Arrangements For Cooling, Heating, Ventilating Or Temperature Compensation; Temperature-sensing Arrangements (epo) Patents (Class 257/E23.08)
  • Patent number: 8604603
    Abstract: An apparatus having a three-dimensional integrated circuit structure is described herein. The apparatus include an interposer for carrying a plurality of high and low-power chips. The high-power chips are attached and connected to one side of the interposer, while the low-power chips are attached and connected to the other side of the interposer. In generally, the high-power chips produce more heat than does the low-power chip during their operations. The interposer further include through silicon vias and redistribution layers for connecting the chips on both surfaces. In addition, the interposer assembly is attached and connected to a substrate layer, which is in turn attached and connected to a printed circuit board. In order to provide improve thermal management, the interposer surface carrying the high-power chips are oriented away from the circuit board. A heat spreader is attached to the back sides of the high-power chips for dissipating the heat.
    Type: Grant
    Filed: February 19, 2010
    Date of Patent: December 10, 2013
    Assignee: The Hong Kong University of Science and Technology
    Inventors: Hon Shing Lau, Shi-Wei Lee, Matthew Ming Fai Yuen, Jingshen Wu, Chi Chuen Lo, Haibo Fan, Haibin Chen
  • Publication number: 20130320548
    Abstract: A packaged semiconductor device comprises a package substrate comprising a first package substrate contact and a second package substrate contact, and a semiconductor die over the package substrate. The semiconductor device further includes electrical connections between signal contact pads of the die and the package substrate, and a heat spreader that comprises a first heat spreader portion which is electrically connected to a first signal contact pad and the first package substrate contact and provides an electrical conduction path and a thermal conduction path. A second heat spreader portion provides an electrical conduction path between a second signal contact pad and the second package substrate contact and a thermal conduction path between the die and package substrate. An insulating layer is positioned between the first and second heat spreader portions.
    Type: Application
    Filed: May 31, 2012
    Publication date: December 5, 2013
    Inventors: BURTON J. CARPENTER, Leo M. Higgins, III
  • Patent number: 8598701
    Abstract: A semiconductor device has high reliability which suppresses a temperature rise of a set housing within an allowable range, and avoids an effect on a wiring on a package substrate due to thermal expansion of a heat dissipating member. The semiconductor device includes a semiconductor element, a package substrate, and a heat dissipating member. A first main surface of the semiconductor element faces an element-mounting surface of the package substrate and is connected to the package substrate. A main surface part of the heat dissipating member contacts a second main surface which is a back surface of first main surface of semiconductor element. A bonding part around a periphery of the main surface part is bonded to a bonding area of the element-mounting surface of the package substrate. A wiring on the package substrate is arranged at a portion other than the element-mounting surface, in a region of the bonding area.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: December 3, 2013
    Assignee: Panasonic Corporation
    Inventors: Keisuke Sato, Kouji Takemura
  • Patent number: 8592971
    Abstract: The semiconductor package as well as a method for making it and using it is disclosed. The semiconductor package comprises a semiconductor chip having at least one heat-generating semiconductor device and a volumetrically expandable chamber disposed to sealingly surround the semiconductor chip, the volumetrically expandable chamber filled entirely with a non-electrically conductive liquid in contact with the semiconductor device and circulated within the volumetrically expandable chamber at least in part by the generated heat of the at least one semiconductor device to cool the at least one semiconductor device.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: November 26, 2013
    Assignee: The Boeing Company
    Inventors: Andrew G. Laquer, Ernest E. Bunch
  • Patent number: 8587116
    Abstract: A power semiconductor module is fabricated by providing a base with a metal surface and an insulating substrate comprising an insulation carrier having a bottom side provided with a bottom metallization layer. An insert exhibiting a wavy structure is provided. The insert is positioned between the insulation carrier and metal surface, after which the metal surface is soldered to the bottom side metallization layer and insert by means of a solder packing all interstices between the metal surface and bottom side metallization layer with the solder.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: November 19, 2013
    Assignee: Infineon Technologies AG
    Inventors: Olaf Hohlfeld, Reinhold Bayerer
  • Patent number: 8586418
    Abstract: The invention relates to an electronic component having a circuit integrated on a semiconductor substrate, and a heat-conducting connection of the substrate by soldering using a carrier serving as a heat sink, wherein the invention proposes depositing a first, thicker Au layer (23) in the conventional back-side metallization of the substrate, thereafter a barrier coating (24), and, as the last layer, a thinner, second Au layer (25), wherein the material of the barrier coating is selected such that the barrier coating prevents the penetration by means of a diffusion barrier of Sn or AuSn from a liquid Au—Sn phase in the region of the second Au layer into the first Au layer (23) during the soldering process. The layer sequence of the back-side metallization is also deposited in the pass-through openings of the substrate, wherein the surface of the second Au layer comprises a reduced coatablity for the solder material due to the material diffused out of the barrier coating.
    Type: Grant
    Filed: September 20, 2010
    Date of Patent: November 19, 2013
    Assignee: United Monolithic Semiconductors GmbH
    Inventors: Dag Behammer, Hermann Stieglauer
  • Publication number: 20130299961
    Abstract: A semiconductor package includes a build-up structure; a semiconductor disposed on the build-up structure in a flip-chip manner and having a plurality of bumps penetrating therethrough; an electronic element disposed on the semiconductor chip; and an encapsulant formed on the build-up structure and encapsulating the semiconductor chip and the electronic element, thereby improving the product yield and the overall heat dissipating efficiency.
    Type: Application
    Filed: September 27, 2012
    Publication date: November 14, 2013
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventor: Lu-Yi Chen
  • Publication number: 20130299950
    Abstract: Semiconductor structures and methods of fabrication are provided. One semiconductor structure includes a substrate, a semiconductor device layer supported by the substrate, and one or more buried through substrate vias (TSVs) disposed at least partially within the substrate. The buried through substrate via(s) is buried within the semiconductor substrate, and terminates below the semiconductor device layer of the semiconductor structure, and the semiconductor device layer extends over the buried through substrate via(s), thereby providing the buried through substrate via(s) without consuming space within the semiconductor device layer. A dielectric layer may be disposed between the substrate and the semiconductor device layer, with the TSV(s) terminating at a first end within the dielectric layer. Alternatively, the semiconductor device layer may be an epitaxially-grown layer extending over the TSV(s).
    Type: Application
    Filed: May 11, 2012
    Publication date: November 14, 2013
    Applicant: SEMATECH, INC.
    Inventor: Klaus HUMMLER
  • Patent number: 8581385
    Abstract: A semiconductor chip includes a semiconductor chip body having a top surface, a bottom surface, and side surfaces. The bottom surface may have a groove pattern defined by removing a partial thickness of the semiconductor chip body to extend from one or more edges of the semiconductor chip body toward a center portion of the semiconductor chip body. Through electrodes may be formed to extend from the top surface of the semiconductor chip body and pass through the groove pattern defined on the bottom surface. A heat dissipation pattern may fill in the groove pattern defined on the bottom surface and may be connected with the through electrodes.
    Type: Grant
    Filed: December 27, 2010
    Date of Patent: November 12, 2013
    Assignee: SK Hynix Inc.
    Inventor: Jin Hui Lee
  • Patent number: 8575664
    Abstract: Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in hydrogen ion concentration (pH), changes in other analyte concentration, and/or binding events associated with chemical processes relating to DNA synthesis.
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: November 5, 2013
    Assignee: Life Technologies Corporation
    Inventors: Jonathan Rothberg, Wolfgang Hinz, Kim Johnson, James Bustillo
  • Patent number: 8564124
    Abstract: A semiconductor package that includes a semiconductor die and a heat spreader thermally coupled to the semiconductor and disposed at least partially within the molded housing of the package.
    Type: Grant
    Filed: March 7, 2007
    Date of Patent: October 22, 2013
    Assignee: International Rectifier Corporation
    Inventors: Michael A. Briere, Chuan Cheah, Kunzhong Hu
  • Patent number: 8564120
    Abstract: By providing heat dissipation elements or heat pipes in temperature critical areas of a semiconductor device, enhanced performance, reliability and packing density may be achieved. The heat dissipation elements may be formed on the basis of standard manufacturing techniques and may be positioned in close proximity to individual transistor elements and/or may be used for shielding particular circuit portions.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: October 22, 2013
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Anthony Mowry, David Farber, Fred Hause, Markus Lenski
  • Publication number: 20130270690
    Abstract: A method includes forming a first oxide layer on a surface of an integrated heat spreader, and forming a second oxide layer on top surfaces of fins, wherein the fins are parts of a heat sink. The integrated heat spreader is bonded to the heat sink through the bonding of the first oxide layer to the second oxide layer.
    Type: Application
    Filed: April 12, 2012
    Publication date: October 17, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Chieh Hsieh, Jing-Cheng Lin
  • Publication number: 20130270721
    Abstract: An apparatus has external and/or internal capacitive thermal material for enhanced thermal package management. The apparatus includes an integrated circuit (IC) package having a heat generating device. The apparatus also includes a heat spreader having a first side that is attached to the IC package. The apparatus also includes capacitive thermal material reservoirs contacting the first side of the heat spreader. The capacitive thermal material reservoirs may be disposed laterally relative to the heat generating device.
    Type: Application
    Filed: April 17, 2012
    Publication date: October 17, 2013
    Applicant: QUALCOMM Incorporated
    Inventors: Victor A. Chiriac, Durodami J. Lisk, Ratibor Radojcic
  • Publication number: 20130270687
    Abstract: Disclosed herein is a double side cooling power semiconductor module including: a first cooler having a concave part formed in one surface thereof in a thickness direction; a first semiconductor chip mounted on the concave part of the first cooler; a second cooler having one surface and the other surface and formed on one surface of the first cooler so that one surface thereof contacts the first semiconductor chip; a circuit board formed on the other surface of the second cooler; a second semiconductor chip mounted on the circuit board; and a flexible substrate having a circuit layer electrically connecting the first and second semiconductor chips to each other.
    Type: Application
    Filed: June 25, 2012
    Publication date: October 17, 2013
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Kwang Soo Kim, Young Ki Lee, Ji Hyun Park, Bum Seok Suh
  • Publication number: 20130270686
    Abstract: Apparatus and methods for forming a heat spreader on a substrate to release heat for a semi-conductor package are disclosed. The apparatus comprises a substrate. A dielectric layer is formed next to the substrate and in contact with a surface of the substrate. A heat spreader is formed next to the substrate and in contact with another surface of the substrate. A passivation layer is formed next to the dielectric layer. A connection pad is placed on top of the passivation layer. The substrate may comprise additional through-silicon-vias. The contact surface between the substrate and the heat spreader may be a scraggy surface. The packaging method further proceeds to connect a chip to the connection pad by way of a connection device such as a solder ball or a bump.
    Type: Application
    Filed: April 11, 2012
    Publication date: October 17, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsien-Wei Chen, Chung-Ying Yang, Chao-Wen Shih, Kai-Chiang Wu
  • Patent number: 8557639
    Abstract: A semiconductor package includes a semiconductor die having contact pads. An encapsulant is disposed around the semiconductor die, and conductive vias are disposed in the encapsulant. Electrically conductive traces are disposed between the contact pads and conductive vias, a thermally conductive channel is disposed in the encapsulant separate from the conductive vias, and a thermally conductive layer is disposed over an area of heat generation of the semiconductor die. A thermally conductive trace is disposed between the thermally conductive layer and thermally conductive channel. The thermally conductive layer, thermally conductive trace, and thermally conductive channel are electrically isolated from the contact pads of the semiconductor die and the electrically conductive traces. The semiconductor package further comprises broad thermal traces disposed over the encapsulant, and a thermally conductive material interconnecting the broad thermal traces and the thermally conductive layer.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: October 15, 2013
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Reza A. Pagaila, Byung Tai Do, Zigmund R. Camacho
  • Publication number: 20130264700
    Abstract: A semiconductor device includes a semiconductor substrate and a plurality of clock drivers, wherein the plurality of clock drivers comprises substantially all clock drivers of the semiconductor device, and an interconnect region over the semiconductor substrate, wherein the interconnect region comprises a plurality of heat spreaders, wherein at least 25% of the plurality of clock drivers have a corresponding heat spreader of the plurality of heat spreaders. Each corresponding heat spreader of the plurality of heat spreaders covers at least 50% of a transistor within a corresponding clock driver of the plurality of clock drivers and extends across at least 70% of a perimeter of the transistor within the corresponding clock driver.
    Type: Application
    Filed: April 9, 2012
    Publication date: October 10, 2013
    Inventors: EDWARD O. TRAVIS, Douglas M. Reber, Mehul D. Shroff
  • Patent number: 8546937
    Abstract: A semiconductor devices includes a first die pad having the conductivity connected to one end of a DC power source, a second die pad having the conductivity connected to the other end of the DC power source, a first switching element provided on the first die pad, receiving DC power from the DC power source via the first die pad, and having a terminal opposite to the first die pad connected to a first output terminal, and a second switching element provided on the second die pad, receiving the DC power from the DC power source via the second die pad, and connected to the first output terminal, and having a terminal opposite to the second die pad.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: October 1, 2013
    Assignee: Sanken Electric Co., Ltd.
    Inventors: Osamu Machida, Michiyoshi Izawa
  • Publication number: 20130249073
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing a single-layer support structure having a structure non-horizontal surface; forming a single-layer contact coplanar with the single-layer support structure, the single-layer contact having a contact non-horizontal surface; forming a single-layer insulation coplanar with the single-layer contact and horizontally between the structure non-horizontal surface and the contact non-horizontal surface; forming an upper support pad over the single-layer insulation and directly on the single-layer support structure; and mounting an integrated circuit over the upper support pad.
    Type: Application
    Filed: March 22, 2012
    Publication date: September 26, 2013
    Inventors: Hsin Hung Chen, Chien Chen Lee
  • Publication number: 20130234313
    Abstract: An article of manufacture includes a semiconductor die (110) having an integrated circuit (105) on a first side of the die (110), a diffusion barrier (125) on a second side of the die (110) opposite the first side, a mat of carbon nanotubes (112) rooted to the diffusion barrier (125), a die attach adhesive (115) forming an integral mass with the mat (112) of the carbon nanotubes, and a die pad (120) adhering to the die attach adhesive and (115) and the mat (112) of carbon nanotubes for at least some thermal transfer between the die (110) and the die pad (120) via the carbon nanotubes (112). Other articles, integrated circuit devices, structures, and processes of manufacture, and assembly processes are also disclosed.
    Type: Application
    Filed: March 8, 2012
    Publication date: September 12, 2013
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: James Cooper Wainerdi, Luigi Colombo, John Paul Tellkamp, Robert Reid Doering
  • Patent number: 8531026
    Abstract: Thermally regulated semiconductor devices having reduced thermally induced defects are provided, including associated methods. Such a device can include a heat spreader having a monolayer of diamond particles within a thin metal matrix and a semiconductor material thermally coupled to the heat spreader. In one aspect, the coefficient of thermal expansion difference between the heat spreader and the semiconductor material is less than or equal to about 50%.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: September 10, 2013
    Assignee: RiteDia Corporation
    Inventor: Chien-Min Sung
  • Patent number: 8530941
    Abstract: Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in hydrogen ion concentration (pH), changes in other analyte concentration, and/or binding events associated with chemical processes relating to DNA synthesis.
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: September 10, 2013
    Assignee: Life Technologies Corporation
    Inventors: Jonathan M. Rothberg, Wolfgang Hinz, Kim L. Johnson, James Bustillo
  • Publication number: 20130228912
    Abstract: Various stress relief structures are provided for effectively reducing thermal stress on a semiconductor chip in a chip package. Trenches on a metal substrate are created in groups in two-dimension, where each trench is opened from top or bottom surface of the metal substrate and in various shapes. The metal substrate is partitioned into many smaller substrates depending on the number of trench groups and partitions, and is attached to a semiconductor chip for stress relief. In an alternative embodiment, a plurality of cylindrical metal structures are used together with a metal substrate in a chip package for the purpose of heat removal and thermal stress relief on a semiconductor chip. In another alternative embodiment, a metal foam is used together with a semiconductor chip to create a chip package. In another alternative embodiment, a semiconductor chip is sandwiched between a heat sink and a circuit board by solder bumps directly with underfill on the circuit board.
    Type: Application
    Filed: March 3, 2012
    Publication date: September 5, 2013
    Inventor: Ho-Yuan Yu
  • Patent number: 8525309
    Abstract: A microelectronic unit can include a lead frame and a device chip. The lead frame can have a plurality of monolithic lead fingers extending in a plane of the lead frame. Each lead finger can have a fan-out portion and a chip connection portion extending in the lead frame plane. The fan-out portions can have first and second opposed surfaces and a first thickness in a first direction between the opposed surfaces. The chip connection portions can have a second thickness smaller than the first thickness. The chip connection portions can define a recess below the first surface. The device chip can have a plurality of at least one of passive devices or active devices. The device chip can have contacts thereon facing the chip connection portions and electrically coupled thereto. At least a portion of a thickness of the device chip can extend within the recess.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: September 3, 2013
    Assignee: Tessera, Inc.
    Inventors: Chok Chia, Qwai Low, Kishor Desai, Charles G. Woychik
  • Publication number: 20130221511
    Abstract: A method for forming a molded die assembly includes attaching a first major surface of a semiconductor die onto a package substrate; attaching a heat spreader to a second major surface of the semiconductor die, wherein the second major surface is opposite the first major surface, and wherein the semiconductor die, package substrate, and heat spreader form a die assembly; conforming a die release film to a transfer mold; closing the transfer mold around the die assembly such that the die release film is compressed against the heat spreader and a cavity is formed around the die assembly; transferring a thermoset material into the cavity; and releasing the die assembly from the die release film and the transfer mold.
    Type: Application
    Filed: February 23, 2012
    Publication date: August 29, 2013
    Inventors: Leo M. Higgins, III, Burton J. Carpenter, Glenn G. Daves
  • Patent number: 8519532
    Abstract: A semiconductor device includes a semiconductor chip coupled to a substrate and a base plate coupled to the substrate. The base plate includes a first metal layer clad to a second metal layer. The second metal layer is deformed to provide a pin-fin or fin cooling structure.
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: August 27, 2013
    Assignee: Infineon Technologies AG
    Inventors: Andreas Lenniger, Andre Uhlemann, Olaf Hohlfeld
  • Patent number: 8519448
    Abstract: Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in hydrogen ion concentration (pH), changes in other analyte concentration, and/or binding events associated with chemical processes relating to DNA synthesis.
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: August 27, 2013
    Assignee: Life Technologies Corporation
    Inventors: Jonathan Rothberg, Wolfgang Hinz, Kim Johnson, James Bustillo
  • Publication number: 20130207255
    Abstract: A method and apparatus for forming a backside contact, electrical and/or thermal, for die encapsulated in a semiconductor device package are provided. Die of varying thicknesses can be accommodated within the semiconductor device package. Embodiments of the present invention provide a conductive pedestal coupled to a backside contact of a die, where the coupling is performed prior to encapsulating the die within the package. In addition, conductive pedestals coupled to varying die within a semiconductor device package are of such a thickness that each conductive pedestal can be exposed on the back side of the package without exposing or damaging the backside of any encapsulated die. Embodiments of the present invention provide for the conductive pedestals being made of electrically or thermally conductive material and coupled to the device die contact using an electrically and/or thermally conductive adhesive.
    Type: Application
    Filed: February 15, 2012
    Publication date: August 15, 2013
    Inventors: Alan J. Magnus, Carl E.D. Acosta, Douglas G. Mitchell, Justin E. Poarch
  • Patent number: 8507955
    Abstract: A single chip wireless sensor comprises a microcontroller connected by a transmit/receive interface to a wireless antenna. The microcontroller is also connected to an 8 kB RAM, a USB interface, an RS232 interface, 64kB flash memory, and a 32kHz crystal. The device senses humidity and temperature, and a humidity sensor is connected by an 18 bit ?? A-to-D converter to the microcontroller and a temperature sensor is connected by a 12 bit SAR A-to-D converter to the microcontroller. The device is an integrated chip manufactured in a single process in which both the electronics and sensor components are manufactured using standard CMOS processing techniques, applied to achieve both electronic and sensing components in an integrated process.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: August 13, 2013
    Assignee: Silicon Laboratories Inc.
    Inventor: Timothy Cummins
  • Patent number: 8507954
    Abstract: A single chip wireless sensor comprises a microcontroller connected by a transmit/receive interface to a wireless antenna. The microcontroller is also connected to an 8 kB RAM, a USB interface, an RS232 interface, 64 kB flash memory, and a 32 kHz crystal. The device senses humidity and temperature, and a humidity sensor is connected by an 18 bit ?? A-to-D converter to the microcontroller and a temperature sensor is connected by a 12 bit SAR A-to-D converter to the microcontroller. The device is an integrated chip manufactured in a single process in which both the electronics and sensor components are manufactured using standard CMOS processing techniques, applied to achieve both electronic and sensing components in an integrated process.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: August 13, 2013
    Assignee: Silicon Laboratories Inc.
    Inventor: Timothy Cummins
  • Patent number: 8508040
    Abstract: An integrated heat spreader (IHS) lid over a semiconductor die connected to a substrate forms a cavity. A bead of foaming material may be placed within the IHS cavity. During an IHS cure and reflow process the foaming material will expand and fill the IHS cavity and the foam's shape conforms to the various surface features present, encapsulating a thermal interface material (TIM) material, and increasing contact area of the foam sealant.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: August 13, 2013
    Assignee: Intel Corporation
    Inventors: Paul R. Start, Rahul N. Manepalli
  • Patent number: 8502278
    Abstract: Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in hydrogen ion concentration (pH), changes in other analyte concentration, and/or binding events associated with chemical processes relating to DNA synthesis.
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: August 6, 2013
    Assignee: Life Technologies Corporation
    Inventors: Jonathan Rothberg, Wolfgang Hinz, Kim Johnson, James Bustillo
  • Patent number: 8502307
    Abstract: An integrated circuit includes a semiconductor carrier including a first side and a second side opposite the first side. An FET is in a first area of the semiconductor carrier, and has a drain electrically coupled to a drain contact area at the first side and a source electrically coupled to a source contact area at the second side. First circuit elements are in a second area of the semiconductor carrier. The second area is electrically insulated from the semiconductor carrier surrounding the second area via a trench insulation extending through the semiconductor carrier from the first side to the second side. An interconnection level electrically interconnects the first circuit elements at the second side, and is electrically insulated from the source contact area in the entire second area via an insulating layer at the second side.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: August 6, 2013
    Assignee: Infineon Technologies AG
    Inventors: Christoph Kadow, Thorsten Meyer
  • Patent number: 8497531
    Abstract: A single chip wireless sensor comprises a microcontroller connected by a transmit/receive interface to a wireless antenna. The microcontroller is also connected to an 8 kB RAM, a USB interface, an RS232 interface, 64 kB flash memory, and a 32 kHz crystal. The device senses humidity and temperature, and a humidity sensor is connected by an 18 bit ?? A-to-D converter to the microcontroller and a temperature sensor is connected by a 12 bit SAR A-to-D converter to the microcontroller. The device is an integrated chip manufactured in a single process in which both the electronics and sensor components are manufactured using standard CMOS processing techniques, applied to achieve both electronic and sensing components in an integrated process.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: July 30, 2013
    Assignee: Silicon Laboratories Inc.
    Inventor: Timothy Cummins
  • Patent number: 8497572
    Abstract: In a semiconductor module, a first heat sink is disposed on a rear surface of a first semiconductor chip constituting an upper arm, and a second heat sink is disposed on a front surface of the first semiconductor chip through a first terminal. A third heat sink is disposed on a rear surface of a second semiconductor chip constituting a lower arm, and a fourth heat sink is disposed on a front surface of the second semiconductor chip through a second terminal. A connecting part for connecting between the upper arm and the lower arm is integral with the first terminal, and is connected to the third heat sink while being inclined relative to the first terminal.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: July 30, 2013
    Assignee: DENSO CORPORATION
    Inventors: Keita Fukutani, Kuniaki Mamitsu, Yasushi Ookura, Masayoshi Nishihata, Hiroyuki Wado, Syun Sugiura
  • Patent number: 8492799
    Abstract: Methods and apparatuses relating to large scale FET arrays for analyte detection and measurement are provided. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: July 23, 2013
    Assignee: Life Technologies Corporation
    Inventors: Jonathan M Rothberg, Wolfgang Hinz
  • Patent number: 8492800
    Abstract: Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in hydrogen ion concentration (pH), changes in other analyte concentration, and/or binding events associated with chemical processes relating to DNA synthesis.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: July 23, 2013
    Assignee: Life Technologies Corporation
    Inventors: Jonathan Rothberg, Wolfgang Hinz, Kim Johnson, James Bustillo
  • Patent number: 8482120
    Abstract: A Multi-configuration Processor-Memory device for coupling to a PCB (printed circuit board) interface. The device comprises a substrate that supports multiple configurations of memory components and a processor while having a single, common interface with a PCB interface of a printed circuit board. In a first configuration, the substrate supports a processor and a first number of memory components. In a second configuration, the substrate supports a processor and an additional number of memory components. The memory components can be pre-tested, packaged memory components mounted on the substrate. The processor can be a surface mounted processor die. Additionally, the processor can be mounted in a flip chip configuration, side-opposite the memory components. In the first configuration, a heat spreader can be mounted on the memory components and the processor to dissipate heat.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: July 9, 2013
    Assignee: Nvidia Corporation
    Inventors: Behdad Jafari, George Sorensen
  • Publication number: 20130168843
    Abstract: A microelectronic package includes a substrate, first and second microelectronic elements, and a heat spreader. The substrate has terminals thereon configured for electrical connection with a component external to the package. The first microelectronic element is adjacent the substrate and the second microelectronic element is at least partially overlying the first microelectronic element. The heat spreader is sheet-like, separates the first and second microelectronic elements, and includes an aperture. Connections extend through the aperture and electrically couple the second microelectronic element with the substrate.
    Type: Application
    Filed: December 29, 2011
    Publication date: July 4, 2013
    Applicant: INVENSAS CORPORATION
    Inventor: Wael Zohni
  • Publication number: 20130154082
    Abstract: A semiconductor device includes an insulation layer, a first semiconductor element and a second semiconductor element which are disposed within the insulation layer, a frame which has higher thermal conductivity than the insulation layer and surrounds the first semiconductor element and the second semiconductor element via the insulation layer, and a wiring layer which is disposed over the insulation layer and includes an electrode which electrically connects the first semiconductor element and the second semiconductor element.
    Type: Application
    Filed: October 10, 2012
    Publication date: June 20, 2013
    Applicant: FUJITSU LIMITED
    Inventor: FUJITSU LIMITED
  • Publication number: 20130154068
    Abstract: A packaged leadless semiconductor device (20) includes a heat sink flange (24) to which semiconductor dies (26) are coupled using a high temperature die attach process. The semiconductor device (20) further includes a frame structure (28) pre-formed with bent terminal pads (44). The frame structure (28) is combined with the flange (24) so that a lower surface (36) of the flange (24) and a lower section (54) of each terminal pad (44) are in coplanar alignment, and so that an upper section (52) of each terminal pad (44) overlies the flange (24). Interconnects (30) interconnect the die (26) with the upper section (52) of the terminal pad (44). An encapsulant (32) encases the frame structure (28), flange (24), die (26), and interconnects (30) with the lower section (54) of each terminal pad (44) and the lower surface (36) of the flange (24) remaining exposed from the encapsulant (32).
    Type: Application
    Filed: December 15, 2011
    Publication date: June 20, 2013
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Audel A. Sanchez, Fernando A. Santos, Lakshminarayan Viswanathan
  • Publication number: 20130154085
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing a substrate; mounting an integrated circuit over the substrate; mounting a lid base over the substrate, the lid base having a base indentation and a hole with the integrated circuit within the hole; and mounting a heat slug over the lid base, the heat slug having a slug non-horizontal side partially within the base indentation.
    Type: Application
    Filed: December 14, 2011
    Publication date: June 20, 2013
    Inventors: DaeSik Choi, SangMi Park, MinJung Kim, MinWook Yu
  • Patent number: 8466563
    Abstract: Thinned die are attached to a flexible substrate and the die-substrate assembly is formed (wound) around multiple horizontal fingers of a heat removal buss structure such that the substrate below each die is in contact with one of the fingers. The fingers connect to a vertical support member that provides stability and a means of connecting the heat removal buss structure to the ambient.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: June 18, 2013
    Assignee: The Johns Hopkins University
    Inventor: Harry K. Charles, Jr.
  • Publication number: 20130147027
    Abstract: Disclosed herein is a semiconductor package. According to a preferred embodiment of the present invention, there is provided a semiconductor package, including: a first substrate having a first wiring pattern formed therein; a first semiconductor device mounted above the first substrate by being contacted with the first substrate; a second substrate having a second wiring pattern formed therein; a third semiconductor device mounted above the first semiconductor device and contacted with a lower portion of the second substrate; and a third substrate positioned between the first semiconductor device and the third semiconductor device and having a third wiring pattern including at least one upper electrode and lower electrode protruding outwardly, the lower electrode being contacted with the first semiconductor device and the upper electrode being contacted with the third semiconductor device.
    Type: Application
    Filed: February 23, 2012
    Publication date: June 13, 2013
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventor: Job Ha
  • Publication number: 20130147028
    Abstract: Various heat spreaders and methods of making and using the same are disclosed. In one aspect, a method of manufacturing is provided that includes forming a heat spreader that has a surface adapted to establish thermal contact with a first semiconductor chip and a second semiconductor chip on a substrate. The surface includes a first portion adapted to thermally contact a solder-based thermal interface material and a second portion having an opening adapted to hold an organic thermal interface material.
    Type: Application
    Filed: December 7, 2011
    Publication date: June 13, 2013
    Inventors: Michael Z. Su, Bryan Black, Gamal Refai-Ahmed
  • Publication number: 20130134571
    Abstract: Disclosed herein is a power module package including: a first heat dissipation plate including a first flow path, a second flow path, and a third flow path which are sequentially formed, the first flow path and the third flow path being formed to have a step therebetween; and a second heat dissipation plate formed under the first heat dissipation plate, having one face and the other face, having a semiconductor device mounting groove formed in the one face thereof, and including a fourth flow path having one end connected to the second flow path and the other end connected to the third flow path, wherein a cooling material introduced through the first flow path is distributed to the third flow path and the fourth flow path based on the second flow path.
    Type: Application
    Filed: January 18, 2012
    Publication date: May 30, 2013
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Kwang Soo KIM, Young Hoon KWAK, Young Ki LEE
  • Publication number: 20130134575
    Abstract: A heat spreader die holder that covers at least 50% of both major sides of a semiconductor die. The heat spreader die holder includes at least one opening. The heat spreader die holder is attached to a substrate. Electrically conductive structures of the die are electrically coupled to electrically conductive structures of the substrate.
    Type: Application
    Filed: November 30, 2011
    Publication date: May 30, 2013
    Inventors: YUAN YUAN, Burton J. Carpenter
  • Publication number: 20130127069
    Abstract: The chip stack of semiconductor chips with enhanced cooling apparatus includes a first chip and a second chip electrically and mechanically coupled by a grid of connectors. The chip stack includes a thermal interface material (TIM) between the first chip and the second chip. The TIM includes nanofibers aligned parallel to mating surfaces of the first and second chips, and a thermosetting polymer that when heated, will reduce the viscosity of the TIM to allow for optimal alignment of the carbon nanofibers. The method includes adding at least one thermosetting polymer to the TIM, dispersing nanofibers into the TIM, and heating the TIM until the thermosetting polymer un-crosslinks. The method further includes applying a magnetic field to align the graphite nanofibers and cooling the TIM until the thermosetting polymer re-crosslinks.
    Type: Application
    Filed: November 17, 2011
    Publication date: May 23, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Dylan J. BODAY, Joseph KUCZYNSKI, Robert E. MEYER, III
  • Patent number: 8445945
    Abstract: Methods and apparatus relating to very large scale FET arrays for analyte measurements. ChemFET (e.g., ISFET) arrays may be fabricated using conventional CMOS processing techniques based on improved FET pixel and array designs that increase measurement sensitivity and accuracy, and at the same time facilitate significantly small pixel sizes and dense arrays. Improved array control techniques provide for rapid data acquisition from large and dense arrays. Such arrays may be employed to detect a presence and/or concentration changes of various analyte types in a wide variety of chemical and/or biological processes. In one example, chemFET arrays facilitate DNA sequencing techniques based on monitoring changes in hydrogen ion concentration (pH), changes in other analyte concentration, and/or binding events associated with chemical processes relating to DNA synthesis.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: May 21, 2013
    Assignee: Life Technologies Corporation
    Inventors: Jonathan Rothberg, Wolfgang Hinz, Kim Johnson, James Bustillo