Powder Metallurgy Processes With Heating Or Sintering Patents (Class 419/1)
  • Publication number: 20030110888
    Abstract: A method of forming a powder metal material or article includes the steps of molding a compact from a metallurgical powder, and then sintering the compact. The metallurgical powder may include at least one of a stainless steel powder and a low-chromium steel-base powder, and about 0.5 to about 15 weight percent of glass powder. Alternatively, the metallurgical powder may include at least one of a stainless steel powder and a low-chromium steel-base powder, about 3 to about 15 weight percent molybdenum, and about 1 to about 15 weight percent of nickel-base alloy powder. The present invention also is directed to metallurgical powders useful in and materials and articles made by the methods of the present invention. Such articles include, but are not limited to, valve guides for internal combustion engine EGR systems, valve seats, exhaust system components, combustion chambers, other combustion engine parts subjected to high temperature, and chemical industry valve and corrosion parts.
    Type: Application
    Filed: October 24, 2001
    Publication date: June 19, 2003
    Inventor: John C. Kosco
  • Publication number: 20030097904
    Abstract: A sintered alloy composition for automotive engine valve seats, and a method for producing the same, are described. An iron base sintered alloy composition comprising vanadium carbide particles, Fe—Co—Ni—Mo alloy particles, and Cr—W—Co—C alloy particles in which the composition is dispersed in a structure of sorbite is particularly suitable for use as materials of valve seats for automotive engines which requires excellent wear resistance, high-performance, high-rotation-speed, and low-fuel-consumption.
    Type: Application
    Filed: August 29, 2002
    Publication date: May 29, 2003
    Inventor: Jung Seok Oh
  • Publication number: 20030075018
    Abstract: The invention relates to a process for the production of metallic and metal-ceramic composite components by powder injection molding of a system comprising a metal composite powder, a binder and optionally a ceramic component, where the metal composite powder used is mixed with a protecting liquid in an inert atmosphere before the mixing with the binder. The invention furthermore relates to molybdenum/copper and tungsten/copper composite powders which have a primary metal particle size of predominantly <2 &mgr;m, an oxygen content of <0.8% by weight and optionally a ceramic component, to the use of these composite powders for the production of composite components by powder injection molding, and to a process for the preparation of composite powders in which oxides of molybdenum or tungsten and of copper are mixed, dry-ground and reduced using hydrogen at a temperature of from 800 to 1050° C., and a ceramic component is optionally admixed with the resultant metal composite powder.
    Type: Application
    Filed: November 21, 2002
    Publication date: April 24, 2003
    Inventors: Helmut Meinhardt, Bernd Meyer, Matthias Knuwer, Dietmar Fister, Wolfgang Wiezoreck
  • Publication number: 20030072670
    Abstract: A method of fabricating multi-layer bronze bearings includes laying down a first layer of copper-based powder metal material of a first composition onto a steel backing strip. At least a second layer of copper-based powder metal material of a second composition different than that of the first is laid down on the first layer, without significantly densifying the first layer.
    Type: Application
    Filed: October 15, 2002
    Publication date: April 17, 2003
    Applicant: FEDERAL-MOGUL WORLD WIDE, INC.
    Inventor: James R. Toth
  • Publication number: 20030072669
    Abstract: The residual stresses that are experienced in polycrystalline diamond cutters, which lead to cutter failure, can be effectively modified by selectively thinning the carbide substrate subsequent to high temperature, high pressure (sinter) processing, by selectively varying the material constituents of the carbide substrate, by subjecting the PDC cutter to an annealing process during sintering, by subjecting the formed PDC cutter to a post-process stress relief anneal, or a combination of those means.
    Type: Application
    Filed: November 15, 2002
    Publication date: April 17, 2003
    Inventors: Trent N. Butcher, Ralph M. Horton, Stephen R. Jurewicz, Danny E. Scott, Redd H. Smith
  • Publication number: 20030063992
    Abstract: A method of making powder metal compacted parts of multiple dissimilar materials. A die insert is provided having a pattern of cavities corresponding in shape to the shape of a die cavity. The pattern of cavities are filled with two or more dissimilar powder metals which are subsequently pressed within the die cavity to form a compacted powder metal part having at least two discrete regions of dissimilar material.
    Type: Application
    Filed: October 3, 2001
    Publication date: April 3, 2003
    Inventors: Matthew W. Crump, Tom L. Stuart, Marc L. Legault
  • Publication number: 20030062396
    Abstract: A braze preform and a method for making the braze preform are disclosed. The braze preform includes a filler metal that has been sintered to produce a liquid phase of at least a portion of the filler metal.
    Type: Application
    Filed: June 21, 2002
    Publication date: April 3, 2003
    Inventor: William L. Kovacich
  • Publication number: 20030056619
    Abstract: A method of making sheet bar and other precursors of formed products to be made by extensive working. The method includes providing a powder metal, preferably under 100 PPM oxygen content of non-spherical particles, compacting the powder into a coherent precursor form of at least 100 pounds, whereby a precursor is provided enabling extended fabrication to a finished product form. The finished product is resistant to breakup in fabrication due to oxide inclusion effect and produces a low oxygen end product. The method can process multiple species of metals that include at least one higher melting metal and one lower melting metal to produce an alloy or micro-composite of the metals as worked, where one metal is preferably a refractory metal (Ta, Nb, W, Wo, Zr, Hf, V and Re). The process is controlled to cause powder of the higher melting metal to be extended into a fibrous form.
    Type: Application
    Filed: October 9, 2002
    Publication date: March 27, 2003
    Inventors: Prabhat Kumar, Paul Aimone, Robert W. Balliett, Anthony V. Parise, Thomas M. Ramlow, Henning Uhlenhut
  • Publication number: 20030047031
    Abstract: A dense cemented carbide product is described. The product is manufactured from WC with a grain size between 0.1 and 0.4 &mgr;m, fine grain size cobalt and ruthenium powders. The product is used in PCB machining operations where the addition of 10-25% Ru to the binder phase offers up to 25% wear resistant incrases and up to 100% increase in chipping resistance in PCB routing compared to conventional materials (6% cobalt and 0.4 &mgr;m grain size).
    Type: Application
    Filed: October 23, 2002
    Publication date: March 13, 2003
    Inventors: Alistair Grearson, John Aucote
  • Publication number: 20030049150
    Abstract: The invention relates to a process for producing a shaped body from metal foam, comprising the following steps:
    Type: Application
    Filed: May 13, 2002
    Publication date: March 13, 2003
    Inventors: Robert F Singer, Carolin Korner
  • Publication number: 20030047027
    Abstract: The invention relates to an improvement in tourmaline known as a functional ore. In particular, the invention provides a composite having a novel formation in which a far infrared radiation function and others among tourmaline's functions are effectively exploited, a novel process for producing the composite, and composite materials to be used therefore.
    Type: Application
    Filed: September 17, 2002
    Publication date: March 13, 2003
    Inventor: Hiroshi Sato
  • Publication number: 20030049147
    Abstract: A process for the manufacture of compacts, particularly cemented-carbide cutting blades, by compressing metallic powder and subsequently sintering the compacts wherein the compacts are formed in a powder press having a die-plate, an upper ram and at least one lower ram which are associated with a die-bore and are adapted to be actuated by a hydraulic press cylinder with the rams having associated thereto force-measuring devices and path-measuring devices to measure the compression forces during the ram feed motion up to the final positions, wherein the value of the energy to be applied by the upper ram is stored for a compact of predetermined geometry and dimensions and a predetermined material, that the overall energy to be applied by the upper and lower rams is further stored as a second value, that the feed motion of the upper ram is completed when the energy applied by the ram has reached the predetermined first value and the feed motion of the lower ram is effected depending on the application of the res
    Type: Application
    Filed: August 22, 2002
    Publication date: March 13, 2003
    Inventors: Jurgen Hinzpeter, Ulrich Zeuschner, Ingo Schmidt, Thomas Pannewitz, Udo Baltruschat, Thorsten Ehrich, Ulf Hauschild
  • Patent number: 6489043
    Abstract: An iron aluminide fuel injector component such as a nozzle, plunger or other part is manufactured from iron aluminide or includes an iron aluminide coating on at least a portion of a surface in contact with the fuel which passes through the fuel injector. The iron aluminide alloy can include 8 to 32 wt. % Al, up to 5 wt. % refractory metal, B and/or C in amounts sufficient to form borides and/or carbides. The fuel injector component can be formed from powders of the iron aluminide alloy by powder metallurgy techniques and the coating can be formed by a diffusional reaction process, cathodic plasma process, chemical vapor deposition or physical vapor deposition. The fuel injector component is corrosion, carburization, sulfidation and/or coking resistant.
    Type: Grant
    Filed: November 9, 2001
    Date of Patent: December 3, 2002
    Assignee: Chrysalis Technologies Incorporated
    Inventors: Seetharama C. Deevi, Shalva Gedevanishvili, Sohini Paldey
  • Publication number: 20020127128
    Abstract: An item of jewelry or decorative article of attractive and original appearance, formed from spheres of sinterable material using a low pressure sintering process such that the spheres retain their individual shapes. The spheres may have diameters in the range 0.1-2.0 mm and may be solid or hollow. Items may be produced using a combination of materials and sphere sizes and may combine elements produced by sintering and by casting. Items of jewelry produced by this method are lighter and more comfortable to wear than those produced by casting.
    Type: Application
    Filed: March 12, 2001
    Publication date: September 12, 2002
    Inventor: Gadi Har-Shai
  • Publication number: 20020114723
    Abstract: Dental restorations are fabricated using metal powder. Preferably, the metal powder is a high fusing metal and preferably, the metal powder comprises a non-oxidizing metal. The metal powder is applied to a die and is covered with a covering material such as a refractory die material preferably in the form of a flowable paste. A second covering material may be sprinkled or dusted onto the paste. The model is then dried prior to firing. After drying, the model is sintered to provide a high strength metal restoration. After sintering, the outer shell can be broken off easily with one's hand to expose the sintered coping.
    Type: Application
    Filed: July 24, 2001
    Publication date: August 22, 2002
    Inventors: Arun Prasad, Gregg Daskalon
  • Publication number: 20020112955
    Abstract: Refractory metal products, such as tantalum on non-refractory conductive metal backings, e.g. copper, can be rejuvenated after metal consumption in selected zones by powder filling the zones and high energy heating at high scan speed to sinter the added powder, without complete melting of the powder fill, thus establishing a microstructure consistent with the balance of the reclaimed product and avoiding the separation of the copper backing and tantalum sputter plate. The rejuvenation method can be applied to non-mounted refractory metal products that are subject to non-uniform erosion, etching, chipping or other metal loss. The form of such refractory metal products can be as plate, rod, cylinder, block or other forms apart from sputter targets. The process can be applied to, for example, x-ray disks or targets (molybdenum plate on carbon backing).
    Type: Application
    Filed: February 14, 2002
    Publication date: August 22, 2002
    Applicant: H.C. Starck, Inc.
    Inventors: Paul Aimone, Prabhat Kumar, Peter R. Jepson, Henning Uhlenhut, Howard V. Goldberg
  • Publication number: 20020102398
    Abstract: The invention describes composite coatings, in particular comprising carbon and another metallic element such as silicon or aluminum. These coatings have improved properties compared with pure tetrahedral amorphous carbon coatings, in that they have reduced stress levels and can be deposited at higher thicknesses, while retaining acceptable hardness and other useful mechanical properties. Also described are methods of making composite coatings, materials for making the coatings and substrates coated therewith. Specifically, a method of applying a coating to a substrate using a cathode arc source, comprises generating an arc between a cathode target and an anode of the source and depositing positive target ions on the substrate to form the coating, wherein the coating is a composite of at least first and second elements and the target comprises said at least first and second elements.
    Type: Application
    Filed: March 25, 2002
    Publication date: August 1, 2002
    Inventors: Xu Shi, Hong Siang Tan, Beng Kang Tay
  • Publication number: 20020029094
    Abstract: A data generating apparatus (1) adds feel information to shape data for an object to be molded in an STL data generating section (1a). Then, a data processing apparatus (10) generates molding data for reproducing shape and feel of the object to be molded, and the molding data is supplied to a three-dimensional molding apparatus (20). The three-dimensional molding apparatus (20) performs molding on the basis of the molding data obtained from the data processing apparatus (10). The resulting three-dimensional molded matter faithfully reproduce not only the shape but also the feel of the object to be molded. In this way, the present invention was made to generate a three-dimensional molded matter which faithfully reproduces feel of the object.
    Type: Application
    Filed: August 30, 2001
    Publication date: March 7, 2002
    Applicant: MINOLTA CO., LTD.
    Inventor: Jun Koreishi
  • Patent number: 6132487
    Abstract: A mixed metallurgical powder is provided containing powdered copper used for the manufacture of sintered structural parts such as brushes. A sintered compact made of the mixed metallurgical powder and a method for the manufacture of the sintered compact are also provided. The powder and the sintered compact are provide with an extremely high corrosion resistance because, preferably, the mixed metallurgical powder contains powdered copper and 20-400 ppm by weight of Bi in the form of powdered Bi.
    Type: Grant
    Filed: November 9, 1999
    Date of Patent: October 17, 2000
    Assignee: Nikko Materials Company, Limited
    Inventor: Hideyuki Mori
  • Patent number: 6066191
    Abstract: Disclosed is a hard molybdenum alloy which exhibits an excellent wear resistance against sliding wear and adhesive wear in a high temperature nonlubricating atmosphere, comprising at least one of nickel (Ni) and cobalt (Co) in an amount of from 14.0 to 43.0% by weight, silicon (Si) in an amount of from 3.0 to 8.0% by weight and molybdenum (Mo) in an amount of not less than 20.0% by weight. Also disclosed is a wear resistant alloy which includes the above hard molybdenum alloy as a reinforcing phase.
    Type: Grant
    Filed: May 21, 1998
    Date of Patent: May 23, 2000
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Kouji Tanaka, Takashi Saito, Tadashi Oshima
  • Patent number: 6045631
    Abstract: A method of making a light metal-rare earth metal alloy includes mixing a light metal powder, such as aluminum powder, with a finely divided rare earth metal-containing compound, such as scandium oxide, creating a billet by subjecting the mixture to cold isostatic compaction. The billet formed from the mixture of aluminum powder and rare earth metal-containing compound is preferably sintered at a temperature of about 600.degree. C. to 800.degree. C. and preferably about 640.degree. C. to 680.degree. C., and subsequently feeding the billet to a molten aluminum bath. This method facilitates conversion of in excess of 95% of the rare earth metal oxide to the aluminum-rare earth metal alloy. The rare earth metal may be scandium.
    Type: Grant
    Filed: October 2, 1997
    Date of Patent: April 4, 2000
    Assignee: Aluminum Company of America
    Inventors: Gary P. Tarcy, Michael L. Slaugenhaupt
  • Patent number: 6030434
    Abstract: A method for making iron-alloy briquettes, includes the steps of: providing hot metallized iron particles having a temperature of at least about 650.degree. C. and an initial degree of metallization of at least about 90% (wt.); providing an additive selected from the group consisting of ferroalloy powder, metal-containing ash and mixtures thereof, wherein the additive contains an alloying metal; mixing the iron particles and the additive to provide a mixture of the particles and the additive; and forming the mixture into briquettes containing the alloying metal.
    Type: Grant
    Filed: March 31, 1999
    Date of Patent: February 29, 2000
    Assignee: International Briquettes Holding
    Inventors: Henrique Machado Zuloaga, Oscar G. Dam
  • Patent number: 5997795
    Abstract: Solid freeform fabrication techniques are used in direct methods to form photonic bandgap structures, and in indirect methods to form molds for photonic bandgap structures. In the direct methods, solid particulate materials are mixed with a binder and, through a computer-controlled process, are built layer by layer to form the structure. In the indirect methods, unfilled polymeric materials are built layer by layer to form a negative mold for the photonic bandgap structure. The cavities within the mold may then be filled with a slurry incorporating solid particulate materials. Subsequent processing may include mold removal, binder removal, densification and secondary infiltration steps to form a photonic bandgap structure having the desired properties.
    Type: Grant
    Filed: May 29, 1998
    Date of Patent: December 7, 1999
    Assignee: Rutgers, The State University
    Inventors: Stephen C. Danforth, Ahmad Safari, John Ballato, Remco Van Weeren, Amit Bandyopadhyay
  • Patent number: 5993988
    Abstract: An object of the present invention is to provide composite ceramic powder containing composite ceramic particulates as constituent particulates. Each of the composite ceramic particulates is constituted of a group of first particles and a group of second particles in which the first particles are localized around the second particles. A spray pyrolysis is used to localize the first particles around the second particles, thereby producing such composite ceramic particulates.
    Type: Grant
    Filed: January 7, 1998
    Date of Patent: November 30, 1999
    Assignee: Japan Fine Ceramics Center
    Inventors: Satoshi Ohara, Takehisa Fukui, Kaseki Kodera
  • Patent number: 5900207
    Abstract: A fused deposition process is used to form three-dimensional solid objects from a mixture including a particulate composition dispersed in a binder. The article is formed by depositing the mixture in repeated layers of predefined thickness, with each layer solidifying before the next adjacent layer is dispensed. Following formation and a binder removal step, the article may be at least partially densified to achieve preselected properties. The process permits three-dimensional articles to be formed relatively quickly and inexpensively, without the need for molds or other tooling.
    Type: Grant
    Filed: May 20, 1997
    Date of Patent: May 4, 1999
    Assignees: Rutgers, the State University Old Queens, Stratasys, Inc.
    Inventors: Stephen C. Danforth, Mukesh Agarwala, Amit Bandyopadghyay, Noshir Langrana, Vikram R. Jamalabad, Ahmad Safari, Remco van Weeren, William R. Priedeman, Jr.
  • Patent number: 5738817
    Abstract: A fused deposition process is used to form three-dimensional solid objects from a mixture including a particulate composition dispersed in a binder. The article is formed by depositing the mixture in repeated layers of predefined thickness, with each layer solidifying before the next adjacent layer is dispensed. Following formation and a binder removal step, the article may be at least partially densified to achieve preselected properties. The process permits three-dimensional articles to be formed relatively quickly and inexpensively, without the need for molds or other tooling.
    Type: Grant
    Filed: February 8, 1996
    Date of Patent: April 14, 1998
    Assignee: Rutgers, The State University
    Inventors: Stephen C. Danforth, Mukesh Agarwala, Amit Bandyopadghyay, Noshir Langrana, Vikram R. Jamalabad, Ahmad Safari, Remco van Weeren
  • Patent number: 5650130
    Abstract: Ceramic oxide powders and methods for their preparation are revealed. Ceramic oxide powders are obtained using a flame process whereby one or more precursors of ceramic oxides are introduced into a counterflow diffusion flame burner wherein the precursors are converted into ceramic oxide powders. The nature of the ceramic oxide powder produced is determined by process conditions. The morphology, particle size, and crystalline form of the ceramic oxide powders may be varied by the temperature of the flame, the precursor concentration ratio, the gas stream and the gas velocity.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: July 22, 1997
    Assignee: The Johns Hopkins University
    Inventors: Joseph L. Katz, Philippe F. Miquel
  • Patent number: 5618640
    Abstract: A nonaqueous secondary battery comprising a positive electrode active material, a negative electrode active material, and a lithium salt is disclosed, in which the negative electrode active material contains (1) a compound capable of intercalating and deintercalating lithium comprising an atom of the group IIIB, IVB or VB of the periodic table, (2) an amorphous compound containing at least two atoms selected from the elements of the groups IIIB, IVB, and VB of the periodic table, (3) a compound capable of intercalating and deintercalating lithium containing at least one of the atoms of the group IIIB, IVB, and VB of the periodic table and fluorine, or (4) a compound of the metal of the group IIIB, IVB or VB of the periodic table, Zn, or Mg which is capable of intercalating and deintercalating lithium. The nonaqueous secondary battery of the invention exhibits improved charge and discharge characteristics and improved safety.
    Type: Grant
    Filed: October 20, 1994
    Date of Patent: April 8, 1997
    Assignee: Fuji Photo Film Co., Ltd.
    Inventors: Yoshio Idota, Masayuki Mishima, Yukio Miyaki, Tadahiko Kubota, Tsutomu Miyasaka
  • Patent number: 5594929
    Abstract: According to the invention there is now provided a simple method of preparing a powder containing WC and cobalt and/or nickel. APT-powder and a powder of a basic salt of cobalt and/or cobalt are mixed in water or in mixed solvents. The suspension is stirred to react at temperatures ranging from room temperature to the boiling point of the solution whereby a precipitate is formed, which precipitate is filtered off, dried and finally reduced to a metallic powder.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: January 14, 1997
    Assignee: Sandvik AB
    Inventors: Mamoun Muhammed, Sverker Wahlberg, Ingmar Grenthe
  • Patent number: 5580516
    Abstract: A powder of tantalum, niobium, or an alloy thereof, having an oxygen content less than about 300 ppm, and the production thereof without exposure to a temperature greater than about 0.7 T.sub.H. A powder metallurgy formed product of tantalum, niobium, or an alloy thereof, having an oxygen content less than about 300 ppm, and the production thereof without exposure to a temperature greater than about 0.7 T.sub.H.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: December 3, 1996
    Assignee: Cabot Corporation
    Inventor: Prabhat Kumar
  • Patent number: 5427733
    Abstract: A temperature-controlled laser sintering system includes a laser beam 12 which is focussed onto a sintering bed 38 by a focussing mirror 26 and a set of scanning mirrors 32,34. Thermal radiation 114 emitted from the sintering bed 38 are imaged to the scanning mirrors and to a dichroic beamsplitter 110 which reflects such radiation but passes the wavelength of the laser beam 12. The radiation 118 is focussed onto an optical detector 126 which provides a signal on a line 128 to a power control circuit 104. The power control circuit 104 controls a modulator 100 which modulates the power of the laser beam 112 so as to maintain the thermal radiation emission 114 (and thus the temperature at the sintering location) at a substantially constant level.
    Type: Grant
    Filed: October 20, 1993
    Date of Patent: June 27, 1995
    Assignee: United Technologies Corporation
    Inventors: John A. Benda, Aristotle Parasco
  • Patent number: 5397530
    Abstract: A method for heating metal powder, e.g., iron powder, comprises irradiating the powder with microwaves. The powder may be coated with various materials to enhance the heating effects of the microwave. For example, the powder may be coated with a non-emissive material, such as a ceramic material. The powder may also be coated with a dipole material, such as water or plastic, or a dielectric material.
    Type: Grant
    Filed: February 2, 1994
    Date of Patent: March 14, 1995
    Assignee: Hoeganaes Corporation
    Inventors: K. S. V. L. Narasimhan, Johan Arvidsson, Howard G. Rutz, W. John Porter, Jr.
  • Patent number: 5393482
    Abstract: A multiple beam laser sintering device includes a sintering beam 64 having a focal point at a powder bed 68 and at least one defocussed laser beam 116 incident on a region near the focal point of the focussed beam 64. The sintering beam 64 raises the temperature of the powder 84 to the sintering temperature. The defocussed beam 116 raises the temperature of the material surrounding the sintering beam 64 to a level below the sintering temperature, thereby reducing the temperature gradient between the sintering location and the surrounding material. Thermal radiation may be measured from one or both beams and used to control the power of one or both beams and the power of one or both beams may be controlled to maintain the temperature at a desired level. Alternatively, a plurality of defocussed beams may be used to provide either a plurality of thermal gradient steps, or to control the temperature of each region around the sintering point independently.
    Type: Grant
    Filed: October 20, 1993
    Date of Patent: February 28, 1995
    Assignee: United Technologies Corporation
    Inventors: John A. Benda, Aristotle Parasco
  • Patent number: 5338714
    Abstract: The invention relates to nano-composite powders of alumina and metal constituted of grains of micronic size. Each grain comprises a compact matrix of alumina of a specific surface area less than 5 m.sup.2 /g, in which are dispersed crystallites of transition metals of alloys of these metals, of sizes less than 50 nm. The powder according to the invention may be produced starting with a precursor comprised of a mixed carboxylic salt of aluminum and one or more transition metals. The powders according to the invention permit producing by sintering cermets of alumina/metal benefitting from greatly improved mechanical and thermo-mechanical properties.
    Type: Grant
    Filed: March 24, 1992
    Date of Patent: August 16, 1994
    Assignee: Centre National de la Recherche Scientifique (C.N.R.S.)
    Inventors: Abel Rousset, Xavier DeVaux
  • Patent number: 5332415
    Abstract: The present invention provides a compacted and consolidated aluminum-based alloy material which has been obtained by compacting and consolidating a rapidly solidified material having a composition represented by the general formula: Al.sub.a Ni.sub.b X.sub.c wherein X is one or two elements selected from Zr and Ti and a, b and c are, in atomic percentages, 87.5.ltoreq.a.ltoreq.92.5, 5 .ltoreq.b.ltoreq.10, and 0.5.ltoreq.c.ltoreq.5; and a production process comprising melting a material of the above composition; quenching and solidifying the resultant molten material into powder or flakes; compacting, compressing, forming and consolidating the powder or flakes by conventional plastic working. The consolidated material of the present invention has. elongation (toughness) sufficient to withstand secondary working, even when secondary working is applied. Moreover, the material allows the secondary working to be performed easily while retaining the excellent properties of its raw material.
    Type: Grant
    Filed: August 14, 1992
    Date of Patent: July 26, 1994
    Assignee: Yoshida Kogyo K.K.
    Inventor: Kazuhiko Kita
  • Patent number: 5194218
    Abstract: A method is provided for providing a carbided-tungsten-yttria coating on the interior surface of a copper vapor laser. The surface serves as a wick for the condensation of liquid copper to return the condensate to the interior of the laser for revolatilization.
    Type: Grant
    Filed: August 18, 1988
    Date of Patent: March 16, 1993
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Albert J. Rothman
  • Patent number: 5096880
    Abstract: A process is described for enhancing superconductor characteristics by application of strong magnetic and/or electric fields to the constituent component materials from which ceramic superconductors are being formed and during the time that these superconductors are being synthesized. This process has particular applicability to the production of superconducting oxide ceramics such as the cuprates. The required magnetic fields are on the order of 1-10 tesla and the required electric fields are on the order of 0.1-1 MV/cm. The fields act as ordering mechanisms and induce grain orientation. The magnetic field aligns the magnetic moment of the grains. The electric field induces electric polarization in the grains and then aligns them. The superconducting structure formation occurs during the sintering, cooling and annealing phases of the fabrication process. Superconductivity is strongly affected by the oxygen stoichiometry in the lattice elemental cell. Applied electric fields cause elongation of the unit cell.
    Type: Grant
    Filed: April 20, 1990
    Date of Patent: March 17, 1992
    Assignee: General Dynamics Corp./Electronics Division
    Inventor: Theodore W. Rybka
  • Patent number: 5032248
    Abstract: The invention relates to a gas sensor for measuring an air-fuel ratio of an air-fuel mixture of an internal combustion engine and to a method of manufacturing the gas sensor. The sensor of the invention comprises: a solid state electrolyte layer made of an oxygen ion conductive metal oxide; a first electrode of a porous thin film having the catalyst function which was coated on one surface of the solid state electrolyte layer; a second electrode of a porous thin film having the catalyst function which was coated on the other surface of the solid state electrolyte layer; an electrode shielding layer made of a sintered material of ultra fine particulates whose average grain diameter is 1 .mu.m or less which covers the surface other than the region of a predetermined area of the second electrode; and a gas diffusion layer made of a porous electric insulative metal oxide which covers the region of the predetermined area of at least the second electrode.
    Type: Grant
    Filed: June 7, 1989
    Date of Patent: July 16, 1991
    Assignee: Hitachi, Ltd.
    Inventors: Masatoshi Kanamaru, Takeshi Harada, Yoshiro Ibaraki, Sadayasu Ueno, Norio Ichikawa
  • Patent number: 4940563
    Abstract: An article is molded by contacting it with a solid polymer medium, such as an especially low strength unfilled silicone rubber which is solid and able to flow readily. Thermal expansion of the medium or mechanical force is used to create molding pressure and thereby provides a substantially uniform pressure on the article precursor. Various temperature and pressure cycles can be attained; constant high pressures can be maintained on the article precursor during cooldown, optionally aided by flowing of medium to and from a vessel in which the article precursor is being molded. The method is particularly adapted to molding filler or fiber reinforced thermosetting polymer composite articles.
    Type: Grant
    Filed: May 26, 1988
    Date of Patent: July 10, 1990
    Assignee: United Technologies Corporation
    Inventor: Robert V. Kromrey
  • Patent number: 4939121
    Abstract: A process is described for enhancing superconductor characteristics by application of strong magnetic and/or electric fields to the constituent component materials from which ceramic superconductors are being formed and during the time that these superconductors are being synthesized. This process has particular applicability to the production of superconducting oxide ceramics such as the cuprates. The required magnetic fields are on the order of 1-10 tesla and the required electric fields are on the order of 0.1-1 MV/cm. The fields act as ordering mechanisms and induce grain orientation. The magnetic field aligns the magnetic moment of the grains. The electric field induces electric polarization in the grains and then aligns them. The superconducting structure formation occurs during the sintering, cooling and annealing phases of the fabrication process. Superconductivity is strongly affected by the oxygen stoichiometry in the lattice elemental cell. Applied electric fields cause elongation of the unit cell.
    Type: Grant
    Filed: October 20, 1988
    Date of Patent: July 3, 1990
    Assignee: General Dynamics Corporation, Electronics Division
    Inventor: Theodore W. Rybka
  • Patent number: 4921664
    Abstract: Method for producing a heat-resistant aluminum-alloy workpiece having high transverse ductility which is manufactured from a compact produced by powder metallurgy, in which alloy powders are first cold-isostatically pressed under a pressure of 1500 to 5000 bar and the extrusion billet (2) produced in this manner is hot-recompacted and extruded to form a bar (7) with rectangular cross-section. Reduction ratio at least 6:1. A prismatic bar section (8) is separated from the bar (7) and is converted without further hot deformation and solely by machining into the final product in a manner such that the mechanical main load directions of the final product position themselves in a plane which is parallel to the plane which is extended through the extrusion direction and the longitudinal axis of the cross-section of the bar (7).
    Type: Grant
    Filed: February 8, 1989
    Date of Patent: May 1, 1990
    Assignee: Asea Brown Boveri Ltd.
    Inventor: Malcolm Couper
  • Patent number: 4880598
    Abstract: A tubular compact (14) obtained by compacting a powder is applied with one circumferential surface (16) at a minimum distance required for said application, from an abutment surface (15) corresponding to said one circumferential surface (16). The space between said one circumferential surface (16) and the abutment surface (15) is evacuated, such that the compact (14), while undergoing a certain deformation to bridge said space, is sucked against the abutment surface (15) so as to be firmly retained against it.
    Type: Grant
    Filed: December 15, 1988
    Date of Patent: November 14, 1989
    Assignee: Cips KB
    Inventors: Flemming Hansen Kaad, Ola Pettersson
  • Patent number: 4719073
    Abstract: A process and apparatus for measuring and regulating the variable pressure furnace gas chemistry is described. The method makes use of mass spectrometer measurements, in the preferred form of the invention, in which gas species percent composition is obtained quantitatively independent of total furnace pressure variation. Using such a real time measurement capability, active control of batch process furnace operations is possible by intrinsic measurement of the part outgassing rather than by assumption of batch part status as a function of extrinsic parameters such as temperature and total pressure. Thus, by a combination of batch process temperature ramp control and variable admittance of suitable gas into the furnace, uniform batch processing is possible by closed loop control, due to renormalization of furnace residual gas chemistry from day to day drift and from batch part chemistry variation.
    Type: Grant
    Filed: January 30, 1986
    Date of Patent: January 12, 1988
    Inventor: John D. Langan
  • Patent number: 4697631
    Abstract: In a process and apparatus for forming an ingot having a length at least twice as great as its characteristic sectional dimension, droplets of molten metal are sprayed onto a catching surface of a dummy bar which is rotated about its axis and moved in a removal direction along its axis. Layers of spray built up on the catching surface form an ingot. Boundary surfaces may be provided for shaping one of the surfaces of the formed ingot. In the case of a hollow ingot, the boundary surfaces are in the form of a partially cylindrical mandrel extending axially into a hollow dummy bar.
    Type: Grant
    Filed: December 23, 1985
    Date of Patent: October 6, 1987
    Assignee: Mannesmann Aktiengesellschaft
    Inventors: Herbert Bungeroth, Otto Wessel
  • Patent number: 4383854
    Abstract: A method of creating a controlled interior surface configuration of passages within a substrate, particularly cooling passages of nozzles or buckets of a gas turbine, involves the hot isostatic pressing of a leachable passage insert whose surface carries the female image of the desired interior surface configuration inside the substrate followed by leaching of the insert from the substrate.
    Type: Grant
    Filed: December 29, 1980
    Date of Patent: May 17, 1983
    Assignee: General Electric Company
    Inventors: Peter V. Dembowski, Peter W. Schilke
  • Patent number: 4379719
    Abstract: Aluminum alloy atomized powder containing 4 to 12% iron and 1 to 7% cerium or other rare earth metal, when properly compacted and shaped into a useful article, exhibits very high strength at relatively high temperatures. The iron content exceeds the cerium or rare earth metal content, and the powder may contain refractory elements such as W, Mo and others. The powder is produced by atomizing alloyed molten aluminum, preferably in a nonoxidizing atmosphere, and is compacted to a density approaching 100% under controlled conditions including controlled temperature conditions. The alloy may be subsequently shaped by conventional forging, extruding or rolling processes.
    Type: Grant
    Filed: November 20, 1981
    Date of Patent: April 12, 1983
    Assignee: Aluminum Company of America
    Inventors: Gregory J. Hildeman, Robert E. Sanders, Jr.
  • Patent number: 4373012
    Abstract: This invention relates to a capsule for pressings pressed by isostatic pressure and to these pressings used for extruding metallic objects, particularly tubes, of stainless steel, the outer and inner wall of the capsule consisting of thin-walled sheet metal, and at least the outer wall having substantially the same strength properties in the axial direction along its circumference and particularly consisting of a spiral-welded tube, and preferably at least on the front end of the capsule an insert being provided, which consists of one or more pieces of a ductile solid material or a ductile material pressed from powder. The invention further relates to a process for the production of such capsules and pressings and to a process for extruding tubes and to the tubes obtained according to this process.
    Type: Grant
    Filed: June 26, 1980
    Date of Patent: February 8, 1983
    Assignee: Granges Nyby AB
    Inventors: Christer Aslund, Hans Eriksson, Claes Tornberg
  • Patent number: 4371396
    Abstract: A method for manufacturing billets intended to be subsequently machined into a desired shape by plastic deformation, as by rolling, includes the heating to a predetermined bonding temperature of powder grains enclosed in a capsule, and subjecting the capsule at the bonding temperature to a high pressure sufficient to bond the powder grains together to form a substantially solid body. The capsule is inserted at the bonding temperature into an over-sized forming cavity of a press which includes relatively movable punches, the capsule being completely surrounded within the press by a layer of heat-insulating and pressure-transmitting solid material, such as talc or the like. Thus, when the capsule is subjected to the high pressure upon operation of the press, such material serves as a pressure-transmitting medium through which pressure is applied completely against all sides of the capsule.
    Type: Grant
    Filed: February 22, 1980
    Date of Patent: February 1, 1983
    Assignee: ASEA Aktiebolag
    Inventors: Hans G. Larsson, Erik Westman