Group Viii Or Ib Metal-base Component Patents (Class 428/668)
  • Patent number: 6673467
    Abstract: A metallic component exposed to high temperature steam is provided with a coating comprising a thin primer layer deposited on the surface of the metallic component and a thicker overlay layer on top of the primer layer. The primer layer consists of highly ductile, oxidation resistant material such that it remains free of any defects over a long period of exposure. The overlay layer consists of an oxidation resistant, less ductile, and low-cost material. It protects the thin primer layer from mechanical damage and chemical degradation. The primer layer protects the base material of the metallic component from oxidizing steam that may penetrate through cracks of the overlay layer. Due to suitable choice of coating materials and thicknesses of the layers the coating is low-cost.
    Type: Grant
    Filed: October 1, 2001
    Date of Patent: January 6, 2004
    Assignee: Alstom (Switzerland) Ltd
    Inventors: Richard Brendon Scarlin, Reinhard Knödler
  • Publication number: 20030235658
    Abstract: Materials and methods are described for electroless deposition of cobalt phosphorus and cobalt tungsten phosphorus, employing tungsten trioxide or tungsten phosphoric acid as a source of tungsten.
    Type: Application
    Filed: June 19, 2002
    Publication date: December 25, 2003
    Applicant: RAMOT UNIVERSITY AUTHORITY FOR APPLIED RESEARCH & INDUSTRIAL DEVELOPMENT LTD.
    Inventors: Yosi Shacham-diamand, Yelena Sverdlov
  • Patent number: 6667110
    Abstract: A hybrid steel cord and method of making such cord which includes, in contact with one or more carbon steel wire(s), at least one stainless steel wire whose microstructure contains less than 20% of martensite (% by volume). Articles made of plastic and/or rubber, in particular tire envelopes or the carcass reinforcement plies of such envelopes embodying such cords.
    Type: Grant
    Filed: September 13, 1999
    Date of Patent: December 23, 2003
    Assignee: Compagnie Générale des Establissements Michelin - Michelin & Cie
    Inventors: François-Jacques Cordonnier, Eric Depraetere
  • Patent number: 6660404
    Abstract: A magnetooptical recording medium comprising at least a reproduction layer, an intermediate layer, a connection layer and a recording layer, wherein the reproduction layer and intermediate layer have a slant magnetic direction in a non-magnetic field, and the connection layer is composed of a layer non-magnetic at room temperature by itself which is induced to exhibit magnetism by contact with a magnetic layer.
    Type: Grant
    Filed: April 27, 2001
    Date of Patent: December 9, 2003
    Assignee: Fujitsu Limited
    Inventor: Shoyu Ito
  • Patent number: 6660375
    Abstract: A thin-film magnet formed from a gas-phase reaction of tetracyanoetheylene (TCNE) OR (TCNQ), 7,7,8,8-tetracyano-P-quinodimethane, and a vanadium-containing compound such as vanadium hexcarbonyl (V(CO)6) and bis(benzene)vanalium (V(C6H6)2) and a process of forming a magnetic thin film upon at least one substrate by chemical vapor deposition (CVD) at a process temperature not exceeding approximately 90° C. and in the absence of a solvent. The magnetic thin film is particularly suitable for being disposed upon rigid or flexible substrates at temperatures in the range of 40° C. and 70° C. The present invention exhibits air-stable characteristics and qualities and is particularly suitable for providing being disposed upon a wide variety of substrates.
    Type: Grant
    Filed: November 27, 2002
    Date of Patent: December 9, 2003
    Assignee: University of Utah Research Foundation
    Inventors: Joel S. Miller, Kostyantyn I. Pokhodnya
  • Patent number: 6656604
    Abstract: A magnetoresistive thin-film magnetic element including a composite comprising an antiferromagnetic layer, a pinned magnetic layer, a nonmagnetic conductive layer, a free magnetic layer; hard bias layers for orienting the magnetic vectors of the free magnetic layer in a direction substantially orthogonal to the magnetization vector of the pinned magnetic layer; and a conductive layer for supplying a sense current is provided. The hard bias layers are provided at the two sides of the free magnetic layer. The hard bias layers and the free magnetic layers are in contact with each other at least partly. Bias underlayers are provided at the bottom of the hard bias layers.
    Type: Grant
    Filed: April 4, 2001
    Date of Patent: December 2, 2003
    Assignee: Alps Electric Co., Ltd.
    Inventor: Naoya Hasewaga
  • Patent number: 6656613
    Abstract: Materials including alternating magnetic layers and spacer layers for use as hard magnetic recording layers of magnetic recording media are disclosed. The spacer layers and the magnetic layers are treated in an oxygen-containing atmosphere in order to form oxidized boundary layers between adjacent granular columns extending through the layers. The columnar microstructure extends through the entire thickness of the multilayer structure to thereby exchange decouple the magnetic layers as well as the spacer layers. The spacer and magnetic layers may include additives which are present in grain boundary regions throughout the layers. The presence of the additives in the grain boundary regions may facilitate diffusion and oxidization between the adjacent granular columns. In a particular embodiment, the magnetic layers comprise Co, the spacer layers comprise Pd, and the additives comprise Cr, Pt, B, Ta, Nb or combinations thereof.
    Type: Grant
    Filed: September 27, 2001
    Date of Patent: December 2, 2003
    Assignee: Seagate Technology LLC
    Inventors: Dmitri Litvinov, Sakhrat Khizroev, James Kent Howard
  • Patent number: 6649277
    Abstract: The present invention provides a longitudinal magnetic recording media having a substrate, optionally, a sputter deposited MgO seed layer, a Co or Co alloy based magnetic layer and an underlayer disposed between the substrate and the magnetic layer comprised of a material having a body centered cubic derivative ordered crystalline structure, preferably a B2, DO3 or L21 structure. The material may be for example, NiAl, FeAl or Mn3Si. A thin Cr or Cr alloy intermediate layer of about 1.0 nm to 5.0 nm thick may be positioned between the underlayer and the magnetic layer.
    Type: Grant
    Filed: April 17, 2000
    Date of Patent: November 18, 2003
    Assignee: Carnegie Mellon University
    Inventors: Li-Lien Lee, David N. Lambeth, David E. Laughlin, Byung-Ki Cheong
  • Patent number: 6645614
    Abstract: A high areal recording density magnetic recording medium having improved thermal stability comprises: a non-magnetic substrate having at least one surface; and a layer stack overlying the at least one surface, comprised of at least one layer pair composed of first and second superposed ferromagnetic layers spaced-apart by a magnetic coupling structure comprising a thin non-magnetic spacer layer and at least one thin ferromagnetic interface layer at at least one interface between the non-magnetic spacer layer and the superposed ferromagnetic layers; wherein the thickness of the ferromagnetic interface layer is selected to provide enhancement of the magnetic coupling between the pair of ferromagnetic layers, thereby increasing the thermal stability of the magnetic recording medium.
    Type: Grant
    Filed: July 11, 2001
    Date of Patent: November 11, 2003
    Assignee: Seagate Technology LLC
    Inventors: Erol Girt, Roger Alan Ristau
  • Patent number: 6645646
    Abstract: A magnetic recording medium is constructed to include at least one exchange layer structure and a magnetic layer provided on the exchange layer structure, where the exchange layer structure includes a ferromagnetic layer and a non-magnetic coupling layer provided on the ferromagnetic layer, and a magnetic bonding layer provided between the ferromagnetic layer and the non-magnetic coupling layer and/or between the non-magnetic coupling layer and the magnetic layer, wherein the magnetic bonding layer has a magnetization direction parallel to the ferromagnetic layer and the magnetic layer.
    Type: Grant
    Filed: June 6, 2000
    Date of Patent: November 11, 2003
    Assignee: Fujitsu Limited
    Inventors: Hisashi Umeda, E. Noel Abarra, Iwao Okamoto, Yoshifumi Mizoshita
  • Patent number: 6641901
    Abstract: The present invention relates to perpendicular magnetic recording media using a ferromagnetic film provided with perpendicular magnetic anisotropy for a recording layer and a magnetic recording apparatus using the media, and the object is to provide the perpendicular magnetic recording media which are excellent in signal to noise ratio (S/N) in a large recording density region, which are stable against thermal fluctuation and which can be easily manufactured, and the magnetic recording apparatus using the media.
    Type: Grant
    Filed: January 13, 2003
    Date of Patent: November 4, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Kazuetsu Yoshida, Masaaki Futamoto, Yoshiyuki Hirayama
  • Publication number: 20030203233
    Abstract: A coating material has a first layer deposited on a base material and a second layer deposited on the first layer. The first layer is made of a Ni-base alloy or a Co-base alloy containing carbon as an unavoidable impurity. The second layer is made of a hard material containing carbide and a metal component. The first layer serves as a barrier for preventing carbon from being diffused from the second layer into the base material to prevent the base material from being carburized.
    Type: Application
    Filed: February 25, 2003
    Publication date: October 30, 2003
    Applicant: EBARA CORPORATION
    Inventors: Kenichi Sugiyama, Satoshi Kawamura, Shuhei Nakahama, Hirokazu Takayama, Matsuho Miyasaka
  • Patent number: 6630255
    Abstract: Materials including alternating magnetic layers and spacer layers for use as a hard magnetic recording layer of a magnetic recording media are disclosed. The spacer layers as well as the magnetic layers are exchange decoupled. The spacer and magnetic layers include additives which are present in grain boundary regions throughout the layers. In a particular embodiment, the magnetic layers comprise Co, the spacer layers comprise Pd, and the additives comprise Cr, Pt, B, Ta, Nb or combinations thereof. In addition to forming grain boundaries that exchange decouple the magnetic and spacer layers, the additives may act as grain refiners.
    Type: Grant
    Filed: March 23, 2001
    Date of Patent: October 7, 2003
    Assignee: Seagate Technology LLC
    Inventors: Dmitri Litvinov, Sakhrat Khizroev
  • Patent number: 6630252
    Abstract: An MO disk includes a readout layer, an intermediate layer and a recording layer each of which is made of a rare earth-transition metal amorphous material. The MO disk also includes a fourth magnetic layer formed on the recording layer and made of a rare earth-transition metal amorphous magnetic material containing Gd. The fourth magnetic layer has a rare earth metal magnetization-dominant composition and an axis of easy magnetization oriented longitudinally at room temperature. The axis of easy magnetization is changed to be oriented perpendicularly to the fourth magnetic layer as the temperature of the fourth magnetic layer rises to the Curie temperature of the fourth magnetic layer.
    Type: Grant
    Filed: July 28, 2000
    Date of Patent: October 7, 2003
    Assignee: Fujitsu Limited
    Inventor: Toshio Sugimoto
  • Patent number: 6630248
    Abstract: A spin valve structure is described that has greater pinned layer robustness than is found in spin valves of the existing known art, making it well suited for use in high density recording. This has been achieved by a using a modified pinned layer that is a laminate of five layers—a first layer of cobalt-iron, a layer of ruthenium, a second layer of cobalt-iron, a layer of nickel-chromium, and a third layer of cobalt-iron. The second layer of cobalt-iron should be about twice the thickness of the third cobalt-iron layer. The sum of the second and third cobalt-iron layer thicknesses may be greater or smaller than the thickness of the first cobalt-iron layer. A process for manufacturing the structure is also described.
    Type: Grant
    Filed: January 19, 2001
    Date of Patent: October 7, 2003
    Assignee: Headway Technologies, Inc.
    Inventors: Cheng T. Horng, Min Li, Ru-Ying Tong, Simon H. Liao, Kochan Ju
  • Patent number: 6620524
    Abstract: A predominantly beta-phase NiAl overlay coating for use as an environmental coating or a TBC bond coat for articles used in hostile thermal environments, such as components of a gas turbine engine. The coating contains up to about 4 atomic percent hafnium, such as in excess of 1.0 atomic percent hafnium. The coating may also contain about 2 to about 15 atomic percent chromium.
    Type: Grant
    Filed: January 11, 2002
    Date of Patent: September 16, 2003
    Assignee: General Electric Company
    Inventors: Jeffrey Allan Pfaendtner, Joseph David Rigney, Ramgopal Darolia, Reed Roeder Corderman, Richard Arthur Nardi, Jr.
  • Patent number: 6607847
    Abstract: An article, such as an airfoil having a melting temperature of at least about 1500° C. and comprising a first piece and a second piece joined by a braze to the first piece. The first piece comprises one of a first niobium-based refractory metal intermetallic composite and a first molybdenum-based refractory metal intermetallic composite, and the second piece comprises one of a second niobium-based refractory metal intermetallic composite and a second molybdenum-based refractory metal intermetallic composite. The braze joining the first piece to the second piece comprises a first metallic element and a second metallic element, wherein the first metallic element is one of titanium, palladium, zirconium, niobium, and hafnium, and wherein the second metallic element is one of titanium, palladium, zirconium, niobium, hafnium, aluminum, chromium, vanadium, platinum, gold, iron, nickel, and cobalt, the first metallic element being different from the second metallic element.
    Type: Grant
    Filed: May 30, 2001
    Date of Patent: August 19, 2003
    Assignee: General Electric Company
    Inventors: Ji-Cheng Zhao, Melvin Robert Jackson, Bernard Patrick Bewlay
  • Patent number: 6607842
    Abstract: The thin film disk includes a pre-seed layer of amorphous or nanocrystalline structure which may be AlTi or AlTa, and that is deposited upon a disk substrate. The pre-seed layer is followed by the RuAl seed layer, a Cr alloy underlayer, an onset layer composed essentially of CoCr and a magnetic layer. The onset layer has an optimal concentration of 28-33 at. % Cr and an optimal thickness of 0.5 to 2.5 nm and it increases coercivity and improves the Signal-to-Noise Ratio (SNR) of the disk. The magnetic layer is comprised of CoPtxCrBy, wherein x is the at. % concentration of Pt, y is the at. % concentration of boron, and x>4+y.
    Type: Grant
    Filed: January 9, 2001
    Date of Patent: August 19, 2003
    Assignee: Hitachi Globel Storage Technologies Netherlands, B.V.
    Inventors: Xiaoping Bian, Mary Frances Doerner, Tim Minvielle, Mohammad Taghi Mirzamaani, Kai Tang
  • Patent number: 6607612
    Abstract: The magnetic alloy includes cobalt (Co), chromium (Cr), and germanium (Ge), the composition of the magnetic alloy being represented by the general formula: CoxCryGez where x, y and z, which represent the composition ratio in terms of atomic %, satisfy the relationships: 78≦x≦87, 2.5≦y≦14.5, 3.5≦z≦15 and x+y+z=100. The magnetic alloy may have a composition represented by the formulas: CoCrGeT (T represents one or more elements of Ta, Si, Nb, B, Ni and Pt) or a composition represented by the formula: CoCrGeT′ (T′ represents one or more elements of Ta, B, and Pt).
    Type: Grant
    Filed: January 8, 2001
    Date of Patent: August 19, 2003
    Assignees: Fuji Electric Co., Ltd., Showa Denko K.K.
    Inventor: Migaku Takahashi
  • Patent number: 6605370
    Abstract: Disclosed is a method of manufacturing an aluminium or aluminium alloy joined product, such as a shaped and hollow member, comprising the sequential steps of: (a) providing two parts made of aluminium or aluminium alloy, each part having a peripheral flange; (b) positioning the two parts such that the peripheral flange of one part faces the peripheral flange of the other part to form an assembly, and joining the facing flanges of the two parts by heating.
    Type: Grant
    Filed: August 29, 2002
    Date of Patent: August 12, 2003
    Assignee: Corus Aluminum Walzprodukte GmbH
    Inventors: Adrianus Jacobus Wittebrood, Jacobus Van Rijkom, Axel Smeyers
  • Publication number: 20030148141
    Abstract: A group of alloys suitable for use in a high-temperature, oxidative environment, a protective coating system comprising a diffusion barrier that comprises an alloy selected from the group, an article comprising the diffusion barrier layer, and a method for protecting an article from a high-temperature oxidative environment comprising disposing the diffusion barrier layer onto a substrate are presented.
    Type: Application
    Filed: February 5, 2002
    Publication date: August 7, 2003
    Applicant: General Electric Company
    Inventors: Ji-Cheng Zhao, Melvin Robert Jackson, Richard John Grylls, Ramgopal Darolia
  • Patent number: 6602612
    Abstract: A magnetic recording medium is provided with at least one exchange layer structure, and a magnetic layer formed on the exchange layer structure. The exchange layer structure includes a ferromagnetic layer, and a non-magnetic coupling layer provided on the ferromagnetic layer and under the magnetic layer. The ferromagnetic layer and the magnetic layer have antiparallel magnetizations.
    Type: Grant
    Filed: August 23, 2001
    Date of Patent: August 5, 2003
    Assignee: Fujitsu Limited
    Inventors: E. Noel Abarra, Iwao Okamoto, Yoshifumi Mizoshita
  • Patent number: 6599642
    Abstract: The thin film disk includes a pre-seed layer of amorphous or nanocrystalline structure which may be AlTi or Alta, and that is deposited upon a disk substrate. The pre-seed layer is followed by the RuAl seed layer, a Cr alloy underlayer, an onset layer composed essentially of CoCr and a magnetic layer. The magnetic layer is comprised of CoPtxCrBy, wherein x is the at. % concentration of Pt, y is the at. % concentration of boron, and x>4+y.
    Type: Grant
    Filed: January 9, 2001
    Date of Patent: July 29, 2003
    Assignee: Hitachi Global Storage Technologies Netherlands, B.V.
    Inventors: Xiaoping Bian, Mary Frances Doerner, Tim Minvielle, Mohammad Taghi Mirzamaani, Kai Tang
  • Patent number: 6596413
    Abstract: Disclosed is an aluminium brazing product, such as a brazing sheet product, having a substrate (1) of an aluminium alloy comprising silicon in an amount in the of 2 to 18% by weight, and on at least one outer surface a layer (2) comprising nickel, wherein a separately deposited layer (3) is applied on one side of the layer (2) comprising nickel and the layer (3) comprising a metal such that taken together the aluminium base substrate (1) and all layers exterior thereto form a metal filler having a liquidus temperature in the range of 490 to 570° C., and preferably in the range of 510 to 550° C. The invention also relates to a method of manufacturing such a brazing product and to a brazed assembly comprising at least one component made of the brazing sheet product.
    Type: Grant
    Filed: October 31, 2001
    Date of Patent: July 22, 2003
    Assignee: Corus Aluminium Walzprodukte GmbH
    Inventors: Adrianus Jacobus Wittebrood, Jacques Hubert Olga Joseph Wijenberg
  • Patent number: 6596409
    Abstract: The thin film disk includes a pre-seed layer of amorphous or nanocrystalline structure which may be CrTa or AlTi or AlTa, and that is deposited upon a disk substrate. The pre-seed layer is followed by the RuAl seed layer, a Cr alloy underlayer, an onset layer composed essentially of CoCr and a magnetic layer. The onset layer has an optimal concentration of 28-33 at. % Cr and an optimal thickness of 0.5 to 2.5 nm and it increases coercivity and improves the Signal-to-Noise Ratio (SNR) of the disk.
    Type: Grant
    Filed: January 9, 2001
    Date of Patent: July 22, 2003
    Assignee: Hitachi Global Storage Technologies Netherlands, B.V.
    Inventors: Xiaoping Bian, Mary Frances Doerner, Tim Minvielle, Mohammad Taghi Mirzamaani, Kai Tang
  • Patent number: 6593009
    Abstract: A thin film magnetic media structure comprising a pre-seed layer CrTi is disclosed. The CrTi pre-seed layer presents an amorphous or nanocrystalline structure. The preferred seed layer is RuAl. The use of the CrTi/RuAl bilayer structure provides superior adhesion to the substrate and resistance to scratching, as well as, excellent coercivity and signal-to-noise ratio (SNR) and reduced cost over the prior art.
    Type: Grant
    Filed: March 2, 2001
    Date of Patent: July 15, 2003
    Assignee: Hitachi Global Storage Technologies Netherlands N.V.
    Inventors: Xiaoping Bian, Mary Frances Doerner, Mohammad Taghi Mirzamaani, Tim Minvielle, Kai Tang
  • Patent number: 6586116
    Abstract: The design of a magnetic thin film disk, for use in a disk drive, with an amorphous or nanocrystalline pre-seed layer preferably followed by a ruthenium-aluminum (RuAl) seed layer is described. The pre-seed layer may be CrTa or AlTi. The pre-seed layer deposited over a glass substrate, for example, allows a more strongly oriented RuAl seed layer to be deposited and, thus, favorably influences the orientation and grain size in the subsequent layers which include preferably at least one Cr alloy underlayer and at least one magnetic layer.
    Type: Grant
    Filed: February 9, 2000
    Date of Patent: July 1, 2003
    Assignee: Hitachi Global Storage Technologies Netherlands, B.V.
    Inventors: Xiaoping Bian, Mary Frances Doerner, Tim Minvielle, Mohammad Taghi Mirzamaani, Kai Tang, Li Tang
  • Patent number: 6586118
    Abstract: An airfoil having a melting temperature of at least about 1500° C. and comprising a first piece and a second piece joined by a braze to the first piece. The first piece comprises one of a first niobium-based refractory metal intermetallic composite and a first-based refractory metal intermetallic composite, and the second piece comprises one of a second niobium-based refractory metal intermetallic composite and a second molybdenum-based refractory metal intermetallic composite. The braze joining the first piece to the second piece is a semi-solid braze that comprises a first component and a second component.
    Type: Grant
    Filed: May 30, 2001
    Date of Patent: July 1, 2003
    Assignee: General Electric Company
    Inventors: Melvin Robert Jackson, Bernard Patrick Bewlay, Ji-Cheng Zhao
  • Publication number: 20030113576
    Abstract: The present invention relates to a cobalt electroless plating bath composition and method of using it for microelectronic device fabrication. In one embodiment, the present invention relates to cobalt electroless plating in the fabrication of interconnect structures in semiconductor devices.
    Type: Application
    Filed: December 19, 2001
    Publication date: June 19, 2003
    Applicant: Intel Corporation
    Inventors: Ramanan V. Chebiam, Valery M. Dubin
  • Patent number: 6579627
    Abstract: A nickel-base superalloy article has a protective layer on a surface of the substrate. The protective layer has a composition including nickel, aluminum, and at least two modifying elements selected from the group consisting of zirconium, hafnium, yttrium, and silicon. The protective layer is preferably predominantly beta (&bgr;) phase NiAl composition. Each of the modifying elements which is present is included in an amount of from about 0.1 to about 5 percent by weight of the protective layer in the case of zirconium, hafnium, and silicon modifying element, and in an amount of from about 0.1 to about 1 percent by weight of the protective layer in the case of yttrium modifying element.
    Type: Grant
    Filed: May 3, 2000
    Date of Patent: June 17, 2003
    Assignee: General Electric Company
    Inventors: Ramgopal Darolia, Robert A. Miller, Ronald D. Noebe
  • Patent number: 6572974
    Abstract: Changes in the infrared reflection spectrum of a thin film of silica-like resinous material sandwiched between metal electrodes can be induced by applying an electric potential to a top electrode which is semitransparent. Characteristic infrared absorption lines change in proportion to a small electric current flowing through the material. These changes occur with response times of the order of seconds, and show time constants of the order of minutes to reach stationary values.
    Type: Grant
    Filed: December 6, 1999
    Date of Patent: June 3, 2003
    Assignee: The Regents of the University of Michigan
    Inventors: Mark Angelo Biscotte, Mark Monroe Banaszak Holl, Bradford Grant Orr, Udo C. Pernisz
  • Patent number: 6572988
    Abstract: A magnetic recording medium has a magnetic recording film in which the magnitude of saturation magnetization Ms(T=5° K) at 5° K and magnitude of saturation magnetization Ms(T=300° K) at 300° K satisfy: Ms(T=300° K)/Ms(T=5° K)≧0.75. The recording medium enables the high-density recording, and a magnetic recording apparatus using this recording medium can yield a sufficiently high reproduction signal level within the operating temperature range of the apparatus.
    Type: Grant
    Filed: August 30, 1999
    Date of Patent: June 3, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Nobuyuki Inaba, Kazuetsu Yoshida, Kazusuke Yamanaka, Fumiyoshi Kirino, Masaaki Futamoto
  • Patent number: 6565989
    Abstract: An airfoil having a melting temperature of at least about 1500° C. and comprising a first piece and a second piece joined by a braze to the first piece. The first piece comprises one of a first niobium-based refractory metal intermetallic composite and a first molybdenum-based refractory metal intermetallic composite, and the second piece comprises one of a second niobium-based refractory metal intermetallic composite and a second molybdenum-based refractory metal intermetallic composite. The braze joining the first piece to the second piece comprises one of germanium and silicon, and one of chromium, titanium, gold, aluminum, palladium, platinum, and nickel. This abstract is submitted in compliance with 37 C.F.R. 1.72(b) with the understanding that it will not be used to interpret or limit the scope of or meaning of the claims.
    Type: Grant
    Filed: May 30, 2001
    Date of Patent: May 20, 2003
    Assignee: General Electric Company
    Inventors: Ji-Cheng Zhao, Melvin Robert Jackson, Bernard Patrick Bewlay
  • Patent number: 6567236
    Abstract: An antiferromagnetically coupled layer structure for magnetic recording wherein the top ferromagnetic structure is a bilayer structure including a relatively thin first sublayer of ferromagnetic material in contact with the coupling/spacer layer. The first sublayer has a higher magnetic moment than the second sublayer. The layer structure of the invention results improved manufacturability and improved performance. A preferred embodiment of a layer structure according to the invention includes: a bottom ferromagnetic layer preferably of CoCr; an antiferromagnetic coupling/spacer layer preferably of Ru; and a top ferromagnetic structure including a thin first sublayer of material preferably of CoCr, CoCrB or CoPtCrB, and a thicker second sublayer of material preferably of CoPtCrB with a lower moment than the first sublayer.
    Type: Grant
    Filed: November 9, 2001
    Date of Patent: May 20, 2003
    Assignee: International Business Machnes Corporation
    Inventors: Mary Frances Doerner, Eric E. Fullerton, David T. Margulies, Kai Tang
  • Patent number: 6565990
    Abstract: An airfoil having a melting temperature of at least about 1500° C. and comprising a first piece and a second piece joined at a bonded region to the first piece by a diffusion bond. The first piece comprises one of a first niobium-based refractory metal intermetallic composite and a first molybdenum-based refractory metal intermetallic composite. The second piece comprises one of a second niobium-based refractory metal intermetallic composite and a second molybdenum-based refractory metal intermetallic composite. The diffusion bond is formed from a first metallic element disposed on a first surface of the first piece and a second metallic element disposed on at least one of the first surface and a second surface of the second piece, the second surface contacting the first surface, wherein the first and second metal form a composition having a melting temperature less than about 1400° C. This abstract is submitted in compliance with 37 C.F.R. 1.
    Type: Grant
    Filed: May 30, 2001
    Date of Patent: May 20, 2003
    Assignee: General Electric Company
    Inventors: Bernard Patrick Bewlay, Melvin Robert Jackson, Ji-Cheng Zhao
  • Patent number: 6555252
    Abstract: Disclosed is a modulated grain-composition magnetic recording material with up to terabit areal density recording capacity which, preferably, is produced by sequential vacuum deposition and subsequent annealing procedures that allow selective fabrication of magnetic material with desired grain size and coercivity, and with desired longitudinal or perpendicular magnetic particle “c-axis” orientation. The preferred magnetic recording material has multiple layers of FePt/B2O3 and/or Fe/Pt/B2O3, with minimum grain size of approximately ten (10) nanometers, with perpendicularly oriented “c-axis”, and with coercivity (Hc) of up to twelve (12) K-Oe. The preferred fabrication procedure involves sequential sputter deposition of FePt and B2O3 layers, followed by an anneal step.
    Type: Grant
    Filed: March 12, 2001
    Date of Patent: April 29, 2003
    Assignee: Board of Regents of the University of Nebraska
    Inventors: David J. Sellmyer, Chunping Luo
  • Patent number: 6551722
    Abstract: An article is coated with a multi-layer coating having a stainless steel color. The coating comprises an electroplated layer or layers on the article surface, a refractory metal or refractory metal alloy strike layer on the electroplated layer or layers, a color layer containing a refractory metal oxide or refractory metal alloy oxide having a substoichiometric oxygen content on the strike layer, and a refractory metal oxide or refractory metal alloy oxide having a substantially stoichiometric oxygen content layer on said color layer.
    Type: Grant
    Filed: April 11, 2001
    Date of Patent: April 22, 2003
    Assignee: Masco Corporation of Indiana
    Inventors: Patrick B. Jonte, James S. Lipe, Guocun Chen
  • Patent number: 6548194
    Abstract: Disclosed is a magnetic recording medium having a laminate structure comprising at least a substrate, a Co alloy bias layer, a soft magnetic layer, and a magnetic recording layer. The direction of residual magnetization of the Co alloy bias layer faces one direction of its radial direction. Also, the perpendicular magnetic recording medium satisfies the relationship given below: Mssoft×(tsoft−40 nm)>Mssoft×40 nm+Msbias×tbias where, tbias denotes the thickness of the cobalt alloy bias layer, Msbias denotes the saturation magnetization of the cobalt alloy bias layer, tsoft denotes the thickness of the soft magnetic layer, which falls within a range of between 40 nm and 200 nm, and Mssoft denotes the saturation magnetization of the soft magnetic layer.
    Type: Grant
    Filed: July 31, 2001
    Date of Patent: April 15, 2003
    Assignees: Kabushiki Kaisha Toshiba, Showa Denko K.K.
    Inventors: Takashi Hikosaka, Futoshi Nakamura, Soichi Oikawa, Hiroshi Sakai, Kenji Shimizu
  • Patent number: 6548186
    Abstract: In a spin valve, at least one AP pinned sublayer and/or one AP free sublayer comprise high resistivity alloys of the type AB, wherein A is selected from the group consisting of CoFe, NiFe, and CoFeNi, and B is selected from the group consisting of B, Ta, Nb, Zr, and/or Hf. The resistivity value of the highly resistive layer is typically between about 30 &mgr;&OHgr;-cm and 100 &mgr;&OHgr;-cm. The highly resistive layers reduce the shunting of the sense current away from the rest of the structure, and prevent electrons from being shunted away from the active region of the spin valve and, thus, reducing &Dgr;R/R. The spin valve of this layered structure can increase the overall sheet resistance and optimize the &Dgr;R/R value of the spin valve.
    Type: Grant
    Filed: May 19, 2000
    Date of Patent: April 15, 2003
    Assignee: International Business Machines Corporation
    Inventors: Matthew Joseph Carey, Bruce Alvin Gurney, Robert John Wilson
  • Patent number: 6548192
    Abstract: An article is coated with a multi-layer decorative and protective coating having the appearance of stainless steel. The coating comprises one or more electroplated layers on the surface of said article and vapor deposited on the electroplated layers a stack layer containing layers of refractory metal or metal alloy alternating with layers containing the reaction products of refractory metal or refractory metal alloy, nitrogen and oxygen wherein the total nitrogen and oxygen content of these reaction products is from about 4 to about 32 atomic percent with the nitrogen content being at least about 3 atomic percent.
    Type: Grant
    Filed: April 5, 2001
    Date of Patent: April 15, 2003
    Assignee: Vapor Technologies, Inc.
    Inventor: Guocun Chen
  • Patent number: 6548193
    Abstract: An article is coated with a multi-layer decorative and protective coating having the appearance of stainless steel. The coating comprises one or more electroplated layers on the surface of said article and vapor deposited on the electroplated layers a color layer comprised of the reaction products of refractory metal or refractory metal alloy, nitrogen and oxygen wherein the total nitrogen and oxygen content is from about 4 to about 32 atomic percent with the nitrogen content being at least about 3 atomic percent.
    Type: Grant
    Filed: April 5, 2001
    Date of Patent: April 15, 2003
    Assignee: Vapor Technologies, Inc.
    Inventor: Guocun Chen
  • Patent number: 6541124
    Abstract: A drill resistant plate, which presents a rough surface of hardened particles to drilling attack, and which tends to snap or destroy drill bits before they can began drilling. The plate is made by brazing hard particles into a matrix of brazing material attached to a steel plate. Nickel-Silver brazing material is used to form the matrix on the steel plate, and tungsten carbide particles of 8-10 mesh are secured within the matrix, with the hard particles of tungsten carbide partially exposed, presenting a roughened surface with angular pieces of tungsten carbide to the drilling attack.
    Type: Grant
    Filed: November 13, 2001
    Date of Patent: April 1, 2003
    Assignee: Rhino Metals, Inc.
    Inventor: Donald K. Suggs
  • Patent number: 6537685
    Abstract: An electronic component includes external electrodes formed on a base member, each external electrode including a plurality of layers of which the outermost layer is a tin plating layer. The tin plating layer has a polycrystalline structure, and atoms of a metal other than tin are diffused into the tin crystal grain boundaries. Alternatively, each external electrode includes a plurality of layers including a thick-film electrode formed on the base member, a nickel layer or a nickel alloy layer formed on the thick-film electrode and a tin plating layer formed on the nickel layer or the nickel alloy layer. The tin plating layer has a polycrystalline structure and nickel atoms are diffused into the tin crystal grain boundaries. Methods for fabricating electronic components and a circuit board provided with a plurality of electronic components are also disclosed.
    Type: Grant
    Filed: May 22, 2001
    Date of Patent: March 25, 2003
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Shoichi Higuchi
  • Patent number: 6537683
    Abstract: A method is described for producing composite multilayer materials which exhibit optimum properties throughout their entire service life. The composite multilayer material comprises a backing layer, a bearing metal layer, an intermediate layer and an electrodeposited overlay, which exhibits a hardness which increases continuously from its surface in the direction of the bearing metal layer. The method provides for the electrodeposition as overlay of a lead-free alloy with at least one hard and one soft component, the current density being modified within the range of from 0.3 to 20 A/dm2 during the deposition process and/or the temperature of the electroplating bath being modified within the range of from 15° C. to 80° C.
    Type: Grant
    Filed: May 3, 2001
    Date of Patent: March 25, 2003
    Assignee: Federal-Mogul Wiesbaden GmbH & Co. KG
    Inventors: Klaus Staschko, Karl-Heinz Gruenthaler
  • Patent number: 6534164
    Abstract: Magnetic recording medium includes at least two layers having different magnetic anisotropy constants formed on a substrate and the perpendicular magnetic anisotropy of the second magnetic film of those magnetic films, far from the substrate surface, made equal to or larger than that of the first magnetic film near to the substrate surface, thus improving the magnetic isolation.
    Type: Grant
    Filed: September 7, 2001
    Date of Patent: March 18, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Masaaki Futamoto, Nobuyuki Inaba, Yoshiyuki Hirayama, Yukio Honda, Kazuetsu Yoshida, Kenya Ito
  • Patent number: 6528178
    Abstract: A high temperature resistant article with improved protective coating bonding and method of manufacturing the article is provided. In one embodiment, the high temperature resistant article comprises a base body having a surface at least partly coated with an oxidation and corrosion protective coating containing a carbide forming element, wherein said base body is made from a metallic alloy having a medium carbon content and wherein the carbon content in a depth of 50 &mgr;m or deeper from said coated surface is less than 0.3% of said medium carbon content.
    Type: Grant
    Filed: December 17, 2001
    Date of Patent: March 4, 2003
    Assignee: Siemens Westinghouse Power Corporation
    Inventor: Vasudevan Srinivasan
  • Patent number: 6528149
    Abstract: The present invention relates to perpendicular magnetic recording media using a ferromagnetic film provided with perpendicular magnetic anisotropy for a recording layer and a magnetic recording apparatus using the media, and the object is to provide the perpendicular magnetic recording media which are excellent in signal to noise ratio (S/N) in a large recording density region, which are stable against thermal fluctuation and which can be easily manufactured, and the magnetic recording apparatus using the media.
    Type: Grant
    Filed: March 20, 2001
    Date of Patent: March 4, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Kazuetsu Yoshida, Masaaki Futamoto, Yoshiyuki Hirayama
  • Patent number: 6528189
    Abstract: In order to form a novel article of manufacture, a nickel or cobalt-based superalloy substrate is covered with a protective system resistant to thermal, corrosive and erosive attack. A bonding layer is disposed on the substrate and an anchoring layer on the bonding layer. The anchoring layer is formed as a nitride compound. The nitride compound is aluminum nitride in particular. A ceramic coating is disposed on the anchoring layer. The anchoring layer prevents transmission of diffusion active elements through the anchoring layer to the thermal barrier layer, reduces oxidation of layers therebelow and provides for good heat transmission therethrough.
    Type: Grant
    Filed: December 14, 1998
    Date of Patent: March 4, 2003
    Assignee: Siemens Aktiengesellschaft
    Inventor: Wolfram Beele
  • Patent number: 6521357
    Abstract: A magneto-optical recording medium including a recording layer for recording information and a substrate for supporting the recording layer is disclosed. The recording layer includes: a recording magnetic film for recording the information, the recording magnetic film being formed of a perpendicular magnetic anisotropy film; a readout magnetic film for optically reading out the information, the readout magnetic film being capable of being magnetically coupled with the recording magnetic film by an exchange-coupling force; and a controlling magnetic film, provided between the recording magnetic film and the readout magnetic film, for controlling the exchange-coupling force. The controlling magnetic film has in-plane magnetic anisotropy at room temperature.
    Type: Grant
    Filed: July 10, 2000
    Date of Patent: February 18, 2003
    Assignee: Matsushita Electric Industrial Co,. Ltd.
    Inventors: Yoshihiko Kudoh, Yasumori Hino, Yuuichi Fukamachi, Masahiro Birukawa
  • Patent number: 6517956
    Abstract: A magnetic recording medium is provided with a dual layer protective overcoat system comprising an AlN corrosion barrier layer and a protective carbon layer thereon. The AlN layer effectively prevents or significantly reduces Co diffuision to the medium surface. Embodiments include magnetic recording media comprising an AlN corrosion barrier layer over a magnetic layer and a layer of amorphous hydrogenated carbon, amorphous nitrogenated carbon, amorphous hydrogen-nitrogenated carbon, ion-beam deposited carbon or cathodic-arc-deposited carbon on the AlN corrosion barrier layer.
    Type: Grant
    Filed: February 7, 2000
    Date of Patent: February 11, 2003
    Assignee: Seagate Technology LLC
    Inventor: Ga-Lane Chen