With Optical Coupler Patents (Class 385/15)
  • Patent number: 8620120
    Abstract: A photonic integrated circuit (410) is described comprising at least one signal processing circuit (110). The signal processing circuit (110) comprises at least one input coupling element (120) for coupling incident light from a predetermined incoupling direction into the photonic integrated circuit (410), and at least one output coupling element (130) for coupling light out of the photonic integrated circuit (410) into an outcoupling direction. The relation between the incoupling direction and the outcoupling direction is different from a relation according to the law of reflection and the incoupling direction and the outcoupling direction are substantially the same. Furthermore, an optical sensor probe (400) comprising such a photonic integrated circuit (410) is disclosed.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: December 31, 2013
    Assignees: IMEC, Universiteit Ghent
    Inventors: Roel Baets, Wim Bogaerts, Katrien De Vos, Stijn Scheerlinck
  • Patent number: 8620131
    Abstract: A variable optical attenuator includes a collimating unit that collimates an incident light beam, a polarization splitting member that separates the collimated light beam into a first polarized light beam having a first polarization and a second polarized light beam having a second polarization, a birefringence control unit through which the first and second polarized light beams pass, the birefringence control unit including a liquid crystal cell having a birefringence is controlled by a voltage or current, wherein the birefringence of the liquid crystal cell is substantially zero when no voltage or current is applied thereto, and a reflection member that reflects the first and second polarized light beams output from the birefringence control unit. The variable optical attenuator has high stability, high precision, and low volume.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: December 31, 2013
    Assignee: INLC Technology, Inc.
    Inventor: Seong Woo Suh
  • Patent number: 8611705
    Abstract: Embodiments relate to optical switching devices. In embodiments, the optical switching devices are implemented in a silicon substrate and comprise an absorbent element selectively movable into and out of the evanescent field of a light beam which passes through a lamella. The absorbent element attenuates the evanescent part of the light beam such that the beam can be switched on and off by movement of the absorbent element.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: December 17, 2013
    Assignee: Infineon Technologies AG
    Inventor: Thoralf Kautzsch
  • Patent number: 8612179
    Abstract: A coupler that generates and emits a simulated missile signature for assessing the operational capability of a missile approach warning system. The coupler may be directly attached to the system by an adapter. Couplers may be used in multiplicity, simultaneously or sequentially. The simulated signature may be digitally stored, as may be the results of the assessment. Simulated signatures may also be generated from freeform. The coupler also performs sensitivity testing.
    Type: Grant
    Filed: January 9, 2012
    Date of Patent: December 17, 2013
    Assignee: DRS Sustainment Systems, Inc.
    Inventors: Sam C. Deriso, Jr., Jeff Koehler
  • Patent number: 8597578
    Abstract: The present invention is directed to an assembly for use in detecting an analyte in a sample based on thin-film spectral interference. The assembly comprises a waveguide, a monolithic substrate optically coupled to the waveguide, and a thin-film layer directly bonded to the sensing side of the monolithic substrate. The refractive index of the monolithic substrate is higher than the refractive index of the transparent material of the thin-film layer. A spectral interference between the light reflected into the waveguide from a first reflecting surface and a second reflecting surface varies as analyte molecules in a sample bind to the analyte binding molecules coated on the thin-film layer.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: December 3, 2013
    Assignee: Access Medical Systems, Ltd.
    Inventors: Hong Tan, Yushan Tan, Erhua Cao, Min Xia, Robert F. Zuk
  • Publication number: 20130315526
    Abstract: An MCM may include a single optical routing layer that provides point-to-point connectivity among N chips in the MCM, such as all-to-all connectivity or full-mesh point-to-point connectivity. Moreover, the optical routing layer may include: N optical waveguides optically coupled to the N chips and a cyclic de-multiplexer, optically coupled to the N optical waveguides, that routes optical signals among the N optical waveguides without optical-waveguide crossing in the optical routing layer. For example, the cyclic de-multiplexer may include: an array-waveguide-grating (AWG) wavelength router and/or an echelle-grating wavelength router.
    Type: Application
    Filed: May 23, 2012
    Publication date: November 28, 2013
    Applicant: ORACLE INTERNATIONAL CORPORATION
    Inventors: Ashok V. Krishnamoorthy, Xuezhe Zheng
  • Patent number: 8594474
    Abstract: A Mach-Zehnder wavelength division multiplexer (WDM) is provided. The WDM has a short length with flat passband and low crosstalk. Since passband is flattened, crosstalk is reduced and length of the WDM is shortened, the WDN can be used for optical communication and optical interconnection in a single chip.
    Type: Grant
    Filed: January 6, 2012
    Date of Patent: November 26, 2013
    Assignee: National Central University
    Inventors: Hung-Chih Lu, Jen-Inn Chyi
  • Patent number: 8594503
    Abstract: An optical device for optically multiplexing or demultiplexing light of different predetermined wavelengths is provided, the optical device comprising at least one first waveguide (11) and at least one second waveguide (12) formed on a substrate (10), wherein the at least one first waveguide and the at least one second waveguide intersect at an intersection, comprising a diffraction grating structure (13) formed at the intersection. There exists a first wavelength or wavelength band travelling within the first waveguide (11) exciting the grating structure and being diffracted an angle corresponding to an outcoupling direction and there exists a second wavelength or wavelength band, different from the first wavelength or wavelength band, travelling within the second waveguide (12) exciting the grating structure and being diffracted at an angle corresponding to the same outcoupling direction.
    Type: Grant
    Filed: April 4, 2008
    Date of Patent: November 26, 2013
    Assignees: IMEC, Universiteit Gent, Genexis B.V.
    Inventors: Gunther Roelkens, Dries Van Thourhout, Roel Baets, Gerard Nicolaas van den Hoven
  • Patent number: 8588564
    Abstract: A confocal optical system comprising a scanning fiber is provided. The scanning fiber is a single-mode fiber of which a first end is shaped as a curved surface. The scanning fiber transmits illumination light to the first end. The illumination light is emitted toward an observation area. The illumination light emanates from the first end. The illumination light emanates from the first end striking a target area within the observation area. The first end receives at least one of reflected light and fluorescence from the target area. The reflected light is the illumination light reflected from the target area. The fluorescence is induced at the target area by illumination from the illumination light.
    Type: Grant
    Filed: May 10, 2010
    Date of Patent: November 19, 2013
    Assignee: Hoya Corporation
    Inventor: Satoshi Karasawa
  • Patent number: 8582929
    Abstract: An electric field detection device. In one embodiment, the electric field detection device includes an interferometer having a reference arm and an active arm. The reference arm comprises a first electro-optic waveguide. The active arm comprises a first electrically conductive plate, a second electrically conductive plate spaced apart from the first electrically conductive plate defining a first gap therebetween, a third electrically conductive plate disposed in the first gap and vertically extending from the first electrically conductive plate to define a T-shape structure and a second gap between the third electrically conductive plate and the second electrically conductive plate, where the second gap is substantially smaller than the first gap; and a second electro-optic waveguide disposed in the second gap and being in electrical communication with the second and third electrically conductive plates.
    Type: Grant
    Filed: October 17, 2011
    Date of Patent: November 12, 2013
    Assignee: Northwestern University
    Inventors: Fei Yi, Seng-Tiong Ho
  • Patent number: 8582104
    Abstract: In certain embodiments, a system for detecting an agent includes a resonator device configured to receive an agent. The resonator device is additionally configured to transmit light received from a light source. The transmitted light has a known characteristic in the absence of the received agent and an altered characteristic in the presence of the received agent. The system further include a lens positioned between the resonator device and a detector array. The lens is configured to focus the transmitted light onto one or more detectors of the detector array, the one or more detectors of the detector array operable to generate a signal corresponding to the transmitted light. The system further includes a processing system operable to determine whether the agent is present based on the signal generated by the one or more detectors of the detector array.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: November 12, 2013
    Assignee: Raytheon Company
    Inventor: Frank B. Jaworski
  • Patent number: 8577191
    Abstract: A transceiver comprising a CMOS chip and a plurality of semiconductor lasers coupled with the CMOS chip may be operable to communicate optical source signals from the plurality of semiconductor lasers into the CMOS chip. The source signals may be used to generate first optical signals that may be transmitted from the CMOS chip to optical fibers. Second optical signals may be received from the optical fibers and converted to electrical signals for use by the CMOS chip. The optical source signals may be communicated from the semiconductor lasers into the CMOS chip via optical fibers in to a top surface and the first optical signals may be communicated out of a top surface of the CMOS chip. The first optical signals may be communicated from the CMOS chip via optical couplers, which may comprise grating couplers.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: November 5, 2013
    Assignee: Luxtera Inc.
    Inventors: Peter De Dobbelaere, Thierry Pinguet, Mark Peterson, Mark Harrison, Alexander G. Dickinson, Lawrence C. Gunn
  • Patent number: 8563956
    Abstract: An attenuation optical system is in a beam path of a light beam traveling through a regenerative ring resonator. The attenuation optical system includes an actuator configured to receive an electromagnetic signal; and a plate mounted to the actuator to be moveable between a plurality of positions, with each position placing an attenuation region in the beam path such that the beam profile is covered by the attenuation region and each attenuation region representing an attenuation factor applied to the light beam as determined by a geometry of the attenuation region. At least one attenuation region includes a plurality of evenly-spaced elongated openings between solid energy-reflecting surfaces and at least one attenuation region includes an open area that is larger than the beam profile of the light beam.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: October 22, 2013
    Assignee: Cymer, LLC
    Inventors: John Melchior, Robert J. Rafac, Rostislav Rokitski
  • Patent number: 8565562
    Abstract: An optical lens of an optical connector includes alignment features for passive connection alignment. Fiber inserted into the lens is aligned with a fiber groove that restricts motion in at least one direction to align the fiber. The lens includes an alignment feature to passively align the lens with a mating alignment feature of a mating connector. The groove may, for example, be L-, V-, or U-shaped. The alignment feature can be a post with corresponding recess. Alignment can further be secured with a tab that constrains pivoting of the connectors when engaged.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: October 22, 2013
    Assignee: Intel Corporation
    Inventor: Jamyuen Ko
  • Patent number: 8554024
    Abstract: The present invention relates to a sensor using a tilted fiber grating to detect physical manifestations occurring in a medium. Such physical manifestations induce measurable changes in the optical property of the tilted fiber grating. The sensor comprises a sensing surface which is to be exposed to the medium, an optical pathway and a tilted grating in the optical pathway. The grating is responsive to electromagnetic radiation propagating in the optical pathway to generate a response conveying information on the physical manifestation.
    Type: Grant
    Filed: October 25, 2006
    Date of Patent: October 8, 2013
    Assignee: LXData Inc.
    Inventors: Jacques Albert, Chengkun Chen, Yanina Shevchenko, Alexei Ivanov
  • Patent number: 8548290
    Abstract: A near-eye display of a type having an image generator for generating a succession of angularly related beams and waveguide for propagating the angularly related beams to an eyebox within which a virtual image is visible includes a controllable output aperture for such purposes as reconstructing a better defined pupil within the eyebox while also preserving the possibility for viewing the ambient environment from the eyebox through the controllable output aperture.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: October 1, 2013
    Assignee: Vuzix Corporation
    Inventors: Paul J. Travers, Robert J. Schultz
  • Patent number: 8548282
    Abstract: A fiber-inline MZI device for temperature sensing or refractive index (RI) sensing, the device comprising: a section of a Photonic Crystal Fiber (PCF) having at least two air holes infiltrated with a liquid analyte to form a waveguide channel, the liquid analyte forming rods in the PCF; wherein the rods leave an interference fringe pattern in the transmission spectrum when light is injected into the PCF, and fringe dips are tracked over a wide wavelength range in order to sense the temperature or refractive index.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: October 1, 2013
    Assignee: The Hong Kong Polytechnic University
    Inventors: Dongning Wang, Minwei Yang
  • Patent number: 8548283
    Abstract: An optical structure includes an optical waveguide and at least one photonic crystal structure. The optical structure also includes a structural portion mechanically coupled to the optical waveguide and the at least one photonic crystal structure such that a region substantially bounded by the structural portion, the optical waveguide, and the at least one photonic crystal structure has a specified volume.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: October 1, 2013
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Onur Kilic, Michel J. F. Digonnet, Gordon S. Kino, Olav Solgaard, Shrestha Basu Mallick, Onur Can Akkaya
  • Patent number: 8548289
    Abstract: Embodiments of a display comprising pixels formed from suitably tethered deformable membrane-based MEMS subsystems are provided that include the means to dynamically alter the in-plane tension, and thus the effective spring constant, of the deformable membrane being ponderomotively propelled between active and inactive optical states, said dynamic alteration being effected by exploiting transverse piezoelectric properties of the deformable membranes. Manipulating the spring constant can reduce the actuation force required to turn pixels on, thus significantly reducing the operational voltages for the display composed of an array of such subsystems. Since display power rises with the square of the pixel drive voltage, such architectures give rise to more power efficient display systems.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: October 1, 2013
    Assignee: Rambus Delaware LLC
    Inventors: Martin G. Selbrede, Daniel K. Van Ostrand
  • Patent number: 8540400
    Abstract: The present invention relates to an encoding device, such as an optical position encoder, for encoding input from an object, and a method for encoding input from an object, for determining a position of an object that interferes with light of the device. The encoding device comprises a light source, a waveguide, a number of redirecting structures, and a detector. By means of the waveguide and the number of redirecting structures, light from the light source is guided towards the detector along a path that includes traversing an area in a space next to the planar waveguide. An object may be positioned in the area in the space and may interfere with the light, which interference may be encoded into a position or activation.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: September 24, 2013
    Assignee: O-Net Wavetouch Limited
    Inventors: Michael Linde Jakobsen, Vagn Steen Gruner Hanson, Henrik Chresten Pedersen
  • Patent number: 8538210
    Abstract: Techniques for designing optical devices that can be manufactured in volume are disclosed. In an exemplary an optical assembly, to ensure that all collimators are on one side to facilitate efficient packaging, all collimators are positioned on both sides of a substrate. Thus one or more beam folding components are used to fold a light beam up and down through the collimators on top of the substrate and bottom of the substrate.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: September 17, 2013
    Assignee: Alliance Fiber Optic Products, Inc.
    Inventors: Daoyi Wang, Frank Wu
  • Patent number: 8537203
    Abstract: A scanning device for use in an endoscope or other applications can be driven to scan a region with one or more different scanning parameters during successive scanning frames. The scanning device, which can include an optical fiber or reflective surface driven by an actuator to move relative to one or more axes, can be provided with a drive signal that is different during successive scanning frames so that the scanning pattern can be caused to differ between the successive scanning frames by one or more of size, amplitude in at least one direction, depth, duration, shape, and resolution. Thus, different scanning frames can be employed for imaging, carrying out a diagnosis, rendering a therapy, and/or monitoring a site, using the appropriate scanning pattern, appropriate light source, and other parameters for each function that is carried out by the scanning device.
    Type: Grant
    Filed: November 23, 2005
    Date of Patent: September 17, 2013
    Assignee: University of Washington
    Inventors: Eric Seibel, Richard Johnston, Brandon Tuttle
  • Patent number: 8534930
    Abstract: Printed circuit boards and assemblies for cooling electronic devices in processing units are described herein. In some embodiments, a printed circuit board configured to be coupled to an electronic device defines a first set of lumens configured to receive a mounting portion of a frame. The frame and a portion of a first surface of the printed circuit board collectively define an internal volume within which at least a portion of the electronic device can be disposed and an external volume that is external to the internal volume. The printed circuit board defines a second set of lumens positioned to place at least a portion of the external volume in fluid communication with the internal volume.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: September 17, 2013
    Assignee: Juniper Networks, Inc.
    Inventor: David J. Lima
  • Patent number: 8538214
    Abstract: An embodiment of the invention relates to an optical resonator. The optical resonator includes an input optical waveguide and a closed loop coupled to the input optical waveguide. The closed loop is adapted to receive light from the input optical waveguide, wherein the closed loop includes at least one hole formed within a portion of the closed loop.
    Type: Grant
    Filed: June 29, 2008
    Date of Patent: September 17, 2013
    Assignee: Agency for Science, Technology and Research
    Inventors: Xian Tong Chen, Shao Hua Tao, Guo-Qiang Patrick Lo, Shi Yang Zhu
  • Patent number: 8530818
    Abstract: Techniques and architectures for providing a reflective target area of an integrated circuit die assembly. In an embodiment, a reflective bevel surface of a die allows an optical signal to be received from the direction of a side surface of a die assembly for reflection into a photodetector. In another embodiment, one or more grooves in a coupling surface of the die provide respective leverage points for aligning a target area of the bevel surface with a detecting surface of the photodetector.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: September 10, 2013
    Assignee: Intel Corporation
    Inventors: John Heck, Ansheng Liu, Mario J. Paniccia
  • Patent number: 8532451
    Abstract: An optical transmitter includes three or more emission optical fibers that are three-dimensionally arranged, a single reception optical fiber, and an optical path converting component to optically couple the emission optical fibers to the reception optical fiber. The optical path converting component includes optical transmission portions that are optically coupled to the three or more emission optical fibers one to one, respectively, and optically coupled commonly to the single reception optical fiber. Entry ends of the optical transmission portions are aligned with exit ends of the three or more emission optical fibers, respectively. Exit ends of the optical transmission portions are aligned, as a whole, with an entry end of the single reception optical fiber. The exit ends of the optical transmission portions are arranged substantially parallel to one another and in closer proximity to one another than the entry ends of the optical transmission portions.
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: September 10, 2013
    Assignee: Olympus Corporation
    Inventor: Tomoyuki Hatakeyama
  • Patent number: 8526771
    Abstract: An optical interconnect includes a set of splitters. Each splitter includes a source waveguide, a reflection waveguide, an output waveguide, and a partially reflective mirror element with a reflective coating. The source waveguide and the reflection waveguide are optically coupled to the partially reflective element. A photonic signal from the source waveguide is partially reflected off the reflective coating as a reflected signal into the reflection waveguide. The output waveguide is optically coupled to the opposite surface and configured such that a non-reflected portion of the photonic signal propagates into the output waveguide. The reflective coating includes a reflected surface area interfacing with the photonic signal form the source waveguide, and power of the non-reflected portion is a function of the reflective surface area interfacing with source waveguide.
    Type: Grant
    Filed: September 15, 2008
    Date of Patent: September 3, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Neal Meyer, Robert Newton Bicknell, Pavel Kornilovich
  • Patent number: 8526768
    Abstract: A light control device with a reduced electric loss is provided which can suppress a phenomenon of electrically reflecting a high-frequency signal even when it employs a dielectric anisotropic substrate. A light control device includes a signal electrode formed on a dielectric anisotropic substrate and ground electrodes disposed with the signal electrode interposed therebetween. Here, the signal electrode includes at least two signal electrode portions disposed in directions in which the dielectric constant of the substrate is different from each other and a curved connecting portion connecting the at least two signal electrode portions. The connecting portion is configured so that the characteristic impedance in parts connected to the at least two signal electrode portions is equal to that of the corresponding signal electrode portion, and the characteristic impedance in the connecting portion between the at least two signal electrode portions continuously varies.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: September 3, 2013
    Assignee: Sumitomo Osaka Cement Co., Ltd.
    Inventors: Yuhki Kinpara, Masayuki Ichioka, Junichiro Ichikawa, Satoshi Oikawa, Yasuhiro Ishikawa
  • Patent number: 8520990
    Abstract: The present invention provides improved collimating lens assemblies (32) which include: a singlemode fiber (38) terminating in a distal end; a step-index multimode fiber (44) having a proximal end abutting to the singlemode fiber distal end, and having a distal end; a graded-index multimode fiber (45) having a proximal end abutting the step-index multimode fiber distal end, and having a distal end; and a collimating lens (34) longitudinally spaced from the graded-index multimode fiber distal end by an intermediate air gap (43), and operatively arranged to collimate light rays emanating from the graded-index multimode fiber distal end. The improved collimating lens assembly is characterized by the fact that there is no epoxy, silicone gel or index-matching material between the graded-index multimode fiber distal end and the collimating lens.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: August 27, 2013
    Assignee: Moog Inc.
    Inventors: Norris E. Lewis, Martin J. Oosterhuis, K. Peter Lo
  • Patent number: 8521023
    Abstract: A communication network is described in which a number of computing nodes are situated in a logical multidimensional array and are linked by communication cables. The communication cables carry conduits connecting each node with all other nodes in the array so that a direct physical connection exists between every pair of computing nodes in the array. A method of providing interconnection among nodes in a communication network comprises arranging and connecting computing nodes in an array as described above, where each node passively redirects conduits to columns and rows in the array.
    Type: Grant
    Filed: May 8, 2008
    Date of Patent: August 27, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventor: Pavel Kornilovich
  • Patent number: 8520988
    Abstract: An optical switch includes a microresonator comprising a plurality of silicon nanoparticles within a silicon-rich silicon oxide layer. The microresonator further includes an optical coupler optically coupled to the microresonator and configured to be optically coupled to a pump source and to a signal source. A method of optical switching includes providing an optical switch comprising an optical coupler and a microresonator having a plurality of nanoparticles and receiving an optical pulse by the optical switch, wherein at least a portion of the optical pulse is absorbed by the nanoparticles such that at least a portion of the microresonator undergoes an elevation of temperature and a corresponding refractive index change when the optical pulse has an optical power greater than a predetermined threshold level.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: August 27, 2013
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Michel J. F. Digonnet, Anuranjita Tewary, Mark Brongersma
  • Publication number: 20130209029
    Abstract: An apparatus and method for use in distributed temperature sensing (DTS) systems to reduce coherent Rayleigh scattering in fiber optic cables by using photonic crystal fibers.
    Type: Application
    Filed: February 15, 2012
    Publication date: August 15, 2013
    Applicant: Halliburton Energy Services Inc.
    Inventors: Ian Bradford Mitchell, Mikko Jaaskelainen, Etienne M. Samson, John L. Maida, JR.
  • Patent number: 8506887
    Abstract: A sensor for sensing at least one biological target or chemical target is provided. The sensor includes a membrane includes a membrane material that supports generation and propagation of at least one waveguide mode, where the membrane material includes a plurality of voids having an average size<2 microns. The sensor also includes at least one receptor having structure for binding to the target within the plurality of voids, and an optical coupler for coupling light to the membrane sufficient to generate the waveguide mode in the membrane from photons incident on the optical coupler.
    Type: Grant
    Filed: October 16, 2009
    Date of Patent: August 13, 2013
    Assignee: Vanderbilt University
    Inventors: Guoguang Rong, Raymond L. Mernaugh, Sharon M. Weiss
  • Patent number: 8506176
    Abstract: A photoelectric conversion module includes: a plurality of optical connectors each connectable to an optical communication path; an electrical connector connectable to an electrical communication path; a circuit board equipped with a light receiving and emitting element, the light receiving and emitting element converting an optical signal received by the optical connector into an electrical signal to be transmitted to the electrical connector and converting an electrical signal received by the electrical connector into an optical signal to be transmitted to the optical connector; and a waveguide optically connecting the optical connector and the electrical connector.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: August 13, 2013
    Assignee: Fujitsu Component Limited
    Inventors: Osamu Daikuhara, Kazuhiro Mizukami, Toshihiro Kusagaya
  • Patent number: 8503839
    Abstract: A waveguide cores consisting of a subwavelength grating permits transmission of light without diffraction in a discontinuous manner, wherein the energy is provided by field hopping between subwavelength material segments of higher index. The use of alternating segments permits design of waveguides having desired effective index, mode confinement factor, birefringence, polarization mode or mode dispersions, polarization dependent loss, thermal sensitivity, or nonlinear optical coefficient. An optical system comprises a waveguide having such a core, clad on at least one side, extending between two ends, and wavelength-limiting optical components in optical communication with the ends.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: August 6, 2013
    Assignee: National Research Council of Canada
    Inventors: Pavel Cheben, Przemek J. Bock, Jens H. Schmid, Dan-Xia Xu, Adam Densmore, Siegfried Janz
  • Patent number: 8503841
    Abstract: The invention relates to a device for coupling an optical fiber and a nanophotonic component formed on a first substrate, wherein the device comprises: an intermediate component formed on a second substrate including a first wave guide adapted for receiving light from the optical fiber and for transmitting the same to a first diffraction grating independently from the polarization of the incident light; second and third diffraction gratings formed on the first substrate and coupled to the nanophotonic component, the first diffraction grating being adapted to provide the first and second light beams respectively towards the second diffraction grating and the third diffraction grating, the first and second beams having perpendicular polarizations.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: August 6, 2013
    Assignee: Commissariat a l'Energie Atomique et aux Energies Alternatives
    Inventors: Christophe Kopp, Badhise Ben Bakir, Stéphane Bernabe
  • Patent number: 8494322
    Abstract: A side-hole optical cane for measuring pressure and/or temperature is disclosed. The side-hole cane has a light guiding core containing a sensor and a cladding containing symmetrical side-holes extending substantially parallel to the core. The side-holes cause an asymmetric stress across the core of the sensor creating a birefringent sensor. The sensor, preferably a Bragg grating, reflects a first and second wavelength each associated with orthogonal polarization vectors, wherein the degree of separation between the two is proportional to the pressure exerted on the core. The side-hole cane structure self-compensates and is insensitive to temperature variations when used as a pressure sensor, because temperature induces an equal shift in both the first and second wavelengths. Furthermore, the magnitude of these shifts can be monitored to deduce temperature, hence providing the side-hole cane additional temperature sensing capability that is unaffected by pressure.
    Type: Grant
    Filed: March 2, 2010
    Date of Patent: July 23, 2013
    Assignee: Weatherford/Lamb, Inc.
    Inventors: Alan D. Kersey, John L. Maida
  • Patent number: 8490435
    Abstract: There is provide an optical fiber end processing method, for processing an end portion of an optical fiber having a core and a clad surrounding the core, comprising: fixing two places of the optical fiber; firstly heating a part at a tip end side of the optical fiber between fixed parts fixed at two places, thereby melting the optical fiber at the heated part at the tip end side; secondly heating a part at a base end side of the optical fiber between the fixed parts away from the heated part at the tip end side in a state that the optical fiber is fixed at two places, thereby forming an expanded core region which is formed by expanding a diameter of the core by diffusing the dopant included in the optical fiber; and removing at least the heated part at the tip end side.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: July 23, 2013
    Assignee: Hitachi Cable, Ltd.
    Inventors: Masao Tachikura, Hiroyuki Ohkubo
  • Publication number: 20130182998
    Abstract: A silicon photonic chip is provided. An active silicon layer that includes a photonic device is on a front side of the silicon photonic chip. A silicon substrate that includes an etched backside cavity is on a backside of the silicon photonic chip. A microlens is integrated into the etched backside cavity. A buried oxide layer is located between the active silicon layer and the silicon substrate. The buried oxide layer is an etch stop for the etched backside cavity.
    Type: Application
    Filed: January 18, 2012
    Publication date: July 18, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Paul S. Andry, Russell A. Budd, Frank R. Libsch, Robert L. Wisnieff
  • Patent number: 8488937
    Abstract: A light distribution assembly includes a housing having a longitudinal length and having one or more light sources mounted to the housing. The light distribution assembly also includes a coupler section having a body extending from the housing along a longitudinal axis between a light entry end and a light exit end. The light entry end has a major axis extending in a first direction and the light exit end has a major axis extending in a second direction, wherein the coupler section is shaped such that the body is rotated about the longitudinal axis of the coupler section so that first direction is approximately perpendicular relative to the second direction. One or more light pipes are attached to the light exit end of the coupler section.
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: July 16, 2013
    Assignee: Tyco Electronics Canada, ULC
    Inventors: Dragos N. Luca, Zoran Krnetic
  • Patent number: 8483526
    Abstract: An innovative micro-size photonic switch is presented. The photonic switch is comprised of: a mirror having a reflecting surface; an input waveguide; and an output tapered waveguide structure. The photonic switch further includes a switching mechanism disposed adjacent to the reflecting surface and operable to change the refractive index along the reflective surface and thereby shift the angle at which the optical signal reflects from the mirror. More specifically, the switching mechanism may operate to change concentration of free carrier distribution along the reflective surface and thereby displace the effective reflecting interface of the mirror. In this way, the optical signal can be directed to one of two or more output ports of the output tapered waveguide structure and finally exited by one output waveguide channel that is connected to the selected port of the output tapered waveguide structure.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: July 9, 2013
    Assignee: University of Ottawa
    Inventors: DeGui Sun, Trevor Hall
  • Patent number: 8483521
    Abstract: Disclosed are resonant optical modulators, and methods of use thereof, that achieve constant photon populations in the resonator by simultaneously modulating at least two variable modulation parameters.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: July 9, 2013
    Assignee: Massachusetts Institute of Technology
    Inventor: Milos Popovic
  • Patent number: 8478093
    Abstract: A multimode interference coupler includes at least one supply waveguide and at least one output waveguide, wherein the coupler has along its longitudinal extent in the direction of the supply waveguide at least one longitudinal section in which the refractive index has a locally oscillating profile in a direction running substantially at right angles to the direction of the supply waveguide. A method for the structural configuration of such a multimode interference coupler.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: July 2, 2013
    Assignee: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
    Inventors: Reinhard Kunkel, Martin Schell, Inigo Molina-Fernandez, Gonzalo Wangümert Perez, Alejandro Ortega Monux
  • Patent number: 8478090
    Abstract: A 90-degree optical hybrid interferometer having an optical path length difference to a pair of the optical signal waveguide arm and the local oscillator optical waveguide arm at either the I phase side or the Q phase side at the TE optical signal side and the TM optical signal side respectively thus giving a phase delay to output interference signals of the I phase side and the Q phase side. The 90-degree optical hybrid interferometer has eight output ports arranged in order of Ip, In, Qp, and Qn at both the TE side and the TM side respectively, by setting the output phase difference which is the sum of the phase difference according to the optical path length difference and phase conversion characteristics of each optical coupler at the I phase side and the Q phase side and the phase delay, as +?/2.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: July 2, 2013
    Assignee: NEC Corporation
    Inventor: Shinya Watanabe
  • Patent number: 8478089
    Abstract: An optical switch according to the present invention includes a multiple-stage optical-switch unit that includes one input port and a plurality of output ports that are configured by connecting multiple stages of optical switching elements each of which includes three or more optical input-output ports; and a switching control circuit that, when receiving a switching instruction to switch an output destination of light input from the input port, executes at first a first control that changes setting of an optical switching element that is included in part not overlapping with an optical transmission channel reaching an optical output port before switching in an optical transmission channel reaching an optical output port after switching and is positioned at a point other than a branch point from an overlapping part, and then executes a second control that changes setting of an optical switching element that is positioned at the branch point.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: July 2, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Yuji Akiyama, Takashi Mizuochi
  • Patent number: 8476576
    Abstract: An optical device includes a light-transmitting medium positioned on a base. The light-transmitting medium defines a waveguide. The optical device also includes a light sensor. The light sensor includes a light-absorbing medium positioned on the base. A portion of the waveguide ends at a facet such that a first portion of a light signal being guided by the wavegide passes through the facet and a second portion of the light signal bypasses the facet and remains in the light-transmitting medium. The light-absorbing medium is positioned on the light-transmitting medium such that the light-transmitting medium is between the light-absorbing medium and the base. Additionally, the light-absorbing medium is positioned on the light-transmitting medium such that the light-absorbing medium receives the first portion of the light signal that passes through the facet.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: July 2, 2013
    Assignee: Kotura, Inc.
    Inventors: Po Dong, Dazeng Feng, Ning-Ning Feng, Dawei Zheng, Mehdi Asghari
  • Patent number: 8478091
    Abstract: A single-stage 1×5 grating-assisted wavelength division multiplexer is provided. A grating-assisted asymmetric Mach-Zehnder interferometer, a plurality of grating-assisted cross-state directional couplers and a plurality of novel side-band eliminators are combined to form the multiplexer. Only general gratings are required, not Bragg grating, for 5-channel wavelength division multiplexing in a single stage. A nearly ideal square-like band-pass filtering passband is obtained. The present disclosure can be used as a core device in IC-to-IC optical interconnects for multiplexing and demultiplexing of an optical transceiver. The present disclosure has a small size and good performance.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: July 2, 2013
    Assignee: National Central University
    Inventors: Hung-Chih Lu, Jen-Inn Chyi
  • Patent number: 8472764
    Abstract: A system for delivering optical power over optical conduits includes delivering more than one optical power form over an optical conduit.
    Type: Grant
    Filed: May 11, 2010
    Date of Patent: June 25, 2013
    Assignee: The Invention Science Fund I, LLC
    Inventors: Alistair K. Chan, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Lowell L. Wood, Jr.
  • Patent number: 8472777
    Abstract: This invention relates to an optical fiber access terminal and its terminal parts, specifically to an optical fiber interface protective cap for the terminal body. An optical fiber access terminal includes a terminal body and a protective cap. The terminal body provides an incision from which an optical fiber splice is exposed. The protective cap covering the incision includes a front end, a rear end, an upside, an underside, a right side and a left side portion. The front end portion has a wire outlet through which an optical fiber passes. The rear end portion has an opening receiving the optical fiber splice. The left side portion has a clamping part clamped with the terminal body. The front end, the rear end, the upside, the underside, the right side and the left side portion make a cavity in which the optical fiber and the optical fiber splice are connected.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: June 25, 2013
    Assignee: CIG Shanghai Co., Ltd.
    Inventor: Changjiang Cui
  • Patent number: 8467642
    Abstract: An arrayed waveguide grating optical multiplexer/demultiplexer according to the present invention including an input channel waveguide, an input slab waveguide, an arrayed waveguide, a polarization dependence eliminating means, an output slab waveguide, a temperature compensating means, and an output channel waveguide is characterized in that the temperature compensating means compensates for the temperature dependence of the optical path lengths in the channel waveguides of the arrayed waveguide, and the polarization dependence eliminating means eliminates the temperature dependence and the polarization dependence of the arrayed waveguide grating optical multiplexer/demultiplexer at the same time.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: June 18, 2013
    Assignees: NTT Electronics Corporation, Nippon Telegraph and Telephone Corporation
    Inventors: Daisuke Ogawa, Takashi Saida, Yuji Moriya, Shigeo Nagashima, Yasuyuki Inoue, Shin Kamei