Field-effect Transistor (e.g., Jfet, Etc.) Patents (Class 326/112)
  • Patent number: 7639039
    Abstract: A semiconductor integrated circuit includes a CMOS controlled inverter consisting of series-connected PMOS and NMOS transistors. The source of the NMOS transistor is coupled to a ground line through an additional NMOS transistor for power gating of voltage VSS. The source of the PMOS transistor can be coupled to a power supply line through an additional PMOS transistor for power gating of voltage VDD. The inverter receives an input signal IN and its complementary version that has transitioned earlier than the input signal. In response to the input signal, the inverter produces an output signal. A NAND gate that receives the output signal and the complementary input signal controls the power gating NMOS transistor. A NOR gate that receives the output signal and the complementary input signal controls the power gating PMOS transistor.
    Type: Grant
    Filed: October 2, 2007
    Date of Patent: December 29, 2009
    Assignee: Mosaid Technologies Incorporated
    Inventor: HakJune Oh
  • Patent number: 7635992
    Abstract: A tapered chain of delay elements. The chain of delay elements includes a plurality of delay elements comprising a plurality of smaller sized stacked inverter delay elements each configured to implement a first delay, and a plurality of larger sized stacked inverter delay elements each configured to implement a second delay larger than the first delay. A switch circuit is coupled to the plurality of delay elements and is configured to select at least one of the plurality of delay elements to create a delay signal path having an amount of delay in accordance with a number of delay elements comprising the delay signal path. An input is coupled to a first delay element of the delay signal path to receive an input signal. An output is coupled to the switch circuit, wherein the output is coupled to the delay signal path to receive a delayed version of the input signal after propagating through the delay signal path.
    Type: Grant
    Filed: December 23, 2004
    Date of Patent: December 22, 2009
    Inventor: Robert Paul Masleid
  • Publication number: 20090309631
    Abstract: Circuit with enhanced mode and normal mode is provided and described. In one embodiment, switches are set to a first switch position to operate the circuit in the enhanced mode. In another embodiment, switches are set to a second switch position to operate the circuit in the normal mode.
    Type: Application
    Filed: August 25, 2009
    Publication date: December 17, 2009
    Inventors: Robert Paul Masleid, Vatsal Dholabhai
  • Patent number: 7633315
    Abstract: An object of the present invention is to provide a technique of reducing the leakage current of a drive circuit for driving a circuit that must retain a potential (or information) when in its standby state. A semiconductor integrated circuit device of the present invention includes a drive circuit for driving a circuit block. This drive circuit is made up of a double gate transistor with gates having different gate oxide film thicknesses. When the circuit block is in its standby state, the gate of the double gate transistor having a thinner gate oxide film is turned off and that having a thicker gate oxide film is turned on. This arrangement allows a reduction in the leakage currents of both the circuit block and the drive circuit while allowing the drive circuit to deliver or cut off power to the circuit block.
    Type: Grant
    Filed: December 7, 2006
    Date of Patent: December 15, 2009
    Assignee: Renesas Technology Corp.
    Inventors: Masanao Yamaoka, Takayuki Kawahara
  • Patent number: 7619440
    Abstract: A storage circuit has an input for receiving and storing data, a first power terminal coupled to a first conductor for receiving a first power supply voltage, and a second power terminal coupled to a second conductor. A power gate device has a first terminal coupled to the second conductor, a control terminal for receiving a bias voltage in response to a control signal, and a second terminal coupled to a terminal for receiving a second power supply voltage. A shorting device selectively electrically short circuits the first terminal of the power gate device to the control terminal of the power gate device in response to the control signal, thereby converting the power gate device from a transistor into a diode-connected device. The shorting device is smaller in size than the power gate device.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: November 17, 2009
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Robert J. Amedeo, Christopher K. Y. Chun
  • Publication number: 20090278570
    Abstract: Circuits using four terminal junction field effect transistors (JFETs) are disclosed. Such circuits can include various static and dynamic logic circuits, flip-flops, multiplexer, tri-state driver, phase detector, logic having variable speeds of operation, and/or analog circuit with such four terminal JFETs operating in a linear or nonlinear mode.
    Type: Application
    Filed: July 21, 2009
    Publication date: November 12, 2009
    Applicant: DSM SOLUTIONS, INC.
    Inventor: Ashok Kumar Kapoor
  • Patent number: 7592840
    Abstract: Some embodiments provide dynamic circuits with dynamic nodes that may float during a disable mode to reduce leakage.
    Type: Grant
    Filed: November 8, 2006
    Date of Patent: September 22, 2009
    Assignee: Intel Corporation
    Inventors: Kin Yip Sit, Shahram Jamshidi
  • Patent number: 7576567
    Abstract: A low-voltage differential signal driver for high-speed digital transmission includes a first converter operable to receive a signal in a first type and convert the signal into a second type, and a cascode current mirror coupled to the first converter. The cascode current mirror provides an impedance level that increases a differential output voltage.
    Type: Grant
    Filed: May 31, 2006
    Date of Patent: August 18, 2009
    Assignee: Fujitsu Limited
    Inventor: Jian Hong Jiang
  • Patent number: 7573300
    Abstract: An integrated circuit that includes a gate control voltage generator that supplies a current control gate voltage to a plurality of current control devices of a corresponding plurality of dynamic logic circuits each having a keeper circuit. The gate control voltage generator provides, via current control gate voltage, global control of the amount of keeper current flowing through the keeper circuits so as to enhance the performance of the dynamic logic circuits.
    Type: Grant
    Filed: January 15, 2007
    Date of Patent: August 11, 2009
    Assignee: International Business Machines Corporation
    Inventors: Wagdi W. Abadeer, George M. Braceras, Albert M. Chu, John A. Fifield, Harold Pilo, Daryl M. Seitzer
  • Publication number: 20090184734
    Abstract: A method for using an inverter with a pair of complementary junction field effect transistors (CJFET) with a small linewidth is provided. The method includes having an input capacitance for said CJFET inverter to be less than the corresponding input capacitance of a CMOS inverter of similar linewidth. The CJFET operates at a power supply with a lesser value than the voltage drop across a forward-biased diode having a reduced switching power as compared to said CMOS inverter and having a propagation delay for said CJFET inverter that is at least comparable to the corresponding delay of said CMOS inverter.
    Type: Application
    Filed: January 6, 2009
    Publication date: July 23, 2009
    Applicant: DSM Solutions, Inc.
    Inventor: Ashok Kumar Kapoor
  • Patent number: 7560957
    Abstract: A current mode logic digital circuit is provided comprising a logic circuit component having at least one data input node and at least one output node. A load is coupled between a power supply node and the output node. The load comprises a folded active inductor coupled to the output node.
    Type: Grant
    Filed: June 1, 2006
    Date of Patent: July 14, 2009
    Assignee: Agere Systems Inc.
    Inventors: Jinghong Chen, Gregory W. Sheets, Lane A. Smith
  • Patent number: 7560955
    Abstract: Disclosed is a logic circuit including first and second input terminals, supplied with respective logic signals, and first and second MOS transistors, having sources respectively connected to associated ones of the first and second input terminals and gates cross-connected to the second and first input terminals. The drains of the first and second MOS transistors are connected in common. The logic circuit also includes a MOS transistor, connected between a first power supply and a common node of the drains of the first and second MOS transistors and having a gate supplied with a reset signal so that the MOS transistor is turned on at the time of resetting. The logic circuit further includes an inverter having an input end connected to the common node.
    Type: Grant
    Filed: November 23, 2005
    Date of Patent: July 14, 2009
    Assignee: NEC Electronics Corporation
    Inventors: Hiroyuki Takahashi, Susumu Takano
  • Publication number: 20090174435
    Abstract: The invention discloses new and advantageous uses for carbon/graphene nanoribbons (GNRs), which includes, but is not limited to, electronic components for integrated circuits such as NOT gates, OR gates, AND gates, nano-capacitors, and other transistors. More specifically, the manipulation of the shapes, sizes, patterns, and edges, including doping profiles, of GNRs to optimize their use in various electronic devices is disclosed.
    Type: Application
    Filed: October 1, 2008
    Publication date: July 9, 2009
    Applicant: University of Virginia
    Inventors: Mircea R. Stan, Avik Ghosh
  • Patent number: 7554364
    Abstract: Circuitry for preventing damage to differentially coupled input JFETs in an integrated circuit amplifier includes first (J2) and second (J4) differentially coupled input JFETs. A first input signal (Vin+) is applied to a gate of the first input JFET (J2), and second input signal (Vin?) is applied to a gate of the second input JFET. Needed amounts of drain current are supplied to the first and second input JFETs. A separator JFET (J1) having a drain coupled to a source of the first input JFET and a source coupled to the source of the second input JFET is operated to control an amount of electrical isolation between the drain and source of the separator JFET so as to limit an amount of reverse bias voltage across a gate-source junction of one of the first and second input JFETs to a value less than a gate-source junction breakdown voltage of that the first and second input JFETs.
    Type: Grant
    Filed: September 19, 2007
    Date of Patent: June 30, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Sergey V. Alenin, Junlin Zhou
  • Patent number: 7550998
    Abstract: An inverter circuit (500) having a drive transistor (102) that operably couples to a voltage bias input (101) (and where that drive transistor controls the inverter circuit output by opening and closing a connection between the output (105) and ground (104)) is further operably coupled to a feedback switch (401). In a preferred approach the feedback switch is itself also operably coupled to the voltage bias input and the output and preferably serves, when the drive transistor is switched “off,” to responsively couple the voltage bias input to the drive transistor in such a way as to cause a gate terminal of the drive transistor to have its polarity relative to a source terminal of the drive transistor reversed and hence permit the inverter circuit to operate across a substantially full potential operating range of the drive transistor.
    Type: Grant
    Filed: October 26, 2005
    Date of Patent: June 23, 2009
    Assignee: Motorola, Inc.
    Inventors: Paul W. Brazis, Daniel R. Gamota, Kin P. Tsui, John B. Szczech, Jie Zhang
  • Patent number: 7550992
    Abstract: The disclosure relates to a logic cell for an integrated circuit, including two redundant outputs, a first output equipped with an output transistor of type P and a second output equipped with an output transistor of type N. Such a cell includes isolation element connecting the first and second outputs and forming an isolation resistance.
    Type: Grant
    Filed: August 18, 2006
    Date of Patent: June 23, 2009
    Assignee: Atmel Nantes SA
    Inventors: Michel Briet, Arnaud Verdant
  • Patent number: 7548108
    Abstract: A semiconductor integrated circuit device may include a first internal circuit operating at a first voltage higher than a power supply voltage of the device, and a second internal circuit operating at a second voltage lower than the first voltage. An interface circuit may be provided to restrict a voltage transferred from the first internal circuit to the second internal circuit. The first internal circuit may include a metal oxide semiconductor (MOS) transistor having a relatively thick gate insulation layer, and the second internal circuit may have a MOS transistor having a relatively thin gate insulation layer. The interface circuit, by restricting voltage, may reduce an electric field applied to the gate insulation layer of the second MOS transistor in an effort to prevent a reduction in turn-on speed of the second MOS transistor.
    Type: Grant
    Filed: January 22, 2004
    Date of Patent: June 16, 2009
    Assignee: Sumsung Electronics Co., Ltd.
    Inventor: Jong-Hyun Choi
  • Patent number: 7535260
    Abstract: A logic gate includes a first driver connected to a first power source, a first control transistor connected between a first node and a second power source to control a voltage of the first node, a second driver connected between a gate electrode of the first control transistor and the second power source, a third driver connected between the first power source and the second power source, a second control transistor connected between the third driver and the second power source, and having a first electrode connected to an output terminal, and a fourth driver arranged between a gate electrode of the second control transistor and the second power source, wherein the first control transistor, the second control transistor and each transistor of the first driver, the second driver, the third driver and the fourth driver are PMOS transistors.
    Type: Grant
    Filed: April 5, 2007
    Date of Patent: May 19, 2009
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventor: Bo Yong Chung
  • Patent number: 7535261
    Abstract: A first current source generating a current I0+I when a control signal is in ‘H’ level and a current I0 when it is in ‘L’ level, a current mirror circuit transferring a current generated in the first current source and composed of first and second MOS transistors, and a second current source connected to the second transistor and generating I0+I are provided. Further, a node branched from a connection node between the second transistor and the second current source is formed, and a logic unit including a flip-flop circuit formed of a differential amplifier is driven through the node. The logic unit is in an active state when the control signal is in ‘H’ level and it is in an inactive state when the signal is in ‘L’ level. When the logic unit is in an active state, it processes a data input signal to generate data output signal.
    Type: Grant
    Filed: July 26, 2006
    Date of Patent: May 19, 2009
    Assignee: Hitachi, Ltd.
    Inventors: Fumio Yuuki, Hiroki Yamashita
  • Publication number: 20090096485
    Abstract: Various systems and methods for implementing dynamic logic are disclosed herein. For example, some embodiments of the present invention provide dynamic logic devices with a logic circuit that includes an inverting output buffer, a logic function, a bias transistor, and a current circuit. An input of the logic function is electrically coupled to a logic input, an output of the logic function is electrically coupled to an input of the inverting output buffer, and the logic function exhibits a leakage current. The gate of the bias transistor is electrically coupled to an output of the inverting buffer, and a first leg of the bias transistor is electrically coupled to the input of the inverting buffer. The current circuit supplies a current corresponding to the to a second leg of the bias transistor. In some cases, an improved performance may be achieved for a given leakage, or a reduced leakage may be achieved for a given performance.
    Type: Application
    Filed: October 10, 2007
    Publication date: April 16, 2009
    Inventor: Andrew Marshall
  • Publication number: 20090072862
    Abstract: The invention provides a low cost and high performance functional circuit by reducing time required for the repetition of logic synthesis and routing of layout in a functional circuit design. A standard cell used for the logic synthesis and the routing of layout is configured by a logic circuit on an output side and a logic circuit on an input side and a driving capacity of the logic circuit on the output side is made large while gate input capacitance of the logic circuit on the input side is made small. By forming the standard cell in this manner, a ratio that the gate delay occupies in the delay time of a functional circuit can be relatively increased. Therefore, even when wiring capacitance after the routing of layout is not estimated at high precision in advance, an operating frequency can be obtained at high precision in the logic synthesis as long as a gate delay of each standard cell can be estimated at high precision.
    Type: Application
    Filed: November 14, 2008
    Publication date: March 19, 2009
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventor: Yoshiyuki Kurokawa
  • Patent number: 7498833
    Abstract: A semiconductor integrated circuit comprises logic cones having a structure in which substrates thereof are isolated from each other and substrate potentials can be controlled, and a potential switching section for supplying a substrate voltage from any of a first substrate bias supply potential and a second substrate bias supply potential to the logic cone. A signal output by a logic cone previous to a logic cone whose substrate potential is controlled is input as a trigger signal to the substrate supply potential switching section.
    Type: Grant
    Filed: April 12, 2007
    Date of Patent: March 3, 2009
    Assignee: Panasonic Corporation
    Inventor: Isao Tanaka
  • Patent number: 7498847
    Abstract: An output driver of a semiconductor memory device that operates in a differential mode and in a single mode is disclosed. The output driver includes a current supplying circuit that operates as a resistor in a single mode and as a current source in a differential mode. Accordingly, the semiconductor memory device including the output driver can have high test efficiency, since the number of test pins utilized during a test operation can be selectively reduced for low frequency tests.
    Type: Grant
    Filed: January 18, 2007
    Date of Patent: March 3, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Hwan-Wook Park
  • Patent number: 7486106
    Abstract: The present invention is directed to a circuit and a method that features selectively isolating a logic device from a source of power implementing a counter circuit to transmit a signal to a voltage control device to isolate a source of power from a logic device, coupled to a plurality of switching elements, with the voltage control device being coupled to allocate power to the logic device in response to activation of one of said plurality of switching elements. The logic device is typically a programmable logic device. In one embodiment, the voltage control device is a field effect transistor. In another embodiment the voltage control device is a voltage regulator.
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: February 3, 2009
    Assignee: Altera Corporation
    Inventor: Rafael Czernek Camarota
  • Patent number: 7479801
    Abstract: A power gated semiconductor integrated circuit comprises: (1) logic circuit to be power gated, said logic circuit having a virtual ground rail; (2) footer device disposed between said virtual ground rail and a ground rail for reducing power consumption of said logic circuit; and (3) virtual rail voltage clamp disposed electrically in parallel with said footer device for limiting the voltage at the virtual ground rail, the virtual rail voltage clamp comprising at least one NFET. A total of Nf NFETs are connected to the virtual ground rail of the integrated circuit for use as both virtual rail voltage clamps and footer devices. A quantity of Nmax-VC NFETs are scanned and perform the function of voltage clamps and the remaining (Nf?Nmax-VC) NFETs perform power gating. Manufacturing variability immunity and tuning of the variability immunity is achieved by adjusting the quantity Nmax-VC based upon testing of the manufactured integrated circuit.
    Type: Grant
    Filed: February 20, 2008
    Date of Patent: January 20, 2009
    Assignee: International Business Machines Corporation
    Inventor: Subhrajit Bhattacharya
  • Patent number: 7474125
    Abstract: A method for using an inverter with a pair of complementary junction field effect transistors (CJFET) with a small linewidth is provided. The method includes having an input capacitance for said CJFET inverter to be less than the corresponding input capacitance of a CMOS inverter of similar linewidth. The CJFET operates at a power supply with a lesser value than the voltage drop across a forward-biased diode having a reduced switching power as compared to said CMOS inverter and having a propagation delay for said CJFET inverter that is at least comparable to the corresponding delay of said CMOS inverter.
    Type: Grant
    Filed: December 7, 2006
    Date of Patent: January 6, 2009
    Assignee: DSM Solutions, Inc.
    Inventor: Ashok Kumar Kapoor
  • Patent number: 7471115
    Abstract: The invention includes an error correcting logic system that allows critical circuits to be hardened with only one redundant unit and without loss of circuit performance. The system provides an interconnecting gate that suppresses a fault in one of at least two redundant dynamic logic gates that feed to the interconnecting gate. The system is applicable to dynamic or static logic systems. The system prevents propagation of a fault, and addresses not only soft errors, but noise-induced errors.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: December 30, 2008
    Assignee: International Business Machines Corporation
    Inventors: Kerry Bernstein, Philip G. Emma, John A. Fifield, Paul D. Kartschoke, William A. Klaasen, Norman J. Rohrer
  • Patent number: 7471114
    Abstract: A design structure for an integrated circuit that includes a gate control voltage generator that supplies a current control gate voltage to a plurality of current control devices of a corresponding plurality of dynamic logic circuits each having a keeper circuit. The gate control voltage generator provides, via current control gate voltage, global control of the amount of keeper current flowing through the keeper circuits so as to enhance the performance of the dynamic logic circuits.
    Type: Grant
    Filed: September 6, 2007
    Date of Patent: December 30, 2008
    Assignee: International Buisness Machines Corporation
    Inventors: Wagdi W. Abadeer, George M. Braceras, Albert M. Chu, John A. Fifield, Harold Pilo, Daryl M. Seitzer
  • Publication number: 20080258774
    Abstract: The logic gate of the present invention is of a configuration that includes a first transistor, a second transistor, and a connection-switching unit. The first transistor receives a first voltage at its source, a first input signal at its gate, and supplies a first output signal from its drain. The second transistor receives a second voltage that is lower than the first voltage at its source, receives a second input signal at its gate, and supplies a second output signal from its drain. The connection-switching unit is connected between the drains of the first transistor and the second transistor for connecting and cutting off the first transistor and the second transistor.
    Type: Application
    Filed: June 17, 2008
    Publication date: October 23, 2008
    Inventor: Kyoichi Nagata
  • Patent number: 7436212
    Abstract: Embodiments of the invention provide an interface circuit that is capable of reducing the power consumption, which may be increased by a shoot-through current, and provide an electronic device having such an interface circuit. In one embodiment, an interface circuit exchanges signals with another electronic device via a signal transmission line. The interface circuit includes a switch for pulling up the signal transmission line and a switch for pulling down the signal transmission line. While a pull-up or pull-down is performed, the interface circuit detects the potential level of the signal transmission line to determine whether the signal transmission line is pulled down or pulled up by the other electronic device. If the signal transmission line is not pulled down/pulled up by the other electronic device, the interface circuit exercises pull-down/pull-up control.
    Type: Grant
    Filed: September 17, 2004
    Date of Patent: October 14, 2008
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Tatsuya Sakai, Tsuyoshi Satoh, Hiroshi Oshikawa, Toru Aida
  • Patent number: 7436215
    Abstract: In some embodiments, a transmitter includes a first circuit coupled to an input port of the transmitter, and a second circuit coupled to the first circuit and to an output port of the transmitter, wherein the first circuit is sized with respect to the second circuit such that for a pulse signal applied to the input port, the transmitter generates an output signal having a rise-time and a fall-time that are substantially equal at the output port.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: October 14, 2008
    Assignee: Intel Corporation
    Inventors: Ken Drottar, Zale T Schoenborn
  • Patent number: 7429880
    Abstract: The present invention implements structures and method for non-delayed clock dynamic logic circuit configurations with output and/or complementary output with reduced glitch and/or mitigating adverse charge-sharing effects for Complementary Oxide Semiconductor (CMOS) and/or mitigating parasitic bipolar action in Strained/Unstrained Silicon-On-Insulator (SOI) circuits, where insulator may be oxide, nitride of Silicon and the like or Sapphire and the like including a method of synthesis.
    Type: Grant
    Filed: August 11, 2003
    Date of Patent: September 30, 2008
    Inventors: Amar Pal Singh Rana, Nirmal Singh
  • Patent number: 7428160
    Abstract: A nonvolatile programmable logic circuit using a ferroelectric memory performs a nonvolatile memory function and an operation function without additional memory devices, thereby reducing power consumption. Also, a nonvolatile ferroelectric memory is applied to a FPGA (Field Programmable Gate Array), thereby preventing leakage of internal data and reducing the area of a chip.
    Type: Grant
    Filed: December 18, 2003
    Date of Patent: September 23, 2008
    Assignee: Hynix Semiconductor Inc.
    Inventor: Hee Bok Kang
  • Patent number: 7420388
    Abstract: A power gated semiconductor integrated circuit comprises: (1) logic circuit to be power gated, said logic circuit having a virtual ground rail; (2) footer device disposed between said virtual ground rail and a ground rail for reducing power consumption of said logic circuit; and (3) virtual rail voltage clamp disposed electrically in parallel with said footer device for limiting the voltage at the virtual ground rail, the virtual rail voltage clamp comprising at least one NFET. A total of Nf NFETs are connected to the virtual ground rail of the integrated circuit for use as both virtual rail voltage clamps and footer devices. A quantity of Nmax-VC NFETs are scanned and perform the function of voltage clamps and the remaining (Nf-Nmax-VC) NFETs perform power gating. Manufacturing variability immunity and tuning of the variability immunity is achieved by adjusting the quantity Nmax-VC based upon testing of the manufactured integrated circuit.
    Type: Grant
    Filed: August 1, 2006
    Date of Patent: September 2, 2008
    Assignee: International Business Machines Corp.
    Inventor: Subhrajit Bhattacharya
  • Patent number: 7417468
    Abstract: A dynamic and differential CMOS logic style is disclosed in which a gate uses a fixed amount of energy per evaluation event. The gate switches its output at every event and loads a constant capacitance. The logic style is a Dynamic and Differential Logic (DDL) style. The DDL style logic typically has one charging event per clock cycle and the charging event does not depend on the input signals. The differential feature masks the in-put value because a precharged output nodes is discharged during the evaluation phase. The dynamic feature breaks the input sequence: the discharged node is charged during the subsequent precharge phase.
    Type: Grant
    Filed: September 17, 2004
    Date of Patent: August 26, 2008
    Assignee: The Regents of the University of California
    Inventors: Ingrid M. Verbauwhede, Kris J. V. Tiri
  • Patent number: 7417469
    Abstract: A method and system for automatically detecting and optimally compensating a wide range of die leakage currents in dynamic circuits is presented. A self-adaptive keeper tracks the leakage and reduces the leakage effects by optimally controlled compensation current. The self-adaptive keeper utilizes a 2-stage embedded current mirror circuit, a dummy cell and a keeper transistor to compensate leakage current. The load impact of the self-adaptive keeper on the dynamic circuit components (for example, the impact on memory cells) is minimized by a dummy cell which detects and matches the instant leakage current. Amplification in the 2-stage embedded current mirror circuit provides an optimal current strength in the keeper transistor. The optimally amplified leakage current is utilized to compensate for a leakage induced voltage drop at the circuit's output. Thus, the self-adaptive keeper ensures the robustness of the circuit in real time and does not create any negative trade-off on read latency.
    Type: Grant
    Filed: November 13, 2006
    Date of Patent: August 26, 2008
    Assignee: International Business Machines Corporation
    Inventors: Zhibin Cheng, Aleksandr Kaplun
  • Patent number: 7403038
    Abstract: A circuit capable of reducing a consumption current is provided for a digital display device composed of unipolar TFTs. There is provided a latch circuit for holding a digital video signal. According to the latch circuit, when the digital video signal is inputted to an input electrode of a TFT (101), a non-inverting output signal is outputted from an output electrode of the TFT (101) and an inverting output signal is outputted from output electrodes of TFTs (102 and 103). Two line outputs of non-inversion and inversion are obtained. Thus, when a buffer located in a subsequent stage is operated, a period for which a direct current path is produced between a high potential and a low potential of a power source can be shortened, thereby contributing to reduction in a consumption current.
    Type: Grant
    Filed: February 17, 2006
    Date of Patent: July 22, 2008
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Munehiro Azami
  • Patent number: 7397271
    Abstract: A semiconductor integrated circuit device has a combinational logic circuit including one or plural logic cells connected in series.
    Type: Grant
    Filed: August 11, 2006
    Date of Patent: July 8, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Mototsugu Hamada, Tsuyoshi Nishikawa, Toshiyuki Furusawa
  • Patent number: 7394294
    Abstract: A complementary pass-transistor logic includes input nodes provided with first complementary signals; intermediate nodes for outputting complementary intermediate signals; a logic network comprised of NMOS transistors, the network being connected between the input nodes and the intermediate nodes, and the conduction states of the transistors being controlled by second complementary input signals to output a logical operation result of the first and second input signals to the intermediate nodes; and inverters for inverting the intermediate signals and producing complementary output signals, wherein the NMOS transistors of the logic network are configured as a depletion-type NMOS.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: July 1, 2008
    Assignee: Okie Electric Industry Co., Ltd.
    Inventor: Akira Akahori
  • Patent number: 7394297
    Abstract: The logic gate of the present invention is of a configuration that includes a first transistor, a second transistor, and a connection-switching unit. The first transistor receives a first voltage at its source, a first input signal at its gate, and supplies a first output signal from its drain. The second transistor receives a second voltage that is lower than the first voltage at its source, receives a second input signal at its gate, and supplies a second output signal from its drain. The connection-switching unit is connected between the drains of the first transistor and the second transistor for connecting and cutting off the first transistor and the second transistor.
    Type: Grant
    Filed: April 7, 2006
    Date of Patent: July 1, 2008
    Assignee: Elpida Memory, Inc.
    Inventor: Kyoichi Nagata
  • Publication number: 20080150587
    Abstract: A threshold voltage of a transistor is fluctuated because of fluctuation in film thickness of a gate insulating film or in gate length and gate width caused by differences of used substrates or manufacturing steps. In order to solve the problem, according to the present invention, there is provided a clocked inverter including a first transistor and a second transistor connected in series, and a compensation circuit including a third transistor and a fourth transistor connected in series.
    Type: Application
    Filed: December 5, 2007
    Publication date: June 26, 2008
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Mitsuaki Osame, Aya Anzai
  • Publication number: 20080143389
    Abstract: In accordance with some embodiments, logical circuits comprising carbon nanotube field effect transistors are disclosed herein.
    Type: Application
    Filed: December 19, 2006
    Publication date: June 19, 2008
    Inventors: Ali Keshavarzi, Juanita Kurtlin, Vivek De
  • Patent number: 7388406
    Abstract: A CML digital circuit includes a load coupled between a power supply node and at least one output node and a logic circuit component coupled to the output node. The logic circuit component has at least one data input node. The logic circuit component comprises a first circuit module and a second circuit module. A first tail current source is coupled to the first circuit module. A second tail current source is coupled to the second circuit module. A first switch is coupled between the power supply node and the first tail current source. A second switch is coupled between the power supply node and the second tail current source, wherein the first switch is triggered to deactivate the first circuit module when the second circuit module is operating and the second switch is triggered to deactivate the second circuit module when the first circuit module is operating.
    Type: Grant
    Filed: May 24, 2006
    Date of Patent: June 17, 2008
    Assignee: Agere Systems Inc.
    Inventor: Jinghong Chen
  • Patent number: 7385441
    Abstract: A buffer circuit has a first transistor and a second transistor in a cascode, and a buffer switch coupled from an output of the buffer to a gate of the second transistor. The buffer circuit is bootstrapped by a bootstrap capacitor, a diode circuit, and a bootstrap switch. The bootstrap capacitor is coupled from the output to the gate of the second transistor through the bootstrap switch. A potential difference is set up across the bootstrap capacitor through the diode circuit. When a low input is given to the buffer circuit, the second transistor turns off and the output goes to a high bias voltage through the first transistor. When a high input is given, the first transistor turns off, the second transistor turns on, and as the output goes low, the gate of the second transistor is bootstrapped to drop the output completely down to a low bias voltage.
    Type: Grant
    Filed: September 27, 2006
    Date of Patent: June 10, 2008
    Assignee: TPO Displays Corp.
    Inventor: Ping-Lin Liu
  • Patent number: 7382162
    Abstract: Techniques for employing multi-gate field effect transistors (FETS) in logic circuits formed from logic gates are provided. Double-gate transistors that conduct only when both transistor gates are active can be used to reduce the number of devices hitherto required in series or “stacked” portions of logic gates. Circuit area can be reduced and performance can be enhanced.
    Type: Grant
    Filed: July 14, 2005
    Date of Patent: June 3, 2008
    Assignee: International Business Machines Corporation
    Inventors: Meng-Hsueh Chiang, Ching-Te Kent Chuang, Keunwoo Kim
  • Patent number: 7375547
    Abstract: An SOI structure semiconductor integrated circuit is disclosed that reduces the number of power supply wires setting substrate potential of a semiconductor element and reduces power consumption. With an SOI structure semiconductor integrated circuit, a first circuit block 51 does not include a critical path and a second circuit block 61 does include a critical path. First power supply wiring 28 supplies a first power supply and second power supply wiring 29 supplies a second power supply of a high-voltage compared to the first power supply. A wiring section 71 (P-channel first substrate power supply wiring and P-channel first power supply wiring) supplies the first power supply as a substrate power supply for P-channel elements of the first circuit block 51 and a source power supply.
    Type: Grant
    Filed: March 1, 2006
    Date of Patent: May 20, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventor: Hidekichi Shimura
  • Patent number: 7365576
    Abstract: A switching model to create stable binary sequential devices comprised of one or more logic functions with feedback of which an output signal is uniquely related to an input signal is applied to possible binary logic functions. Static latches of commutative and non-commutative binary functions are designed by using the switching model. Latches can be realized by individually controlled gates sometimes with inverters. Optical and electro-optical latches are disclosed. The application of transmission gates to realize latches is also disclosed.
    Type: Grant
    Filed: June 7, 2006
    Date of Patent: April 29, 2008
    Assignee: Ternarylogic LLC
    Inventor: Peter Lablans
  • Patent number: 7363595
    Abstract: Method and apparatus for analog compensation of driver output signal slew rate against device impedance variation. The method includes a signal termination device coupled to a driver output pad. In one embodiment, driver includes a pull-up circuit having at least one pull-up device and a pull-down circuit including at least one pull-down device. In one embodiment, the pull-up circuit and the pull-down circuit including corresponding pull-up and pull-down compensation resistive elements. Accordingly, the pull-up and pull-down compensation resistive elements provide analog compensation of a driver output signal slew rate against device impedance variation. In one embodiment, a slew rate of the driver output signal is within a predetermined slew rate range to avoid uncontrolled fast switching as well as unnecessarily slow switching in the driver output signal. Other embodiments are described and claimed.
    Type: Grant
    Filed: March 31, 2004
    Date of Patent: April 22, 2008
    Assignee: Intel Corporation
    Inventors: Alex Levin, Kim Soi Er
  • Patent number: 7345511
    Abstract: A complementary logic circuit contains a first logic input, a second logic input, a first dedicated logic terminal, a second dedicated logic terminal, a first logic block, and a second logic block. The first logic block consists of a network of p-type transistors for implementing a predetermined logic function. The p-type transistor network has an outer diffusion connection, a first network gate connection, and an inner diffusion connection. The outer diffusion connection of the p-type transistor network is connected to the first dedicated logic terminal, and the first network gate connection of the p-type transistor network is connected to the first logic input. The second logic block consists of a network of n-type transistors which implements a logic function complementary to the logic function implemented by the first logic block. The n-type transistor network has an outer diffusion connection, a first network gate connection, and an inner diffusion connection.
    Type: Grant
    Filed: August 27, 2003
    Date of Patent: March 18, 2008
    Assignee: Technion Research & Development Foundation Ltd.
    Inventors: Arkadiy Morgenshtein, Alexander Fish, Israel A. Wagner
  • Patent number: 7342423
    Abstract: A circuit for calculating a logical combination of two input operands includes a first input for receiving a first dual rail signal having data values of the first input in a calculation cycle and precharge values in a precharge cycle, a second input for receiving a second dual rail signal having data values of the second input in the calculation cycle and precharge values in the precharge cycle, and an output for outputting a third dual rail signal having result values in the calculation cycle and precharge values in the precharge cycle.
    Type: Grant
    Filed: August 8, 2006
    Date of Patent: March 11, 2008
    Assignee: Infineon Technologies AG
    Inventors: Antoine Degrendel, Winfried Kamp