July 24, 2018
    Assignees: International Business Machines Corporation, STMicroelectronics, Inc.
    Inventors: Wai-Kin Li, Chieh-Yu Lin, Yannick Daurelle
  • Patent number: 10032666
    Abstract: A semiconductor memory device is disclosed. The semiconductor memory device includes a substrate including cell and peripheral regions, a stack on the cell region, vertical channel portions vertically penetrating the stack, a contact structure penetrating the stack, an insulating structure on the peripheral region, an impurity region in the peripheral region of the substrate, and a first contact penetrating the insulating structure and connected to the impurity region. The stack includes gate electrodes sequentially stacked on the substrate, and the contact structure is spaced apart from the vertical channel portions. A top surface of the first contact is positioned at a lower level than that of the contact structure.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: July 24, 2018
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: JoongShik Shin
  • Patent number: 10032518
    Abstract: A semiconductor memory device includes a memory cell array including a plurality of memory cells, a peripheral circuit performing a program operation or erase operation of the memory cell array, and a control logic controlling the peripheral circuit. The control logic controls the peripheral circuit such that a first program allowable voltage applied to bit lines of the memory cell array during a first program operation of the program operation and a second program allowable voltage applied during a second program operation of the program operation are different from each other.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: July 24, 2018
    Assignee: SK hynix Inc.
    Inventor: Yeonghun Lee