Injection Patents (Class 372/44.01)
  • Publication number: 20140219304
    Abstract: A semiconductor light emitting device includes a conductive substrate, a light emitting laminate including a second conductivity type semiconductor layer, an active layer, and a first conductivity type semiconductor layer stacked on the conductive substrate, a first electrode layer electrically connected to the first conductivity type semiconductor layer, a second electrode layer between the conductive substrate and the second conductivity type semiconductor layer, the second electrode layer being electrically connected to the second conductivity type semiconductor layer, and a passivation layer between the active layer and the second electrode layer, the passivation layer covering at least a lateral surface of the active layer of the light emitting laminate.
    Type: Application
    Filed: January 14, 2014
    Publication date: August 7, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jong Ho LEE, Chan Mook LIM, Young Chul SHIN, Su Hyun JO
  • Publication number: 20140209156
    Abstract: The invention relates to a novel silicon-based, single-stage solar cell which, instead of converting light in a bulk semiconductor material, generates electrical energy within a very thin quantum structure that is deposited. The layer sequence itself consists of a three-fold hetero structure as an absorber, which is embedded into the space charge region of a pn-junction and is based on quantummechanical effects. Therein, the layer is preferably deposited by a CVD or the like method. High efficiencies of above 30% were initially measured on small samples on silicon.
    Type: Application
    Filed: December 23, 2011
    Publication date: July 31, 2014
    Inventor: Andreas Paul Schüppen
  • Patent number: 8792160
    Abstract: Provided is a light-emitting device including (a) a layer structure obtained by sequentially growing on a base substrate a first compound semiconductor layer of a first conductivity type, (b) an active layer formed of a compound semiconductor, and (c) a second compound semiconductor layer of a second conductivity type; a second electrode formed on the second compound semiconductor layer; and a first electrode electrically connected to the first compound semiconductor layer. The layer structure formed of at least a part of the second compound semiconductor layer in a thickness direction of the second compound semiconductor layer. The first compound semiconductor layer has a thickness greater than 0.6 ?m. A high-refractive index layer formed of a compound semiconductor material having a refractive index higher than a refractive index of a compound semiconductor material of the first compound semiconductor layer is formed in the first compound semiconductor layer.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: July 29, 2014
    Assignee: Sony Corporation
    Inventors: Rintaro Koda, Hideki Watanabe, Masaru Kuramoto, Shunsuke Kono, Takao Miyajima
  • Patent number: 8787416
    Abstract: Provided are a laser diode using zinc oxide nanorods and a manufacturing method thereof. The laser diode using zinc oxide nanorods according to one embodiment of the present disclosure includes: a wafer; an electrode layer formed on the wafer; a nanorod layer including a plurality of n-doped zinc oxide nanorods grown on the electrode layer; and a p-doped single crystal semiconductor layer that is physically in contact with the ends of the zinc oxide nanorods.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: July 22, 2014
    Assignee: Dongguk University Industry-Academic Cooperation Foundation
    Inventors: Sang Wuk Lee, Tae Won Kang, Gennady Panin, Hak Dong Cho
  • Publication number: 20140198815
    Abstract: The present invention provides a light source for light circuits on a silicon platform. A vertical laser cavity is formed by a gain region arranged between a first mirror structure and a second mirror structure, both acting as mirrors, by forming a grating region including an active material in a silicon layer in a semiconductor structure or wafer structure. A waveguide for receiving light from the region of the mirrors is formed within or to be connected to the region of the mirrors, and functions as an output coupler for the VCL. Thereby, vertical lasing modes are coupled to lateral in-plane modes of the in-plane waveguide formed in the silicon layer, and light can be provided to e.g. photonic circuits on a SOI or CMOS substrate in the silicon.
    Type: Application
    Filed: July 2, 2012
    Publication date: July 17, 2014
    Applicant: DANMARKS TEKNISKE UNIVERSITET
    Inventor: Il-Sug Chung
  • Patent number: 8780950
    Abstract: A surface emitting semiconductor laser includes a substrate, a first semiconductor multi-layer reflector formed on the substrate and including a pair of a high refractive index layer having a relatively high refractive index and a low refractive index layer having a relatively low refractive index which are laminated, a semi-insulating i type AlGaAs layer formed on the first semiconductor multi-layer reflector, an n type semiconductor layer formed on the AlGaAs layer, an active region formed on the semiconductor layer, a p type second semiconductor multi-layer reflector formed on the active region and including a pair of a high refractive index layer having a relatively high refractive index and a low refractive index layer having a relatively low refractive index which are laminated, an n side first electrode electrically connected to the semiconductor layer, and a p side second electrode electrically connected to the second semiconductor multi-layer reflector.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: July 15, 2014
    Assignee: Fuji Xerox Co., Ltd.
    Inventor: Takashi Kondo
  • Publication number: 20140192832
    Abstract: An electro-optical module is provided, which includes: a substrate having a first surface with a groove and an opposite second surface; a plurality of support members disposed on the first surface of the substrate; at least an electro-optical element having opposite active and non-active surfaces and disposed in the groove of the substrate via the non-active surface thereof; an interposer disposed on the first surface of the substrate and the electro-optical element for electrically connecting the electro-optical element to the substrate, wherein the interposer has a through hole corresponding in position to the active surface of the electro-optical element; and a transparent plate disposed over the first surface of the substrate and the interposer through the support members and having a lens portion corresponding in position to the through hole of the interposer, thereby reducing signal losses, improving alignment precision, and achieving preferred thermal dissipation and EMI shielding effects.
    Type: Application
    Filed: May 30, 2013
    Publication date: July 10, 2014
    Inventors: Chih-Yuan Shih, Shih-Liang Peng, Jung-Pin Huang, Chin-Yu Ku, Hsien-Wen Chen
  • Publication number: 20140185639
    Abstract: A substrate comprises a Group III-V material having an upper surface and a buffer layer having a thickness of not greater than about 1.3 ?m and overlying the upper surface of the substrate. A plurality of optoelectronic devices formed on the substrate having a normalized light emission wavelength standard deviation of not greater than about 0.0641 nm/cm2 at a wavelength within a range of between about 400 nm to about 550 nm.
    Type: Application
    Filed: December 27, 2013
    Publication date: July 3, 2014
    Applicant: Saint-Gobain Cristaux Et Detecteurs
    Inventors: Jean-Pierre Faurie, Bernard Beaumont
  • Publication number: 20140187026
    Abstract: A method of manufacture of an optoelectronic device includes the steps of: providing or forming a body of crystalline silicon containing substitutional carbon atoms, and irradiating said body of crystalline silicon with protons (H+) to create radiative defect centres in a photoactive region of the device, wherein at least some of said defect centres are G-centre complexes having the form Cs—SiI—Cs, where Cs is a substitutional carbon atom and S¾ is an interstitial silicon atom. An optoelectronic device (FIG. 3) manufactured using the method is described.
    Type: Application
    Filed: August 9, 2012
    Publication date: July 3, 2014
    Applicant: THE UNIVERSITY OF SURREY
    Inventors: Kevin Peter Homewood, Russell Mark Gwilliam
  • Patent number: 8767792
    Abstract: Embodiments of a method comprising guiding an optical mode with an optical waveguide disposed in silicon, overlapping both the optical waveguide and an active semiconductor material evanescently coupled to the optical waveguide with the optical mode guided through the optical waveguide, electrically pumping the active semiconductor material to inject current directed through the active semiconductor material and through the optical mode, and generating light in the active semiconductor material in response to the injected current. Other embodiments are disclosed and claimed.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: July 1, 2014
    Assignee: Intel Corporation
    Inventors: John E. Bowers, Oded Cohen, Alexander W. Fang, Richard Jones, Mario J. Paniccia, Hyundai Park
  • Patent number: 8761220
    Abstract: The laser includes an amplifier with III-V heterostructure, designed to generate an optical wave, and a waveguide coupled optically to the amplifier, said waveguide having a hat-shaped cross section, the top of which is proximal to the amplifier. The top of the hat and the lateral sides of the hat are covered with a layer of a dielectric material in the vicinity of the amplifier. The hat is formed by a base and a protrusion of the waveguide, the material forming the base being distinct from the material forming the protrusion.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: June 24, 2014
    Assignee: Commissariat a l'Energie Atomique et aux Energies Alternatives
    Inventors: Badhise Ben Bakir, Nicolas Olivier, Jean-Marc Fedeli
  • Publication number: 20140168656
    Abstract: A luminescent device including an upper electrode layer, a lower electrode layer and an active layer provided between these electrode layers, the device having such a structure that at least one electrode layer of the upper electrode layer and the lower electrode layer is provided in an in-plane direction of the active layer being divided into plural electrodes, current is injected into plural different regions of the active layer by the plural electrodes to cause emission in plural luminescent regions, and light emitted from one luminescent region of the plural luminescent regions enters in another luminescent region and exits. The device further includes a light receiving portion for detecting light that is emitted from one luminescent region of the plural luminescent regions and does not go through another luminescent region.
    Type: Application
    Filed: December 5, 2013
    Publication date: June 19, 2014
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Takako Suga, Mamoru Uchida
  • Patent number: 8750343
    Abstract: A nitride-based semiconductor light-emitting device capable of suppressing complication of a manufacturing process and reduction of luminous efficiency is obtained. This nitride-based semiconductor light-emitting device (50) includes a nitride-based semiconductor device layer (23) formed on a main surface of a (1-100) plane of a substrate (21), having a light-emitting layer (26) having a main surface of a (1-100) plane, a facet (50a) formed on an end of a region including the light-emitting layer (26) of the nitride-based semiconductor device layer (23), formed by a (000-1) plane extending in a direction substantially perpendicular to the main surface ((1-100) plane) of the light-emitting layer (26), and a reflection surface (50c) formed on a region opposed to the facet (50a) of the (000-1) plane, formed by a growth surface of the nitride-based semiconductor device layer (23), extending in a direction inclined at an angle ?1 (about) 62° with respect to the facet (50a).
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: June 10, 2014
    Assignee: Future Light, LLC
    Inventors: Ryoji Hiroyama, Yasuto Miyake, Yasumitsu Kuno, Yasuyuki Bessho, Masayuki Hata
  • Patent number: 8750342
    Abstract: A method and device for emitting electromagnetic radiation using semipolar or nonpolar gallium containing substrates is described where the backside of the substrate includes multiple scribes that reduce stray light leaking.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: June 10, 2014
    Assignee: Soraa Laser Diode, Inc.
    Inventors: James W. Raring, Nick Pfister, Yu-Chia Chang, Matt Schmidt, Drew Felker
  • Publication number: 20140153602
    Abstract: According to one embodiment, a semiconductor light emitting device includes an n-type semiconductor layer, a p-type semiconductor layer, a light emitting part, and a p-side electrode. The light emitting part is provided between the n-type and the p-type semiconductor layers, and includes a plurality of barrier layers and a plurality of well layers. The p-side electrode contacts the p-type semiconductor layer. The p-type semiconductor layer includes first, second, third, and fourth p-type layers. The first p-type layer contacts the p-side electrode. The second p-type layer contacts the light emitting part. The third p-type layer is provided between the first p-type layer and the second p-type layer. The fourth p-type layer is provided between the second p-type layer and the third p-type layer. The second p-type layer contains Al and contains a p-type impurity in a lower concentration lower than that in the first concentration.
    Type: Application
    Filed: February 7, 2014
    Publication date: June 5, 2014
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Koichi Tachibana, Hajime Nago, Toshiki Hikosaka, Shigeya Kimura, Shinya Nunoue
  • Publication number: 20140152637
    Abstract: Disclosed is a transition metal complex represented by the following formula (1): (wherein M represents a transition metal element; K represents an uncharged monodentate or bidentate ligand; L represents a monodentate or bidentate monoanionic or dianionic ligand; m and o represent an integer from 0 to 5; n represents an integer from 1 to 3; p represents an integer from 0 to 4; W— represents a counterion; and Y1 to Y4, R1, and R2 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, a heterocycloalkyl group, an aryl group, an aralkyl group, a heteroaryl group, an alkenyl group, an alkynyl group, or an alkoxy group).
    Type: Application
    Filed: May 15, 2012
    Publication date: June 5, 2014
    Applicant: Sharp Kabushiki Kaisha
    Inventors: Yoshimasa Fujita, Masahito Ohe, Tetsuji Itoh
  • Publication number: 20140153601
    Abstract: Disclosed herein are techniques, methods, structures and apparatus that provide a laser monolithically integrated in a silicon photonic integrated circuit (PIC) that is suitable for high-performance coherent fiber-optic telecommunications and other applications. Among the features of a laser according to the present disclosure, and in particular a hybrid InGaAsP/Si laser, is an integrated Si isolator to protect the laser from back reflections; optical, rather than electrical pumping; and coupling the optical pump using an InGaAsP grating coupler that acts simultaneously as a WDM coupler and laser mirror.
    Type: Application
    Filed: April 26, 2013
    Publication date: June 5, 2014
    Inventor: Acacia Communications Inc.
  • Publication number: 20140153600
    Abstract: An optical light source is provided. The optical light source includes a waveguide including two reflectors arranged spaced apart from each other to define an optical cavity therebetween, an optical gain medium, and a coupling structure arranged to couple light between the optical cavity and the optical gain medium.
    Type: Application
    Filed: November 26, 2013
    Publication date: June 5, 2014
    Applicant: Agency for Science, Technology and Research
    Inventors: Xianshu LUO, Junfeng SONG, Haifeng ZHOU, Tsung-Yang LIOW, Mingbin YU, Patrick Guo-Qiang LO
  • Patent number: 8743922
    Abstract: A laser device is disclosed that provides at least an ultraviolet laser beam and preferably both an ultraviolet laser beam and a visible laser beam. The laser device includes a semiconductor laser device (e.g. a laser diode) to generate visible laser light which is coupled into a frequency doubling crystal taking the form of a single crystal thin film frequency-doubling waveguide structure. The single crystal thin film frequency-doubling waveguide converts a portion of the visible light emitted by the laser diode into ultraviolet light. Both visible and ultraviolet laser light is emitted from the waveguide. As an example, the single crystal thin film frequency-doubling frequency doubling waveguide includes a frequency doubling crystal region composed of ?-BaB2O4 (?-BBO), a cladding region composed of materials that are transparent or nearly transparent at the wavelength of the ultraviolet laser light beam and a supporting substrate composed of any material.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: June 3, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Tim Smeeton, Stewart Hooper, Edward Andrew Boardman, Robin Mark Cole
  • Publication number: 20140146842
    Abstract: A semiconductor stripe laser has a first semiconductor region having a first conductivity type and a second semiconductor region having a different, second conductivity type. An active zone for generating laser radiation is located between the semiconductor regions. A stripe waveguide is formed in the second semiconductor region and is arranged to guide waves in a one-dimensional manner and is arranged for a current density of at least 0.5 kA/cm2. A second electrical contact is located on the second semiconductor region and on an electrical contact structure for external electrical contacting. An electrical passivation layer is provided in certain places on the stripe waveguide. A thermal insulation apparatus is located between the second electrical contact and the active zone and/or on the stripe waveguide.
    Type: Application
    Filed: November 27, 2013
    Publication date: May 29, 2014
    Inventors: Adrian Stefan Avramescu, Clemens Vierheilig, Christoph Eichler, Alfred Lell, Jens Mueller
  • Patent number: 8731016
    Abstract: A nitride semiconductor light-emitting device has a semiconductor ridge, and includes a first inner-layer between an active layer and an n-type cladding and a second inner-semiconductor layer between the active layer and a p-type cladding. The first inner-layer, active layer and second inner-layer constitute a core-region. The n-type cladding, core-region and p-type cladding constitute a waveguide-structure. The active layer and the first inner-layer constitute a first heterojunction inclined at an angle greater than zero with respect to a reference plane of the c-plane of the nitride semiconductor of the n-type cladding. Piezoelectric polarization of the well layer is oriented in a direction from the p-type cladding toward the n-type cladding. The second inner-layer and InGaN well layer constitute a second heterojunction. A distance between the ridge bottom and the second heterojunction is 200 nm or less. The ridge includes a third heterojunction between the second inner-layer and the p-type cladding.
    Type: Grant
    Filed: October 23, 2012
    Date of Patent: May 20, 2014
    Assignees: Sumitomo Electric Industries, Ltd., Sony Corporation
    Inventors: Takashi Kyono, Yohei Enya, Masaki Ueno, Katsunori Yanashima, Kunihiko Tasai, Hiroshi Nakajima, Noriyuki Futagawa
  • Publication number: 20140133505
    Abstract: An edge-emitting semiconductor laser includes a first waveguide layer, into which an active layer that generates laser radiation is embedded. The laser also includes a second waveguide layer, into which no active layer is embedded. The laser radiation generated in the active layer forms a standing wave, which has respective intensity maxima in the first waveguide layer and corresponding intensity minima in the second waveguide layer and respective intensity minima in the first waveguide layer and corresponding intensity maxima in the second waveguide layer at periodic intervals in a beam direction of the semiconductor laser. An at least regionally periodic contact structure is arranged at a surface of the edge-emitting semiconductor laser. A period length of the contact structure is equal to a period length of the standing wave, such that the semiconductor laser has an emission wavelength that is set by the period length of the contact structure.
    Type: Application
    Filed: June 8, 2012
    Publication date: May 15, 2014
    Applicant: OSRAM Opto Semiconductors GmbH
    Inventor: Hans Lindberg
  • Publication number: 20140133504
    Abstract: A semiconductor laser diode includes a substrate. A semiconductor layer sequence on the substrate has at least one active layer designed for generating laser light that is emitted along an emission direction during operation. At least one filter layer has a main extension plane that is parallel to a main extension plane of the active layer and that is designed to scatter and/or absorb light that propagates in the semiconductor layer sequence and/or the substrate in addition to the laser light.
    Type: Application
    Filed: September 19, 2013
    Publication date: May 15, 2014
    Inventors: Bernhard Stojetz, Alfred Lell, Christoph Eichler
  • Publication number: 20140126597
    Abstract: The invention relates, inter alia, to a method for producing an electro-optical component (10, 200) suitable for emitting electromagnetic radiation (120), wherein in the method a first intermediate layer (60) is applied on a carrier, a second intermediate layer (70) is applied on the first intermediate layer, and after the second intermediate layer has been applied, the buried first intermediate layer is locally modified, wherein as a result of the local modification of the buried first intermediate layer in a lateral direction a refractive index jump is produced which brings about a lateral wave guiding of the electromagnetic radiation (120) in the unmodified region of the first intermediate layer.
    Type: Application
    Filed: June 21, 2012
    Publication date: May 8, 2014
    Inventors: André Strittmatter, Jan-Hindrik Schulze, Tim David Germann
  • Publication number: 20140126598
    Abstract: A light emitting device includes an active layer; at least a portion of the active layer constitutes a gain region. The gain region is continuous from a first end surface and a second end surface. The gain region includes a first portion extending from the first end surface to a first reflective surface in a direction tilted with respect to a normal to the first side surface as viewed two-dimensionally; a second portion extending from the second end surface to the second reflective surface in a direction tilted with respect to a normal to the first side surface as viewed two-dimensionally; and a third portion extending from the first reflective surface to the second reflective surface in a direction tilted with respect to a normal to the first reflective surface as viewed two-dimensionally.
    Type: Application
    Filed: January 9, 2014
    Publication date: May 8, 2014
    Applicant: Seiko Epson Corporation
    Inventor: Masamitsu MOCHIZUKI
  • Patent number: 8718111
    Abstract: A diode laser includes a p-contact layer, a n-contact layer, and a wafer body disposed between the p-contact layer and the n-contact layer, the wafer body having a front end and a back end. The diode laser further includes a first grating comprising a plurality of grooves defined in the wafer body and extending between the front end and the back end at a first tilt angle, and a second grating comprising a plurality of grooves defined in the wafer body and extending between the front end and the back end at a second tilt angle, the second tilt angle opposite to the first tilt angle. A coupling region is defined in the wafer body by interleaving portions of the first grating and the second grating. The interleaving portions provide coherent coupling of laser beams flowing through the first grating and the second grating.
    Type: Grant
    Filed: May 23, 2012
    Date of Patent: May 6, 2014
    Assignee: Clemson University
    Inventors: Lin Zhu, Yunsong Zhao
  • Publication number: 20140105235
    Abstract: Provided are a semiconductor laser and a method of manufacturing the same. The method includes: providing a substrate including a buried oxide layer; forming patterns, which includes an opening part to expose the substrate, by etching the buried oxide layer; forming a germanium single crystal layer in the opening part; and forming an optical coupler, which is adjacent to the germanium single crystal layer, on the substrate.
    Type: Application
    Filed: February 25, 2013
    Publication date: April 17, 2014
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: In Gyoo KIM, Gyungock KIM, Sang Hoon KIM, Ki Seok JANG, JiHo JOO
  • Patent number: 8699538
    Abstract: A quantum cascade laser is configured to include a semiconductor substrate, and an active layer that is provided on the substrate and has a cascade structure formed by alternately laminating emission layers and injection layers by multistage-laminating unit laminate structures each consisting of the quantum well emission layer and the injection layer, and generates light by intersubband transition in a quantum well structure. In a laser cavity structure for light with a predetermined wavelength generated in the active layer, a front reflection film with a reflectance of not less than 40% and not more than 99% for laser oscillation light is formed on the front end face that becomes a laser beam output surface, and a back reflection film with a reflectance higher than that of the front reflection film for the laser oscillation light is formed on the back end face.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: April 15, 2014
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Tadataka Edamura, Kazuue Fujita, Tatsuo Dougakiuchi, Masamichi Yamanishi
  • Publication number: 20140098831
    Abstract: A semiconductor laser includes a ridge section on top of a semiconductor laminated section. The ridge section is a stripe-shaped projection or ridge and serves as a constriction structure for constricting current and light. A pair of terrace sections is located on top of the semiconductor laminated structure. The terrace sections are raised island portions sandwiching and spaced from the ridge section. An active region is located below the ridge section as viewed in plan. High refractive index regions are located on both sides of the active region and below the terrace sections, respectively. Cladding regions are located between the active region and the high refractive index regions. The high refractive index regions have a higher refractive index than the cladding regions.
    Type: Application
    Filed: May 23, 2013
    Publication date: April 10, 2014
    Applicant: Mitsubishi Electric Corporation
    Inventor: Kimio Shigihara
  • Patent number: 8693516
    Abstract: A semiconductor surface light-emitting element of this invention is provided with a photonic crystal layer 6 obtained by periodically forming a plurality of holes H in a basic layer 6A comprised of a first compound semiconductor of the zinc blend structure and growing embedded regions 6B comprised of a second compound semiconductor of the zinc blend structure, in the holes H, and an active layer 4 to supply light to the photonic crystal layer 6, in which a principal surface of the basic layer 6A is a (001) plane and in which side faces of each hole H have at least three different {100} facets.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: April 8, 2014
    Assignees: Hamamatsu Photonics K.K., Kyoto University
    Inventors: Kazuyoshi Hirose, Shinichi Furuta, Akiyoshi Watanabe, Takahiro Sugiyama, Kousuke Shibata, Yoshitaka Kurosaka, Susumu Noda
  • Patent number: 8693515
    Abstract: Provided is a group-III nitride semiconductor laser device with a laser cavity allowing for a low threshold current, on a semipolar surface of a support base in which the c-axis of a hexagonal group-III nitride is tilted toward the m-axis. First and second fractured faces 27, 29 to form the laser cavity intersect with an m-n plane. The group-III nitride semiconductor laser device 11 has a laser waveguide extending in a direction of an intersecting line between the m-n plane and the semipolar surface 17a. For this reason, it is feasible to make use of emission by a band transition enabling the low threshold current. In a laser structure 13, a first surface 13a is opposite to a second surface 13b. The first and second fractured faces 27, 29 extend from an edge 13c of the first surface 13a to an edge 13d of the second surface 13b. The fractured faces are not formed by dry etching and are different from conventionally-employed cleaved facets such as c-planes, m-planes, or a-planes.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: April 8, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yusuke Yoshizumi, Yohei Enya, Takashi Kyono, Masahiro Adachi, Katsushi Akita, Masaki Ueno, Takamichi Sumitomo, Shinji Tokuyama, Koji Katayama, Takao Nakamura, Takatoshi Ikegami
  • Patent number: 8681830
    Abstract: An interband cascade laser amplifier medium having an amplifier region (V) comprising a hole quantum film (1) comprising a first semiconductor material and an electron quantum film (2) comprising a second semiconductor material, an electron collector region (K) comprising at least one collector quantum film (4) comprising a third semiconductor material and separated by a first barrier layer (3), and an electron injector region (I) following the latter and comprising at least one injector quantum film (5) comprising a fourth semiconductor material and separated by a second barrier layer (3). The first semiconductor material of the hole quantum film (1) is a III-V compound semiconductor comprising at least four elements, at least two of the elements selected from Ga, In and Al, and at least two of the elements selected from As, Sb, P and N. The amplifier medium exhibits an efficient laser emission at wavelengths above 2.5 ?m.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: March 25, 2014
    Assignee: Julius-Maximillians-Universität-Würzburg
    Inventors: Adam Bauer, Sven Hoefling, Lukas Worschech
  • Publication number: 20140079085
    Abstract: Provided are a wavelength swept vertical-cavity surface-emitting laser and a method of fabricating the same. The laser may include a substrate, a lower reflection layer on the substrate, an active layer on the lower reflection layer, a sacrificial layer disposed on a first side of the active layer, a stopper disposed on a second side of the active layer that may be spaced apart from the sacrificial layer, and an upper reflection layer fixed on the sacrificial layer, the upper reflection layer extending over the stopper and the active layer. The stopper defines a minimum separation distance between the upper reflection layer and the active layer.
    Type: Application
    Filed: August 23, 2013
    Publication date: March 20, 2014
    Applicant: Electronics and Telecommunications Research Institute
    Inventor: Hyun Woo SONG
  • Publication number: 20140072008
    Abstract: A resonant cavity, including a gain medium and a color center formed in the gain medium, is to be used for lasing in a system. The color center includes a lower laser level based on a plurality of spin states that are affected by a magnetic field. A gain associated with the system depends on the plurality of spin states. The system is to produce light based on lasing by the resonant cavity in response to application of pump energy to pump the color center. An intensity of the produced light is affected by the magnetic field in the presence of microwaves.
    Type: Application
    Filed: September 13, 2012
    Publication date: March 13, 2014
    Inventors: Andrei Faraon, Charles M. Santori, Raymond G. Beausoleil
  • Publication number: 20140055790
    Abstract: A surface emitting laser includes a first laser, and a second laser, wherein each of the first laser and the second laser includes a light resonant cavity including a pair of reflecting mirrors, and a semiconductor layer configured to emit light and arranged inside the light resonant cavity, an oscillation wavelength of light varied by displacing a location of the reflecting mirror in a thickness direction of the semiconductor layer, the semiconductor layer is shared by the first laser and the second laser, the first laser has a resonant cavity length for oscillating with (n+1)th order (n is an integer of 1 or more) of a longitudinal mode, the second laser has a resonant cavity length for oscillating with nth order of a longitudinal mode, and respective wavelength bands of light oscillated by the first laser the second laser are different.
    Type: Application
    Filed: August 20, 2013
    Publication date: February 27, 2014
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Yasuhisa Inao, Mamoru Uchida
  • Patent number: 8659038
    Abstract: Embodiments of the present invention provided a method of fabricating a semiconductor light source structure. The method comprises providing a GaAs substrate; forming a lower cladding layer above the substrate, the lower cladding layer comprising an AIxGa1-xAs alloy; forming an active region above the lower cladding layer, the active region comprising a GaAs separate confinement heterostructure; and forming an upper cladding layer comprising an AIxGa1-xAs alloy above the active region in the form of an elongate stripe bounded on either side by an InGaP current-blocking layer, the elongate stripe defining an index-guided optical waveguide.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: February 25, 2014
    Assignee: The University of Sheffield
    Inventors: Kristian Groom, Richard Hogg
  • Patent number: 8654807
    Abstract: An electrical device includes a charge carrier transport layer formed using a ternary semiconducting compound having a stoichiometry of 1:1:1 and an element combination selected from the set of I-II-V, I-III-IV, II-II-IV, and I-I-VI; or having a stoichiometry of 3:1:2 and an element combination selected from the set of I-III-V; or having a stoichiometry of 2:1:1 and an element combination selected from the set of I-II-IV. In some embodiments, the charge carrier transport layer is used as the radiation absorption layer for a photovoltaic cell, or a light emitting layer of a light emitting device. Other devices, such as laser diode, a photodetection device, an optical modulator, a transparent electrode and a window layer, can also be formed using the ternary semiconducting compound as the charge carrier transport.
    Type: Grant
    Filed: November 17, 2011
    Date of Patent: February 18, 2014
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Claudia Felser, Shoucheng Zhang, Xiao Zhang
  • Publication number: 20140036947
    Abstract: The present edge-emitting semiconductor layer element includes two-dimensional photonic crystals 4 formed in a semiconductor layer, and when one direction of a contact region of an electrode 8 is provided as a length direction (X-direction) and a direction perpendicular to both of the length direction and a thickness direction of a substrate is provided as a width direction (Y-direction), the two-dimensional photonic crystals 4 are, when viewed from a direction (Z-axis) perpendicular to the substrate, located in a region containing the electrode contact region and wider in the width direction than the contact region, and have a refractive index periodic structure in which the refractive index satisfies a Bragg's diffraction condition while periodically changing at every interval along the one direction (X-axis).
    Type: Application
    Filed: February 29, 2012
    Publication date: February 6, 2014
    Applicants: HAMAMATSU PHOTONICS K.K., KYOTO UNIVERSITY
    Inventors: Akiyoshi Watanabe, Kazuyoshi Hirose, Kousuke Shibata, Takahiro Sugiyama, Yoshitaka Kurosaka, Susumu Noda
  • Publication number: 20140029636
    Abstract: According to one embodiment, a semiconductor light emitting device includes an n-type semiconductor layer, a p-type semiconductor layer, a light emitting layer, a first intermediate layer, and a second intermediate layer. The n-type and p-type semiconductor layers include a nitride semiconductor. The light emitting layer is provided between the n-type and p-type semiconductor layers, and includes barrier layers and a well layer. A bandgap energy of the well layer is less than that of the barrier layers. The first intermediate layer is provided between the light emitting layer and the p-type semiconductor layer. A bandgap energy of the first intermediate layer is greater than that of the barrier layers. The second intermediate layer includes first and second portions. The first portion is in contact with a p-side barrier layer most proximal to the p-type semiconductor layer. The second portion is in contact with the first intermediate layer.
    Type: Application
    Filed: February 28, 2013
    Publication date: January 30, 2014
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Hung HUNG, Yoshiyuki Harada, Jongil Hwang, Mitsuhiro Kushibe, Naoharu Sugiyama, Shinya Nunoue
  • Publication number: 20140029637
    Abstract: An arrangement with a multiplicity of optical semiconductor elements is disclosed. The semiconductor elements are respectively clamped against a semiconductor element carrier by way of a spring element. Additionally lying against the spring element is an optical element assigned to a respective semiconductor element, the spring element in this case being configured in such a way that it defines a fixed distance between the semiconductor element and the optical element.
    Type: Application
    Filed: July 26, 2013
    Publication date: January 30, 2014
    Applicant: OSRAM GmbH
    Inventor: Ingo SCHMIDT
  • Patent number: 8638827
    Abstract: A high-power semiconductor laser includes a support block, an anode metal plate, a cathode metal plate and a chip. The support block has a step, and the two ends of the support block have bosses, in which there are screw holes. The chip is welded to an insulation plate, which is attached to the support block. The anode metal plate and the cathode metal plate are, respectively, welded with an anode insulation plate and a cathode insulation plate, which are welded on the step of the support block. The cathode of the chip is connected with a metal connecting plate. The metal connecting plate is connected to the anode metal plate and the cathode metal plate. The insulation plate and the anode metal plate are bonded using a gold wire in press-welding.
    Type: Grant
    Filed: December 28, 2009
    Date of Patent: January 28, 2014
    Assignee: XI'AN Focuslight Technologies Co., Ltd
    Inventor: XingSheng Liu
  • Publication number: 20140023103
    Abstract: A nitride semiconductor light-emitting device having an optical waveguide includes, in the following order, at least: a first cladding layer; an active layer; and a second cladding layer, wherein the second cladding layer includes (i) a transparent conductive layer comprising a transparent conductor and (ii) a nitride semiconductor layer comprising a nitride semiconductor, the nitride semiconductor layer being formed closer to the active layer than the transparent conductive layer.
    Type: Application
    Filed: September 17, 2013
    Publication date: January 23, 2014
    Applicant: PANASONIC CORPORATION
    Inventors: Hideki KASUGAI, Kenji ORITA, Hiroshi OHNO, Kazuhiko YAMANAKA
  • Publication number: 20140023102
    Abstract: A III-Nitride based Vertical Cavity Surface Emitting Laser (VCSEL), wherein a cavity length of the VCSEL is controlled by etching.
    Type: Application
    Filed: July 22, 2013
    Publication date: January 23, 2014
    Inventors: Casey O. Holder, Daniel F. Feezell, Steven P. DenBaars, James S. Speck, Shuji Nakamura
  • Publication number: 20140022326
    Abstract: A surface-emitting semiconductor laser includes a substrate, a first n-type semiconductor multi-layer reflecting mirror that is formed on the substrate and includes a pair of a high refractive index layer with a relatively high refractive index and a low refractive index layer with a low refractive index which are laminated, an n-type semiconductor layer that is formed on the first semiconductor multi-layer reflecting mirror, has an optical film thickness greater than an oscillation wavelength, and includes Al and Ga, an active region formed on the semiconductor layer, and a second p-type semiconductor multi-layer reflecting mirror that is formed on the active region and includes a pair of a high refractive index layer with a relatively high refractive index and a low refractive index layer with a low refractive index which are laminated, wherein an n-type impurity dopant injected into the semiconductor layer is a group VI material or Sn.
    Type: Application
    Filed: June 14, 2013
    Publication date: January 23, 2014
    Inventors: Takashi KONDO, Kazutaka TAKEDA, Hideo NAKAYAMA
  • Patent number: 8634442
    Abstract: An optical device includes a gallium nitride substrate member having an m-plane nonpolar crystalline surface region characterized by an orientation of about ?1 degree towards (000-1) and less than about +/?0.3 degrees towards (11-20). The device also has a laser stripe region formed overlying a portion of the m-plane nonpolar crystalline orientation surface region. In a preferred embodiment, the laser stripe region is characterized by a cavity orientation that is substantially parallel to the c-direction, the laser stripe region having a first end and a second end. The device includes a first cleaved c-face facet, which is coated, provided on the first end of the laser stripe region. The device also has a second cleaved c-face facet, which is exposed, provided on the second end of the laser stripe region.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: January 21, 2014
    Assignee: Soraa Laser Diode, Inc.
    Inventors: James W. Raring, Daniel F. Feezell, Nicholas J. Pfister, Rajat Sharma, Mathew C. Schmidt, Christiane Poblenz, Yu-Chia Chang
  • Publication number: 20140016657
    Abstract: A two-chip OPS laser includes first and second OPS-chips each emitting the same fundamental wavelength in first and second resonators. The first and second resonators are interferometrically combined on a common path terminated by a common end-mirror. The interferometric combination provides for automatic wavelength-locking of the laser, which can eliminate the need for a separate wavelength selective device in the laser.
    Type: Application
    Filed: July 10, 2012
    Publication date: January 16, 2014
    Applicant: Coherent, Inc.
    Inventor: Qi-Ze SHU
  • Patent number: 8630325
    Abstract: A manufacturing method for manufacturing a surface-emitting laser device includes the steps of forming a laminated body in which a lower reflecting mirror, a resonator structure including an active layer, and an upper reflecting layer having a selective oxidized layer are laminated on a substrate; etching the laminated body to form a mesa structure having the selective oxidized layer exposed at side surfaces thereof; selectively oxidizing the selective oxidized layer from the side surfaces of the mesa structure to form a constriction structure in which a current passing region is surrounded by an oxide; forming a separating groove at a position away from the mesa structure; passivating an outermost front surface of at least a part of the laminated body exposed when the separating groove is formed; and coating a passivated part with a dielectric body.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: January 14, 2014
    Assignee: Ricoh Company, Ltd.
    Inventors: Hiroyoshi Shouji, Shunichi Sato, Toshihiro Ishii, Kengo Makita, Masahiro Hayashi, Toshihide Sasaki, Akihiro Itoh
  • Patent number: 8625648
    Abstract: An edge emitting semiconductor laser (1) is specified, comprising an n-side waveguide region (21) and a p-side waveguide region (22); an active zone (20) for generating electromagnetic radiation; at least one reflection layer (24) in the n-side waveguide region (21), wherein the active zone (20) is arranged between the two waveguide regions (21, 22), the thickness of the n-side waveguide region (21) is greater than that of the p-side waveguide region (22), the refractive index of the reflection layer (24) is less than the refractive index of the n-side waveguide region (21) adjoining the reflection layer (24).
    Type: Grant
    Filed: August 19, 2010
    Date of Patent: January 7, 2014
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Marc Schillgalies, Teresa Lermer, Christoph Eichler
  • Patent number: 8619831
    Abstract: Included are: an active layer provided between an upper multilayer film reflecting mirror and a lower multilayer film reflecting mirror formed on a GaAs substrate and formed of a periodic structure of a low-refractive-index layer formed of AlxGa1-xAs (0.8?x?1) and a high-refractive-index layer formed of AlyGa1-yAs (0?y?x), at least one of the low-refractive-index layer and the high-refractive-index layer being of n-type; and a lower electrode provided between the lower multilayer film reflecting mirror and the active layer and configured to inject an electric current into the active layer.
    Type: Grant
    Filed: May 20, 2013
    Date of Patent: December 31, 2013
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Yasumasa Kawakita, Takeo Kageyama, Hitoshi Shimizu, Hirotatsu Ishii
  • Patent number: 8619830
    Abstract: A photonic crystal surface emission laser includes an active layer, and a photonic crystal layer made of a plate-shaped slab provided with modified refractive index area having a refractive index different from that of the slab, the modified refractive index areas being arranged on each of the lattice points of a first rhombic-like lattice and a second rhombic-like lattice in which both diagonals are mutually parallel and only one diagonal is of a different length, wherein ax1, ax2, ay, and n satisfy the following inequality: ? 1 a x ? ? 1 - 1 a x ? ? 2 ? ( 1 a x ? ? 1 + 1 a x ? ? 2 ) 2 + ( 2 a y ) 2 ? 1 n .
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: December 31, 2013
    Assignees: Kyoto University, Rohm Co., Ltd.
    Inventors: Susumu Noda, Seita Iwahashi, Toshiyuki Nobuoka, Takui Sakaguchi, Eiji Miyai, Wataru Kunishi, Dai Ohnishi, Kazuya Nagase, Yoshikatsu Miura