Processes Or Apparatus Adapted For Manufacture Or Treatment Of Semiconductor Or Solid-state Devices Or Of Parts Thereof (epo) Patents (Class 257/E21.001)

  • Patent number: 8178373
    Abstract: A method of device growth and p-contact processing that produces improved performance for non-polar III-nitride light emitting diodes and laser diodes. Key components using a low defect density substrate or template, thick quantum wells, a low temperature p-type III-nitride growth technique, and a transparent conducting oxide for the electrodes.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: May 15, 2012
    Assignees: The Regents of the University of California, Japan Science and Technology Agency
    Inventors: Mathew C. Schmidt, Kwang Choong Kim, Hitsohi Sato, Steven P. DenBaars, James S. Speck, Shuji Nakamura
  • Patent number: 8178381
    Abstract: Disclosed are a back side illumination image sensor and a method for manufacturing the same. The back side illumination image sensor includes an isolation region and a pixel area on a front side of a first substrate; a photo detector and a readout circuitry on the pixel area; an interlayer dielectric layer and a metal line on the front side of the first substrate; a second substrate bonded to the front side of the first substrate formed with the metal line; a pixel division ion implantation layer on the isolation region at a back side of the first substrate; and a micro-lens on the photo detector at the back side of the first substrate.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: May 15, 2012
    Assignee: Dongbu Hitek Co., Ltd.
    Inventor: Mun Hwan Kim
  • Patent number: 8178396
    Abstract: Methods of forming semiconductor devices that include one or more arrays of memory devices in a three-dimensional arrangement, such as those that include forming a conductive contact in a dielectric material overlying a memory array, wherein a wafer bonding and cleaving process may be utilized to provide a foundation material for forming another memory array having an active region in electrical contact with the conductive contact. Additionally, the conductive contact may be formed in a donor wafer, which in turn may be bonded to a dielectric material overlying a memory array using another wafer bonding process. Novel semiconductor devices and structures including the same may be formed using such methods, for example.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: May 15, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Nishant Sinha, Krishna K. Parat
  • Patent number: 8173453
    Abstract: Patterning an organic light emitting diode (OLED) after it has been encapsulated by permanently changing the light emissivity of the diodes. The OLED includes an intervening layer between a source of laser treatment and a light emitting layer. Depending on the composition of the light emitting layer, the laser treatment will enhance or diminish brightness.
    Type: Grant
    Filed: January 7, 2008
    Date of Patent: May 8, 2012
    Assignee: 3M Innovative Properties Company
    Inventors: Fred B. McCormick, Robert C. Fitzer, Hung T. Tran
  • Patent number: 8168450
    Abstract: A semiconductor package includes a semiconductor chip having a circuit section. A first chip selection electrode passes through a first position of the semiconductor chip, and the first chip selection electrode has a first resistance and outputs a first signal. A second chip selection electrode passes through a second position of the semiconductor chip, and the second chip selection electrode has a second resistance greater than the first resistance and outputs a second signal. A signal comparison part is formed in the semiconductor chip and is electrically connected to the first and second chip selection electrodes. The signal comparison part compares the first signal applied from the first chip selection electrode to the second signal applied from the second chip selection electrode and outputs a chip selection signal to the circuit section depending upon the result of the comparison.
    Type: Grant
    Filed: June 18, 2010
    Date of Patent: May 1, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventor: Bok Kyu Choi
  • Patent number: 8168474
    Abstract: Systems and methods simultaneously form first openings and second openings in a substrate. The first openings are formed smaller than the second openings. The method also simultaneously forms a first material in the first openings and the second openings. The first material fills the first openings, and the first material lines the second openings. The method forms a second material different than the first material in the second openings. The second material fills the second openings. The method forms a plurality of integrated circuit structures over the first material and the second material within the second openings. The method applies mechanical stress to the substrate to cause the substrate to split along the first openings.
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: May 1, 2012
    Assignee: International Business Machines Corporation
    Inventors: James W. Adkisson, Panglijen Candra, Thomas J. Dunbar, Jeffrey P. Gambino, Mark D. Jaffe, Robert K. Leidy, Yen L. Lim
  • Publication number: 20120100657
    Abstract: A method for bonding a first copper element onto a second copper element including forming a crystalline copper layer enriched in oxygen on each of surfaces of each of the first and second elements through which the elements will be in contact, the total thickness of both layers being less than 6 nm, which includes: a) polishing the surfaces so as to obtain a roughness of less than 1 nm RMS, and hydrophilic surfaces, b) cleaning the surfaces to suppress presence of particles due to the polishing and the major portion of corrosion inhibitors, and c) putting both crystalline copper layer enriched in oxygen in contact with each other.
    Type: Application
    Filed: July 1, 2010
    Publication date: April 26, 2012
    Applicants: Stmicroelectronics (Crolles 2) SAS, Commisariat A L'Energie Atomique et Aux Ene Alt
    Inventors: Lea Di Cioccio, Pierric Gueguen, Maurice Rivoire
  • Patent number: 8158282
    Abstract: A method of producing a lithium-ion battery anode comprising: (a) providing an anode active material; (b) intercalating or absorbing a desired amount of lithium into this anode active material to produce a prelithiated anode active material; (c) comminuting the prelithiated anode active material into fine particles with an average size less than 10 ?m (preferably sub-micron and more preferably <200 nm); and (d) combining multiple fine particles of prelithiated anode active material with a conductive additive and/or a binder material to form the anode. The battery featuring such an anode exhibits an exceptionally high specific capacity, an excellent reversible capacity, and a long cycle life.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: April 17, 2012
    Assignee: Nanotek Instruments, Inc.
    Inventors: Aruna Zhamu, Bor Z. Jang
  • Publication number: 20120086059
    Abstract: An integrated circuit and method for forming an integrated circuit. There are at least three field-effect transistors with at least two of the field-effect transistors having the same electrically insulating material which is ferroelectric when unstrained or is capable of being ferroelectric when strain is induced. It is optional for the third field-effect transistor to have an electrically insulating material which is ferroelectric when unstrained or is capable of being ferroelectric when strain is induced. The at least three field-effect transistors are strained to varying amounts so that each of the three field-effect transistors has a threshold voltage, Vt, which is different from the Vt of the two other field-effect transistors.
    Type: Application
    Filed: October 7, 2010
    Publication date: April 12, 2012
    Applicants: Centre National de la Recherche Scientifique, International Business Machines Corporation
    Inventors: Catherine Anne Dubourdieu, Martin Michael Frank, Vijay Narayanan
  • Publication number: 20120086087
    Abstract: A muli-layer stacked micro-electro-mechanical (MEMS) device that acts as a capacitive micromachined ultrasonic transducer (CMUT) with a hermetically sealed device cavity formed by a wafer bonding process with semiconductor and insulator layers. The CMUT design uses a doped Si SOI and wafer bonding fabrication method, and is composed of semiconductor layers, insulator layers, and metal layers. Conventional doped silicon may be used for electrode layers. Other suitable semi-conductor materials such as silicon carbide may be used for the electrode layers. The insulator may be silicon oxide, silicon nitride or other suitable dielectric.
    Type: Application
    Filed: October 12, 2011
    Publication date: April 12, 2012
    Inventor: Glen A. Fitzpatrick
  • Publication number: 20120086102
    Abstract: In one embodiment, a method of forming a semiconductor device includes forming a first inductor coil within and/or over a substrate. The first inductor coil is formed adjacent a top side of the substrate. First trenches are formed within the substrate adjacent the first inductor coil. The first trenches are filled at least partially with a magnetic fill material. At least a first portion of the substrate underlying the first inductor coil is thinned. A backside magnetic layer is formed under the first portion of the substrate. The backside magnetic layer and the magnetic fill material form at least a part of a magnetic core region of the first inductor coil.
    Type: Application
    Filed: October 7, 2010
    Publication date: April 12, 2012
    Inventors: Renate Hofmann, Carsten Ahrens, Wolfgang Klein, Alexander Glas
  • Patent number: 8153454
    Abstract: A fabrication apparatus and fabrication method of a semiconductor device are provided, allowing the temperature distribution of a substrate to be rendered uniform. The fabrication apparatus for a semiconductor device includes a susceptor holding the substrate, a heater arranged at a back side of the susceptor, a support member located between the substrate and susceptor, including a support portion, and a spacer located between the susceptor and support member. The spacer has an opening formed corresponding to the site where said support portion is located, at an opposite face side of the support member.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: April 10, 2012
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Masaki Ueno, Toshio Ueda, Yoko Watanabe
  • Patent number: 8153479
    Abstract: A method of manufacturing a semiconductor package comprises: preparing a photosensitive insulating material having a first surface and a second surface opposite to the first surface; bonding a semiconductor chip to the first surface of the photosensitive insulating material with a connecting terminal of the semiconductor chip facing the first surface of the photosensitive insulating material; exposing the second surface of the photosensitive insulating material after the bonding the semi-conductor to the first surface of the photosensitive material; encapsulating the first surface of the photosensitive insulating material, and the semiconductor chip bonded to the first surface, with a resin to form a resin encapsulated portion after exposing the second surface of the photosensitive insulating material; and developing the photosensitive insulating material, thereby forming a through-hole communicating with the connecting terminal of the semiconductor chip in the photosensitive insulating material after the exp
    Type: Grant
    Filed: August 18, 2010
    Date of Patent: April 10, 2012
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventors: Tohru Hizume, Akihiko Tateiwa
  • Patent number: 8148198
    Abstract: A method for reducing variations in the bending of rolled metal base plates for semiconductor modules is disclosed. In this method, the base plates are rolled in their longitudinal direction in a specific manner.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: April 3, 2012
    Assignee: Infineon Technologies AG
    Inventors: Georg Borghoff, Thomas Nuebel, Reinhold Spanke, Martin Woelz
  • Patent number: 8148189
    Abstract: A method is described to create a thin semiconductor lamina adhered to a ceramic body. The method includes defining a cleave plane in a semiconductor donor body, applying a ceramic mixture to a first face of the semiconductor body, the ceramic mixture including ceramic powder and a binder, curing the ceramic mixture to form a ceramic body, and cleaving a lamina from the semiconductor donor body at the cleave plane, the lamina remaining adhered to the ceramic body. Forming the ceramic body this way allows outgassing of volatiles during the curing step. Devices can be formed in the lamina, including photovoltaic devices. The ceramic body and lamina can withstand high processing temperatures. In some embodiments, the ceramic body may be conductive.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: April 3, 2012
    Assignee: Twin Creeks Technologies, Inc.
    Inventors: Aditya Agarwal, Kathy J Jackson
  • Patent number: 8148740
    Abstract: Provided are a semiconductor light emitting device and a method of manufacturing the same. The semiconductor light emitting layer comprises a first conductive type semiconductor layer, an active layer on the first conductive type semiconductor layer, and a second conductive type semiconductor layer on the active layer. The active layer comprises a quantum well layer, a quantum barrier layer, and a dual barrier layer.
    Type: Grant
    Filed: November 8, 2010
    Date of Patent: April 3, 2012
    Assignee: LG Innotek Co., Ltd.
    Inventors: Tae Yun Kim, Hyo Kun Son
  • Patent number: 8148188
    Abstract: Photoelectrochemical cells and methods are provided, in particular, to the functionalization of semiconductor surfaces such that its semiconducting and light generating properties are maintained and the surface becomes stable in wet environments. In particular the preferred embodiments relate to unstable semiconductor materials which have photocurrent generating properties, and to methods for the functionalization of surfaces with metallic carbon nanotubes (CNTs).
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: April 3, 2012
    Assignee: IMEC
    Inventors: Philippe M. Vereecken, Rufi Kurstjens, Ainhoa Romo Negreira, Daire J. Cott
  • Patent number: 8143083
    Abstract: A circuit board is mounted on a package via an adhesive agent as an elastic member. A sensor element is stacked in fixed relation onto the circuit board. The sensor element, the circuit board, and the package are wired with bonding wires. A magnetic member made of a ferromagnetic material is disposed between the adhesive agent and the circuit board.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: March 27, 2012
    Assignee: Denso Corporation
    Inventor: Tameharu Ohta
  • Patent number: 8143100
    Abstract: A method for making a semiconductor multi-package module includes; providing a lower molded package including a lower substrate and a die, affixing an upper molded package including an upper substrate onto the upper surface of the lower package, and forming z-interconnects between the upper and lower substrates.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: March 27, 2012
    Assignee: ChipPAC, Inc.
    Inventor: Marcos Karnezos
  • Patent number: 8138009
    Abstract: Disclosed is a method of fabricating a thin film solar cell including introducing a reaction solution into a reaction chamber, fixing a supporter onto a loader, disposing the loader in the reaction chamber to immerse the supporter into the reaction solution, and heating the supporter and coating a buffer layer. In addition, an apparatus of fabricating a thin film solar cell including a reaction chamber mounted with an inlet of a reaction solution and an outlet of waste water, and a loader disposed in the reaction chamber and being capable of moving up and down, is disclosed.
    Type: Grant
    Filed: April 15, 2010
    Date of Patent: March 20, 2012
    Assignees: Samsung SDI Co., Ltd., Samsung Electronics Co., Ltd.
    Inventor: Donggi Ahn
  • Patent number: 8138002
    Abstract: A convex part formation method of forming a convex part in parallel with a <110> direction of a backing on the backing having a {100} face as the top surface thereof, includes: (a) forming a mask layer in parallel with the <110> direction on the backing; (b) etch the backing so as to form a convex-part upper layer whose sectional shape on a cutting plane corresponding to a {110} face is an isosceles trapezoid, the base of which is longer than the upper side thereof, and the side surface of which has an inclination of ?U; and (c) further etching the backing so as to form a convex-part lower layer whose sectional shape on the cutting plane corresponding to the {110} face is an isosceles trapezoid, the base of which is longer than the upper side thereof, and the side surface of which has an inclination of ?D (where ?D??U).
    Type: Grant
    Filed: August 11, 2009
    Date of Patent: March 20, 2012
    Assignee: Sony Corporation
    Inventors: Kiyotaka Yashima, Yoshinari Kiwaki, Kamada Michiru, Sachio Karino, Hironobu Narui, Nobukata Okano
  • Patent number: 8138074
    Abstract: A method of forming an IC includes forming a first and a second gate portion using a poly mask. The first portion includes a first active poly gate having a line width W1 over an end of a first active area framed by a first active area edge and a first adjacent active field poly feature having a line width 0.8W1 to 1.3W1 in a first field region. The first field poly feature has a horizontal portion and a first extension portion along a gate width direction extending over the first active area edge having a first minimum spacing (S1). The second gate portion includes a second active poly gate over an end of a second active area framed by a second active area edge electrically connected to a second field poly feature in a second field region having a horizontal portion and a second extension portion along a gate width direction extending over the second active area edge having a second minimum spacing (S2). A dummy field poly feature is between the second active poly gate and the second field poly feature.
    Type: Grant
    Filed: November 4, 2010
    Date of Patent: March 20, 2012
    Assignee: Texas Instruments Incorporated
    Inventor: James Walter Blatchford
  • Publication number: 20120061777
    Abstract: Embodiments relate to micromachine structures. In one embodiment, a micromachine structure includes a first electrode, a second electrode, and a sensing element. The sensing element is mechanically movable and is disposed intermediate the first and second electrodes and adapted to oscillate between the first and second electrodes. Further, the sensing element includes a FinFET structure having a height and a width, the height being greater than the width.
    Type: Application
    Filed: August 26, 2011
    Publication date: March 15, 2012
    Inventors: Stefan Kolb, Reinhard Mahnkopf, Christian Pacha, Bernhard Winkler, Werner Weber
  • Patent number: 8134187
    Abstract: Integrated mask-programmable device, having a plurality of metal levels including a top metal level, a bottom metal level and a first intermediate metal level formed between the top and bottom metal levels, and a plurality of via levels arranged between the bottom and the first intermediate metal levels and between the first intermediate and the top metal levels and connecting each metal level to adjacent metal levels. The plurality of metal levels forms a first, a second and at least a third terminal, the top and bottom metal levels having at least two metal regions, and the first intermediate metal level having at least three metal regions. The first terminal is connected to third terminal or the second terminal is connected to the third terminal by modifying a single metal or via level.
    Type: Grant
    Filed: December 24, 2008
    Date of Patent: March 13, 2012
    Assignee: STMicroelectronics Design and Application s.r.o.
    Inventors: Patrik Vacula, Milos Vacula, Milan Lzicar
  • Patent number: 8133759
    Abstract: A leadframe includes a die paddle and leads, in which the back side of the die paddle has a fillister. The fillister defines a rim surrounding a recess, and the recess accommodates protrusion of fusible material. Also, a package includes such a leadframe. Also, a method for making a leadframe includes patterning a sheet of metal to form a die paddle and leads, and forming a fillister in the back side of the die paddle.
    Type: Grant
    Filed: April 28, 2009
    Date of Patent: March 13, 2012
    Assignee: Macronix International Co., Ltd.
    Inventors: Jui-Chung Lee, Po-Hsin Lin, Kun-Feng Lee
  • Patent number: 8134214
    Abstract: Electronic device which comprises a substrate provided with at least one passing opening, a MEMS device with function of differential sensor provided with a first and a second surface and of the type comprising at least one portion sensitive to chemical and/or physical variations of fluids present in correspondence with a first and a second opposed active surface thereof, the first surface of the MEMS device leaving the first active surface exposed and the second surface being provided with a further opening which exposes said second opposed active surface, the electronic device being characterized in that the first surface of the MEMS device faces the substrate and is spaced therefrom by a predetermined distance, the sensitive portion being aligned to the passing opening of the substrate, and in that it also comprises a protective package, which incorporates at least partially the MEMS device and the substrate so as to leave the first and second opposed active surfaces exposed respectively through the passin
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: March 13, 2012
    Assignee: STMicroelectronics S.r.l.
    Inventors: Lorenzo Baldo, Chantal Combi, Mario Francesco Cortese
  • Patent number: 8124434
    Abstract: A package structure and method of packaging for an interferometric modulator. A transparent substrate having an interferometric modulator formed thereon is provided. A backplane is joined to the transparent substrate with a seal where the interferometric modulator is exposed to the surrounding environment through an opening in either the backplane or the seal. The opening is sealed after the transparent substrate and backplane are joined and after any desired desiccant, release material, and/or self-aligning monolayer is introduced into the package structure.
    Type: Grant
    Filed: June 10, 2005
    Date of Patent: February 28, 2012
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Brian J. Gally, William J. Cummings, Lauren Palmateer, Philip D. Floyd, Clarence Chui
  • Patent number: 8124444
    Abstract: A method includes the steps of forming a contiguous semiconducting region and heating the region. The semiconducting region includes polyaromatic molecules. The heating raises the semiconducting region to a temperature above room temperature. The heating is performed in the presence of a dopant gas and the absence of light to form a doped organic semiconducting region.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: February 28, 2012
    Assignees: Alcatel Lucent, The Trustees of Columbia University
    Inventors: Christian Leo Kloc, Arthur Penn Ramirez, Woo-Young So
  • Patent number: 8119547
    Abstract: A sealed type container accommodating a semiconductor substrate is positioned to a load port of a semiconductor manufacturing apparatus. The semiconductor substrate is taken out of the container. An ionizer is used for static-charge-eliminating the semiconductor substrates before and after process treatment in a transport area between the load port and a treatment section. The static-charge-eliminated semiconductor substrate is accommodated in the container positioned to the load port. Thus, it is possible to decrease foreign materials adhering to the semiconductor substrate and errors in handling the semiconductor substrate.
    Type: Grant
    Filed: May 20, 2008
    Date of Patent: February 21, 2012
    Assignee: Renesas Electronics Corporation
    Inventor: Yoshiaki Kobayashi
  • Patent number: 8118941
    Abstract: Holes in semiconductor processing reactor parts are sized to facilitate deposition of protective coatings, such as by chemical vapor deposition at atmospheric pressure. In some embodiments, the holes each have a flow constriction that narrows the holes in one part and that also divides the holes into one or more other portions. In some embodiments, the aspect ratios of the one or more other portions are about 15:1 or less, or about 7:1 or less, and have a cylindrical or conical cross-sectional shape. The holes are coated with a protective coating, such as a silicon carbide coating, by chemical vapor deposition, including chemical vapor deposition at atmospheric pressure.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: February 21, 2012
    Assignee: ASM International N.V.
    Inventor: Vladimir Kuznetsov
  • Publication number: 20120038061
    Abstract: A semiconductor chip device includes a first semiconductor chip adapted to be stacked with a second semiconductor chip wherein the second semiconductor chip includes a side and first and second conductor structures projecting from the side. The first semiconductor chip includes a first edge, a first conductor pad, a first conductor pillar positioned on but laterally offset from the first conductor pad toward the first edge and that has a first lateral dimension and is adapted to couple to one of the first and second conductor structures, a second conductor pad positioned nearer the first edge than the first conductor pad, and a second conductor pillar positioned on but laterally offset from the second conductor pad and that has a second lateral dimension larger than the first lateral dimension and is adapted to couple to the other of the first and second conductor structures.
    Type: Application
    Filed: August 14, 2010
    Publication date: February 16, 2012
    Inventors: Michael Z. Su, Gamal Rafai-Ahmed, Bryan Black
  • Patent number: 8114760
    Abstract: A technique for manufacturing a microcrystalline semiconductor layer with high mass productivity is provided. In a reaction chamber of a plasma CVD apparatus, an upper electrode and a lower electrode are provided in almost parallel to each other. A hollow portion is formed in the upper electrode, and the upper electrode includes a shower plate having a plurality of holes formed on a surface of the upper electrode which faces the lower electrode. A substrate is provided over the lower electrode. A gas containing a deposition gas and hydrogen is supplied to the reaction chamber from the shower plate through the hollow portion of the upper electrode, and a rare gas is supplied to the reaction chamber from a portion different from the upper electrode. Accordingly, high-frequency power is supplied to the upper electrode to generate plasma, so that a microcrystalline semiconductor layer is formed over the substrate.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: February 14, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Mitsuhiro Ichijo, Kazutaka Kuriki, Tomokazu Yokoi, Toshiya Endo
  • Publication number: 20120032284
    Abstract: According to one aspect of the present invention, a film for a resin spacer (10) comprises an adhesive layer (12) made of a resin composition and a cover film (14) covering a surface of the adhesive layer (12). In the above-described film for a resin spacer (10), an adhesion force C1 between the adhesive layer (12) and the cover film (14) and an adhesion force D between the adhesive layer (12) and a silicone resin are set so as to satisfy the condition C1>D. Consequently, it is possible to reduce resin adherence to a cutting table at the time of cutting the film for a resin spacer (10).
    Type: Application
    Filed: March 25, 2010
    Publication date: February 9, 2012
    Inventors: Hirohisa Dejima, Masakazu Kawata, Masahiro Yoneyama, Toyosei Takahashi, Fumihiro Shiraishi, Toshihiro Sato
  • Patent number: 8110830
    Abstract: A thin film transistor (TFT) array substrate and a method of manufacturing the same that is capable of decreasing the number of usage of exposure masks to reduce the process time and the process costs and excessively etching a passivation film below a photoresist pattern to easily perform a lift-off process of the photoresist pattern are disclosed.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: February 7, 2012
    Assignee: LG Display Co., Ltd.
    Inventors: Joo Soo Lim, Hyun Seok Hong, Chang Bin Lee
  • Patent number: 8110437
    Abstract: A radiation-emitting or -receiving semiconductor chip 9 is soft-soldered for mounting on a leadframe 2 over which a prefabricated plastic encapsulant 5, a so-called premolded package, is injection-molded. Through the use of a low-melting solder 3 applied in a layer thickness of less than 10 ?m, the soldering process can be carried out largely without thermal damage to the plastic encapsulant 5.
    Type: Grant
    Filed: May 14, 2003
    Date of Patent: February 7, 2012
    Assignee: Osram Opto Semiconductors GmbH
    Inventors: Gunter Waitl, Georg Bogner, Michael Hiegler, Matthias Winter
  • Publication number: 20120025355
    Abstract: In a laminated semiconductor substrate, a plurality of semiconductor substrates are laminated. Each of the semiconductor substrate has a plurality of scribe-groove parts formed along scribe lines. Further, each of the semiconductor substrate has a plurality of device regions insulated from each other and has a semiconductor device formed therein. Further, an uppermost substrate and a lowermost substrate have electromagnetic shielding layer formed in regions other than the scribe-groove parts using a ferromagnetic body. Further, in the laminated semiconductor substrate, a through hole which penetrates the plurality of semiconductor substrates laminated in a laminated direction is formed in the scribe-groove part, and the laminated semiconductor substrate has a through electrode penetrating the plurality of semiconductor substrates through the through hole.
    Type: Application
    Filed: August 2, 2010
    Publication date: February 2, 2012
    Applicants: SAE MAGNETICS (H.K.) LTD., HEADWAY TECHNOLOGIES, INC.
    Inventors: Yoshitaka SASAKI, Hiroyuki ITO, Atsushi IIJIMA
  • Publication number: 20120027544
    Abstract: A monitoring system has a vehicle and a monitoring device. The vehicle is movable along a predetermined route, and the monitoring device is detachably mounted to the vehicle. The vehicle has a photonic device configured to read position information according to detection of a positioning tag positioned at a predetermined position along the predetermined route. The monitoring device has a sensor configured to monitor an environmental parameter and a controller communicatively coupled to the sensor and the photonic device. The controller is configured to record the monitored environmental parameter along the predetermined route and the position information.
    Type: Application
    Filed: July 29, 2010
    Publication date: February 2, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wei-Cheng WANG, Hsiang Yin SHEN
  • Patent number: 8101488
    Abstract: Embodiments of the present invention provide for a system for accelerating hydrogen ions. A hydrogen generator holding a supply of water is configured to generate a flow of hydrogen gas from the supply of water. An ion source structure is configured to generate a plurality of hydrogen ions from the flow of hydrogen gas. An accelerator tube is configured to accelerate the plurality of hydrogen ions. The supply of water has an isotopic ratio of deuterium that is smaller than the isotopic ratio of deuterium in Vienna Standard Mean Ocean Water.
    Type: Grant
    Filed: December 25, 2010
    Date of Patent: January 24, 2012
    Assignee: Twin Creeks Technologies, Inc.
    Inventors: Theodore H. Smick, Steven Richards, Geoffrey Ryding, Kenneth H Purser
  • Patent number: 8101914
    Abstract: A thermal-type infrared solid-state imaging device comprises a infrared detector having at least a substrate provided with an integrated circuit for reading out a signal, a diaphragm for detecting a temperature change by absorbing infrared rays, and a support section for supporting the diaphragm above a surface of one side of the substrate with space in between, and includes an eaves section connected to a connection area provided in the vicinity of outer circumference of the diaphragm and covering at least components other than the diaphragm across a space and transmitting the heat generated by absorbing incident infrared rays to the diaphragm, wherein the eaves section has the thickness of a first region covering the components other than the diaphragm across a space thicker than the thicknesses of a second region contacting the connection area of the diaphragm and a third region rising upward in mid air from the diaphragm.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: January 24, 2012
    Assignee: NEC Corporation
    Inventor: Shigeru Tohyama
  • Patent number: 8097473
    Abstract: An alignment method is provided in which a substrate including first and second layers is aligned in forming a second pattern in the second layer. The method includes storing first alignment measurement data to be used in alignment performed in forming a first pattern and a second alignment mark in the second layer, the first alignment measurement data obtained by measuring a first alignment mark provided in the first layer; obtaining second alignment measurement data by measuring the second alignment mark through a resist applied over the second layer; obtaining third alignment measurement data by measuring the first alignment mark through the resist; and performing alignment of the substrate in accordance with a first difference between the first and second alignment measurement data, or in accordance with the first difference and a second difference between the first and third alignment measurement data.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: January 17, 2012
    Assignee: Canon Kabushiki Kaisha
    Inventors: Satoru Oishi, Hideki Ina
  • Patent number: 8097478
    Abstract: The present invention provides a method for producing a light-emitting diode, the method comprising a lamination step of forming a laminated semiconductor layer by sequentially laminating an n-type semiconductor layer, a light-emitting layer and a p-type semiconductor layer onto a substrate, as well as forming a plurality of reflective p-type electrodes on top of the p-type semiconductor layer, a plating step of forming a seed layer that covers the reflective p-type electrodes and the p-type semiconductor layer, and fowling a plating layer on top of the seed layer, a removal step of removing the substrate from the n-type semiconductor layer, thereby exposing a light extraction surface of the n-type semiconductor layer, and an electrode formation step of performing dry etching of the light extraction surface of the n-type semiconductor layer using an etching gas containing the same element as a dopant element within the n-type semiconductor layer, and subsequently forming an n-type electrode on the light extra
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: January 17, 2012
    Assignee: Showa Denko K.K.
    Inventor: Takashi Hodota
  • Publication number: 20120009716
    Abstract: In a package process of backside illumination image sensor, a wafer including a plurality of pads is provided. A first carrier is processed to form a plurality of blind vias therein. The first carrier is adhered to the wafer so that the blind vias face to the pads correspondingly. A spacing layer is formed and a plurality of sensing components are disposed. A second carrier is adhered on the spacing layer. Subsequently, a carrier thinning process is performed so that the blind vias become the through holes. An insulating layer is formed on the first carrier. An electrically conductive layer is formed on the insulating layer and filled in the though holes to electrically connect to the pads. The package process can achieve the exact alignment of the through holes and the pads, thereby increasing the package efficiency and improving the package quality.
    Type: Application
    Filed: July 7, 2010
    Publication date: January 12, 2012
    Applicant: MOS Art Pack Corporation
    Inventor: Wen-Hsiung CHANG
  • Patent number: 8093592
    Abstract: A TFT substrate includes a substrate and at least a TFT disposed thereon. The TFT includes a semiconductor island and at least a gate. The semiconductor island has a source region, a drain region, and a channel region interposed therebetween. The semiconductor island has sub-grain boundaries. The gate corresponds to the channel region. A first included angle between an extending direction of the gate and a line connecting the centroid of the source region with the centroid of the drain region is not substantially equal to 90 degrees. A second included angle between the sub-grain boundaries in the channel region and the line connecting the centroid of the source region with the centroid of the drain region is not substantially equal to 0 degree or 90 degrees. Additionally, a method of fabricating a TFT substrate, an electronic apparatus, and a method of fabricating the electronic apparatus are also provided.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: January 10, 2012
    Assignee: Au Optronics Corporation
    Inventors: Ming-Wei Sun, Chih-Wei Chao
  • Patent number: 8088640
    Abstract: The thermal management and method for large scale processing of CIS and/or CIGS based thin film overlaying glass substrates. According to an embodiment, the present invention provides a method for fabricating a copper indium diselenide semiconductor film. The method includes providing a plurality of substrates, each of the substrates having a copper and indium composite structure. The method also includes transferring the plurality of substrates into a furnace, each of the plurality of substrates provided in a vertical orientation with respect to a direction of gravity, the plurality of substrates being defined by a number N, where N is greater than 5. The method further includes introducing a gaseous species including a selenide species and a carrier gas into the furnace and transferring thermal energy into the furnace to increase a temperature from a first temperature to a second temperature, the second temperature ranging from about 350° C. to about 450° C.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: January 3, 2012
    Assignee: Stion Corporation
    Inventor: Robert D. Wieting
  • Publication number: 20110317371
    Abstract: An electronic component package is described. The electronic component package includes a first electronic component package module mounted on a surface of a packaging layer. A second electronic component package module laminated on a bottom of the first electronic component package module is mounted on a surface of a packaging layer. The first and second electronic component package modules respectively include at least two semiconductor chips laminated. A first redistribution layer is between the first and the second electronic component package modules, electrically connected to the first and the second electronic component package modules. A conductive bump is mounted on a bottom of the second electronic component package module, electrically connected to the second electronic component package module.
    Type: Application
    Filed: June 29, 2010
    Publication date: December 29, 2011
    Inventor: Chien-Hung LIU
  • Publication number: 20110318143
    Abstract: A vacuum processing apparatus includes a first lock chamber and a second lock chamber coupled to a back face side of the atmospheric transfer chamber in parallel, a first transfer chamber coupled to a rear side of the first lock chamber, a second transfer chamber coupled, on the rear side of the first transfer chamber, a third transfer chamber coupled to the rear side of the second lock chamber, a first and a second relay chamber disposed between the first transfer chamber/the second transfer chamber and the first transfer chamber/the third transfer chamber to transfer a wafer between these chambers, and a plurality of processing chambers coupled to either the first, the second or the third transfer chamber, in addition, the number of the processing chambers coupled to the second transfer chamber is greater than that of the processing chambers coupled to either the first or the third transfer chamber, and the wafer alone processed in the processing chamber coupled to either the first or the second transfer ch
    Type: Application
    Filed: August 11, 2010
    Publication date: December 29, 2011
    Inventors: Ryoichi ISOMURA, Susumu Tauchi, Hideaki Kondo
  • Patent number: 8084288
    Abstract: A method includes bonding a first side of a metal shim to a silicon shim, removing metal from the metal shim to form a plurality of cleared metal lanes in accordance with a pattern, bonding a readout integrated circuit having a plurality of saw lanes in accordance with the pattern to a second side of the metal shim to form a wafer assembly wherein the plurality of saw lanes is aligned with the plurality of cleared metal lanes, and dicing the wafer assembly.
    Type: Grant
    Filed: August 11, 2009
    Date of Patent: December 27, 2011
    Assignee: Raytheon Company
    Inventors: Robert P. Ginn, Kenneth A. Gerber
  • Patent number: 8084292
    Abstract: The thermal management and method for large scale processing of CIS and/or CIGS based thin film overlaying glass substrates. According to an embodiment, the present invention provides a method for fabricating a copper indium diselenide semiconductor film. The method includes providing a plurality of substrates, each of the substrates having a copper and indium composite structure. The method also includes transferring the plurality of substrates into a furnace, each of the plurality of substrates provided in a vertical orientation with respect to a direction of gravity, the plurality of substrates being defined by a number N, where N is greater than 5. The method further includes introducing a gaseous species including a selenide species and a carrier gas into the furnace and transferring thermal energy into the furnace to increase a temperature from a first temperature to a second temperature, the second temperature ranging from about 350° C. to about 450° C.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: December 27, 2011
    Assignee: Stion Corporation
    Inventor: Robert D. Wieting
  • Patent number: 8084291
    Abstract: The thermal management and method for large scale processing of CIS and/or CIGS based thin film overlaying glass substrates. According to an embodiment, the present invention provides a method for fabricating a copper indium diselenide semiconductor film. The method includes providing a plurality of substrates, each of the substrates having a copper and indium composite structure. The method also includes transferring the plurality of substrates into a furnace, each of the plurality of substrates provided in a vertical orientation with respect to a direction of gravity, the plurality of substrates being defined by a number N, where N is greater than 5. The method further includes introducing a gaseous species including a selenide species and a carrier gas into the furnace and transferring thermal energy into the furnace to increase a temperature from a first temperature to a second temperature, the second temperature ranging from about 350° C. to about 450° C.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: December 27, 2011
    Assignee: Stion Corporation
    Inventor: Robert D. Wieting
  • Patent number: 8084842
    Abstract: Memory devices and methods for manufacturing are described herein. A memory device as described herein includes a first electrode layer, a second electrode layer, and a thermal isolation structure including a layer of thermal isolation material between the first and second electrode layers. The first and second electrode layers and the thermal isolation structure define a multi-layer stack having a sidewall. A sidewall conductor layer including a sidewall conductor material is on the sidewall of the multi-layer stack. The sidewall conductor material has an electrical conductivity greater than that of the thermal isolation material. A memory element including memory material is on the second electrode layer.
    Type: Grant
    Filed: March 25, 2008
    Date of Patent: December 27, 2011
    Assignee: Macronix International Co., Ltd.
    Inventor: Shih-Hung Chen