Group Viii Or Ib Metal-base Component Patents (Class 428/668)
  • Publication number: 20020197501
    Abstract: Described is an article comprising a biaxially textured metal substrate and a layer of palladium deposited on at least one major surface of the metal substrate; wherein the palladium layer has desired in-plane and out-of-plane crystallographic orientations, which allow subsequent layers that are applied on the article to also have the desired orientations.
    Type: Application
    Filed: June 6, 2001
    Publication date: December 26, 2002
    Inventor: William B. Robbins
  • Publication number: 20020192489
    Abstract: A method of treating a metallic cord to improve its ability to adhere to rubber is disclosed. The method involves contacting the metallic cord with a naphthenic oil containing from 1 to 53 percent by weight of a soluble cobalt salt and thereby deposit from 0.002 to 0.7 grams of cobalt per kilogram of steel to the metallic cord.
    Type: Application
    Filed: March 5, 2002
    Publication date: December 19, 2002
    Inventors: Yen-How Huang, Thomas Starinshak, David Andrew Benko, Roger Neil Beers, Judy Chu
  • Patent number: 6492035
    Abstract: A magneto-optical recording medium of magnetic domain enlarging/reproducing system including a recording layer and a reproducing layer, a gate layer selectively extracting each magnetic domain within the recording layer is formed on the recording layer, a magnetic field reinforcement layer reinforcing a leakage magnetic field reaching the reproducing layer is formed on the gate layer, and a blocking layer blocking an exchange coupling force from the magnetic field reinforcement layer to the reproducing layer is formed on the magnetic field reinforcement layer.
    Type: Grant
    Filed: May 1, 2000
    Date of Patent: December 10, 2002
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Atsushi Yamaguchi, Naoyuki Takagi, Kenichiro Mitani, Hitoshi Noguchi
  • Patent number: 6476464
    Abstract: The invention provides a lead structure having a lead of low resistance material disposed within a surrounding sleeve or collar of low expansion material which is bonded at one end to the lead. The sleeve or collar is bonded on its outer surface to an insulating wall through which the lead structure extends. The lead is preferably copper and the sleeve or collar is preferably a nickel-alloy. The lead is hermetically sealed to the surrounding sleeve, and the sleeve is hermetically sealed to the insulating wall to provide a hermetic structure which does not detract from the use of high conductivity electrical lead materials which are often not employable in conventional hermetic sealed leads or packages. A plurality of lead structures can be employed in one or more walls of a circuit package.
    Type: Grant
    Filed: February 15, 2000
    Date of Patent: November 5, 2002
    Assignee: Ixion, LLC
    Inventor: Jay Greenspan
  • Publication number: 20020160222
    Abstract: Techniques are provided for electrolessly depositing and electrodepositing CoWP barrier coating onto copper or copper alloys to prevent copper diffusion when forming layers on articles such as watch bracelets, watch cases, imitation jewellery, spectacle frames and metal buttons.
    Type: Application
    Filed: February 28, 2001
    Publication date: October 31, 2002
    Inventors: Hau-chung Man, Wing-yan Ng, Chi-hung Yeung, Chi-yung Lee, Cho-lung Siu, Ricky Y. C. Tsui, Kinny L. K. Yeung
  • Patent number: 6472049
    Abstract: Reproducible texturing of magnetic recording media is enhanced by sputtering a buffer layer, such as Ni—P, on a nonmagnetic substrate, prior to sputtering a textured bump layer. A magnetic recording medium comprising a sputter textured metal layer and high coercivity is achieved by employing an underlayer, such as NiAl or FeAl, preferably a composite underlayer containing a chromium or chromium-alloy layer and a NiAl layer, on the sputter textured layer. Advantageously, the buffer layer, underlayer, textured bump layer, magnetic layer and carbon overcoat can be sputter deposited in a single apparatus.
    Type: Grant
    Filed: February 21, 2001
    Date of Patent: October 29, 2002
    Assignee: Seagate Technology LLC
    Inventors: Xing Song, Ga-Lane Chen, Charles Leu, Qixu Chen
  • Patent number: 6455178
    Abstract: An exchange coupling film comprises a ferromagnetic film and an antiferromagnetic film laminated on the ferromagnetic film, wherein at least a portion of the antiferromagnetic film has a face-centered cubic crystal structure and the antiferromagnetic film comprises an IrMn alloy represented by the general formula of IrxMn100−x, wherein x stands for a value by atomic % satisfying the expression, 2≦x≦80.
    Type: Grant
    Filed: December 23, 1999
    Date of Patent: September 24, 2002
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiromi Fuke, Yuuzo Kamiguchi, Susumu Hashimoto, Tomomi Funayama, Kazuhiro Saito, Hitoshi Iwasaki, Masashi Sahashi
  • Patent number: 6451454
    Abstract: A turbine engine component includes a substrate and a wear coating on the substrate. The wear coating includes wear-resistant particles in a matrix phase, the wear-resistant particles being formed of chrome carbide or a cobalt alloy. Methods for forming a turbine engine component are also disclosed.
    Type: Grant
    Filed: June 29, 1999
    Date of Patent: September 17, 2002
    Assignee: General Electric Company
    Inventors: Wayne Charles Hasz, David Edwin Budinger
  • Publication number: 20020119338
    Abstract: A turbine engine component includes a substrate and a wear coating on the substrate. The wear coating includes wear-resistant particles in a matrix phase, the wear-resistant particles being formed of chrome carbide or a cobalt alloy. Methods for forming a turbine engine component are also disclosed.
    Type: Application
    Filed: June 29, 1999
    Publication date: August 29, 2002
    Inventors: WAYNE CHARLES HASZ, DAVID EDWARD BUDINGER
  • Patent number: 6440579
    Abstract: Process for producing a drawn wire, in particular a wire for reinforcing tires, having a diameter of less than 0.3 mm by drawing a base wire rod having a diameter of greater than 5 mm or a predrawn base wire made of steel with the following composition by weight: carbon≦40×10−3% nitrogen≦40×10−3%, the carbon and nitrogen satisfying the relationship C+N≦50×10−3%, 0.2%≦silicon≦1.0%, 0.2%≦manganese≦5%, 9%≦nickel≦12%, 15%≦chromium≦20%, 1.5%≦copper≦4%, sulfur≦10×10−3%, phosphorus<0.050%, 40×10−4%≦total oxygen≦120×10−4%, 0.1×10−4%≦aluminum≦20×10−4%, magnesium≦5×10−4%, 0.
    Type: Grant
    Filed: February 18, 1998
    Date of Patent: August 27, 2002
    Assignees: Ugine Savoie Societe de Production Internationale de Trefiles, Sprint Metal
    Inventors: Jean-Michel Hauser, Joël Marandel, Etienne Havette
  • Patent number: 6432559
    Abstract: Identification markers and identification methods for solid objects, including metallic objects, are disclosed, the marker integrated with the object so that it is neither optically visible nor removable without destruction or impairment of the object. The marker is more radio opaque than the base material forming the object in the region of marker location and includes an identifying indicia thereon.
    Type: Grant
    Filed: June 12, 2000
    Date of Patent: August 13, 2002
    Assignee: Applied Technologies & Fabrication, Inc.
    Inventors: Dana D. Tompkins, Charles E. Tompkins
  • Patent number: 6428906
    Abstract: A magnetic recording medium such as a magnetic disk comprises a substrate of NiP or ceramic glass on which is sputtered an underlayer of TiAl or other alloy which has a L10 structure or a disordered fcc structure. A magnetic layer of a cobalt alloy is then sputtered on the underlayer with the magnetic layer having a magnetization which is perpendicular to the layer. A carbon overcoat can be sputtered on the cobalt alloy magnetic layer with a lubricant layer deposited on the carbon overcoat.
    Type: Grant
    Filed: May 30, 2000
    Date of Patent: August 6, 2002
    Assignee: Maxtor Corporation
    Inventors: Bunsen Y. Wong, Lan Zhang
  • Patent number: 6410159
    Abstract: A material useful for forming high temperature coatings. The material contains a MCrAlY powder wherein M is selected from the group consisting of iron, nickel, cobalt, iron-base alloys, nickel-base alloys and cobalt-base alloys. An aluminum layer coats the powder. The method forms a high temperature coating with the powder. Thermally spraying the MCrAlY powder towards a substrate reacts the aluminum coating with the MCrAlY powder to metallurgically bond the MCrAlY powder and coat the substrate.
    Type: Grant
    Filed: October 29, 1999
    Date of Patent: June 25, 2002
    Assignee: Praxair S. T. Technology, Inc.
    Inventor: Frank J. Hermanek
  • Patent number: 6391431
    Abstract: A spin valve type magnetoresistance effect film comprises a multilayered film including a non-magnetic metal layer, a ferromagnetic layer formed on one surface of the non-magnetic metal layer, a soft magnetic layer formed on the other surface of the non-magnetic metal layer, an antiferromagnetic layer which is formed on a surface of the ferromagnetic layer remote from the other surface thereof abutting the non-magnetic metal layer so as to pin a direction of magnetization of the ferromagnetic layer, and an antiferromagnetization promote layer formed on a surface of the antiferromagnetic layer remote from the other surface thereof abutting the ferromagnetic layer, wherein the antiferromagnetic layer is made of a compound containing Mn and having a CuAu-I type regular crystal structure the which requires a heat treatment for generating exchange coupling relative to the ferromagnetic layer, and the antiferromagnetic layer after the heat treatment has a state wherein (110) crystal surfaces are oriented on a film
    Type: Grant
    Filed: June 4, 1999
    Date of Patent: May 21, 2002
    Assignee: TDK Corporation
    Inventors: Masashi Sano, Yoshihiro Tsuchiya, Satoru Araki, Haruyuki Morita
  • Patent number: 6391473
    Abstract: A Cu plated ceramic substrate is used in a semiconductor. On a ceramic substrate layer, a thin-film Cr layer is put, and a thin-firm Au layer is put on the Cr layer. The Au layer is plated with Cu. By providing the Au and Cr layers between the ceramic plate and Cu layer, adhesibility is increased. A Pertier element which includes the Cu plated ceramic layer is employed in a semiconductor to absorb and generate heat efficiently.
    Type: Grant
    Filed: April 11, 2001
    Date of Patent: May 21, 2002
    Assignee: Yamatoya & Co., Ltd.
    Inventors: Iwao Numakura, Noriaki Tsukada
  • Patent number: 6387530
    Abstract: High areal storage density, patterned magnetic media comprising a patterned plurality of at least partially crystalline, ferromagnetic particles or grains are provided by means of a simple, economical process wherein a non-magnetic substrate is provided with a layer of an amorphous, paramagnetic or anti-paramagnetic material comprising at least one component, e.g., a metal element, which is ferromagnetic when in at least partially crystalline form, and at least partially crystallizing the at least one component at selected areas of the amorphous layer to form a spaced-apart pattern of at least partially crystallized, ferromagnetic particles or grains of the at least one component, the particles or grains being spaced apart and surrounded by a matrix of the amorphous material. Embodiments include utilizing a focussed or scanned laser source and an amorphous Ni—P layer for forming ferromagnetic Ni particles or grains.
    Type: Grant
    Filed: June 14, 2000
    Date of Patent: May 14, 2002
    Assignee: Seagate Technology LLC
    Inventors: Connie Chunling Liu, Li-Ping Wang, Linda Lijun Zhong, Jeffery Lee Petrehn
  • Patent number: 6387543
    Abstract: A protective layer for load-transferring contact surfaces of gas turbine components, especially titanium turbine components is capable to take up alternating loads at higher temperatures. The protective layer is formed of an alloy having the following composition in percent by weight: aluminum (Al) 4-8%; chromium (Cr) 2-5%; iron (Fe) 0-3.5%; and copper (Cu) remainder.
    Type: Grant
    Filed: August 15, 2000
    Date of Patent: May 14, 2002
    Assignee: MTU Aero Engines GmbH
    Inventor: Wolfgang Eichmann
  • Patent number: 6383658
    Abstract: An article having a layer of metal thermally sprayed over a substrate with a roughened interface at the surface of the substrate applied by a thermal spray process, such as the HVOF process. The interface has a predetermined cleanliness level so that after a diffusion heat treatment, the applied layer has an extended life in severe gas turbine service due to improved adhesion of the layer to the substrate. When the article is used for high temperature applications such as turbine shrouds and encounters significant levels of stress, the strength of the interface can be a factor in the life of the coating.
    Type: Grant
    Filed: November 18, 1999
    Date of Patent: May 7, 2002
    Assignee: General Electric Company
    Inventors: Douglas M. Carlson, Charles A. Claus
  • Patent number: 6376097
    Abstract: Sputter-deposited TiW film interposed between a magnetic layer and a nitrogen-containing overcoat of a magnetic recording medium significantly reduces the migration of nitrogen from the overcoat to the magnetic layer, thereby improving the magnetic recording performances of the magnetic recording medium.
    Type: Grant
    Filed: August 2, 2000
    Date of Patent: April 23, 2002
    Assignee: Seagate Technology LLC.
    Inventors: Charles Leu, Lin Huang, Qixu David Chen, Rajiv Yadav Ranjan
  • Patent number: 6365285
    Abstract: An improved cobalt-base braze alloy composition is provided for use in repairing superalloy articles, such as gas turbine engines, power generation turbines, refinery equipment, and heat exchangers. The improved cobalt-base braze alloy composition includes nickel; at least one element selected from the group of rhenium, palladium, platinum, ruthenium, and iridium; at least one element selected from the group of boron and silicon; and the remaining balance consists of cobalt. This composition may also include aluminum and/or one or more rare earth/lanthanide series elements, and the composition may be combined with one or more powdered base metal superalloy compositions to form an improved diffusion braze alloy mixture. The compositions according to the present invention enable a repair composite formed of such compositions to at least equal the mechanical, environmental, and processing properties of the superalloy base metal being repaired.
    Type: Grant
    Filed: May 7, 1999
    Date of Patent: April 2, 2002
    Assignee: Rolls-Royce Corporation
    Inventor: Richard Patrick Chesnes
  • Publication number: 20020031683
    Abstract: The present invention relates generally to an oxidation and corrosion resistant coating composition produced by a vapor phase co-deposition of transition metals on metallic components. In particular, this coating includes aluminum and silicon and the coated substrate may comprise precious metal, nickel, cobalt or MCrALY. Such coatings are particularly useful in protecting nickel and cobalt and iron-based superalloys from heat corrosion and oxidation attack, especially during high temperature operation, e.g., gas turbine and jet engine hot zones.
    Type: Application
    Filed: February 7, 2001
    Publication date: March 14, 2002
    Inventors: Patrick R. Lavery, Alan C. Banner, James Pollock
  • Patent number: 6356516
    Abstract: A magneto-optical recording medium capable of perfectly masking a mark adjacent to a mark to be reproduced thereby improvng reproduction output. The magneto-optical recording medium includes a transparent substrate, a magnetic reproducing layer laminated on the transparent substrate, a nonmagnetic intermediate layer laminated on the magnetic reproducing layer, and a magnetic recording layer laminated on the nonmagnetic intermediate layer. The reproducing layer has an easy direction of magnetization in a plane at room temperature, and has an easy direction of magnetization perpendicular to a film surface at a given temperature or higher. The nonmagnetic intermediate layer is thin enough to allow magnetostatic bond between the recording layer and the reproducing layer at the given temperature or higher.
    Type: Grant
    Filed: December 7, 2000
    Date of Patent: March 12, 2002
    Assignee: Fujitsu Limited
    Inventors: Ken Tamanoi, Keiji Shono, Sumio Kuroda, Motonobu Mihara, Koji Matsumoto
  • Patent number: 6355356
    Abstract: A metal article which includes a protective coating system is described. The coating system includes a braze alloy layer and a plasma-sprayed bond coat. The bond coat may lie on top of the braze alloy layer, or the braze alloy layer may lie on top of the bond coat. In the case of a porous bond coat, partial or complete densification of the bond coat is sometimes carried out. Densification is achieved by heat treating the article, so that the braze alloy material migrates into the pores of the bond coat to a selected thickness. Related processes are also described.
    Type: Grant
    Filed: November 23, 1999
    Date of Patent: March 12, 2002
    Assignee: General Electric Company
    Inventor: Wayne Charles Hasz
  • Patent number: 6346338
    Abstract: A thin film magnetic head includes an upper core layer and a lower core layer which are made of an Fe—M—O alloy, an Fe—M—T—O alloy or an NI—Fe—X alloy so that the upper core layer has a high saturation magnetic flux density, low coercive force and high resistivity, and the lower core layer has a lower saturation magnetic flux density than the upper core layer, low coercive force, high resistivity, and a low magnetostriction constant. Also the lower core layer is formed so that the thickness gradually decreases toward both side ends, and a gap layer can be formed on the lower core layer to have a uniform thickness. Since the lower core layer is formed by sputtering, a material having excellent soft magnetic material can be used, thereby enabling recording at high frequency.
    Type: Grant
    Filed: October 10, 2000
    Date of Patent: February 12, 2002
    Assignee: Alps Electric Co., Ltd.
    Inventors: Toshinori Watanabe, Akira Takahashi, Fumihito Koike, Nobuhiro Hayashi, Yoshihiro Kanada, Kiyoshi Kobayashi, Kiyoshi Sato, Eiji Umetsu, Takashi Hatanai, Akihiro Makino
  • Patent number: 6335103
    Abstract: A magnetic recording medium including a substrate and a magnetic layer on the substrate which is a Co-based alloy including Pt and/or Ir, including at least one of Ti, Zr, Hr, V, Nb, Ta, Cr, Mo, W, Ge, and Si, and including oxygen. A magnetic memory apparatus including the magnetic recording medium.
    Type: Grant
    Filed: May 6, 1997
    Date of Patent: January 1, 2002
    Assignee: Hitachi, Ltd.
    Inventors: Hiroyuki Suzuki, Yoshihiro Shiroishi, Sadao Hishiyama, Tomoyuki Ohno, Yotsuo Yahisa, Yoshibumi Matsuda, Norikazu Tsumita, Masaki Ohura, Takaaki Shirakura, Noriyuki Shige, Kazumasa Takagi
  • Patent number: 6329076
    Abstract: A hydrogen storage material (1) having excellent hydrogen storage capability and having such a low hydrogen desorption temperature as not to significantly hinder the use thereof, and also capable of being mass-produced, and a manufacturing method of the same can be obtained. The hydrogen storage material has a layered deformation structure including plastic deformation, and one layer (2) of the layered deformation structure is formed from an alloy or compound including an element of groups 2A, 3A and 4A or an element of at least one of the groups 2A, 3A and 4A, and another layer (3) being in contact with the one layer is formed from an alloy or compound including an element of groups 6A, 7A and 8A or an element of at least one of the groups 6A, 7A and 8A.
    Type: Grant
    Filed: February 14, 2001
    Date of Patent: December 11, 2001
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Nozomu Kawabe, Kouichi Sogabe, Shousaku Yamanaka, Yoshinobu Takeda, Takashi Uemura
  • Patent number: 6326685
    Abstract: A reduced CTE composite structure is made by providing a matrix material whose CTE is to be reduced, adding negative CTE bodies to the matrix material and mechanically coupling the matrix material to the negative CTE bodies as by deforming the composite structure. A preferred application is to make an improved composite material for use as a heat sink for semiconductor substrates with a minimum of thermal expansion mismatch.
    Type: Grant
    Filed: May 4, 1998
    Date of Patent: December 4, 2001
    Assignee: Agere Systems Guardian Corp.
    Inventors: Sungho Jin, Hareesh Mavoori
  • Patent number: 6284390
    Abstract: A thermal barrier coating system for a superalloy substrate is disclosed. The superalloy is preferably of the type that is capable of forming an adherent alumina layer. A bond coat is applied to a local area of the substrate, so that a portion of the substrate remains exposed. The localized area is defined to be the area(s) at which a TBC typically fails first, e.g., the leading and trailing edges of an airfoil, or other area. An alumina layer is formed on the remaining portion of the substrate, and also on the bond coat. A ceramic layer is then applied on the alumina layer. Even if the ceramic material is removed, the localized bond coat remains, and reduces the rate at which the underlying substrate oxidizes. A coated article is also disclosed, as is a system that utilizes a conventional superalloy and aluminide coating with the localized bond coat.
    Type: Grant
    Filed: June 12, 1998
    Date of Patent: September 4, 2001
    Assignee: United Technologies Corporation
    Inventors: Sudhangshu Bose, Dinesh K. Gupta, Jeanine D. Marcin, Nicholas E. Ulion
  • Patent number: 6277499
    Abstract: A method is taught for protecting copper and copper-based composites from high temperature oxidation, by the application thereto of a cobalt-based alloy diffusion barrier and a copper-aluminum alloy protective outer layer.
    Type: Grant
    Filed: April 23, 1992
    Date of Patent: August 21, 2001
    Assignee: United Technologies Corporation
    Inventors: Russell A. Beers, Abdus S. Khan, Allan A. Noetzel
  • Patent number: 6277500
    Abstract: A gas turbine component consists of a superalloy base material with a single crystal structure and a protective coating layer. The coating layer has a single crystal structure, which is epitaxial with the base material.
    Type: Grant
    Filed: November 3, 1999
    Date of Patent: August 21, 2001
    Assignee: ABB Research Ltd.
    Inventors: Maxim Konter, Wilfried Kurz, Matthias Gaumann
  • Patent number: 6265075
    Abstract: A circuitized semiconductor structure comprising a layer of dielectric material, a catalyst seed layer above the layer of dielectric material, a layer of photoimageable dielectric material on the catalyst seed layer and having openings therein, a nickel layer in the openings and a layer of copper in the openings above the nickel layer and being coplanar with the top of the layer of dielectric material is provided, along with a method for its fabrication.
    Type: Grant
    Filed: July 20, 1999
    Date of Patent: July 24, 2001
    Assignee: International Business Machines Corporation
    Inventors: David Anton Klueppel, Voya R. Markovich, Thomas Richard Miller, Timothy L. Wells, William Earl Wilson
  • Publication number: 20010008685
    Abstract: A circuit pattern 2a, made of copper foil, is arranged on a substrate 1. A nickel-containing barrier metal layer 2b is formed on the circuit pattern 2a. A gold layer 2c is formed on the barrier metal layer 2b by electroless substitution plating. Then, substrate 1 is heated up to impel nickel contained in the gold layer 2c to move toward a surface zone of the gold layer 2c to deposit nickel compound in the surface zone of the gold layer 2c, thereby enhancing the fineness of a remaining part of the gold layer 2c at at least an inside zone immediately below the surface zone. Then, the surface zone containing the crowded nickel compound is removed off the gold layer 2c so as to expose a purified surface of the inside zone of the gold layer 2c. Therefore, it becomes possible to form an excellent electrode having satisfactory bondability to the wire by using a less amount of gold at low costs.
    Type: Application
    Filed: April 1, 1998
    Publication date: July 19, 2001
    Inventor: HIROSHI HAJI
  • Patent number: 6238807
    Abstract: A protective coat formed by thermal spraying, and having an outstanding durability against corrosion by a molten light alloy. A thermal spraying composite material used to form such a coat contains from about 30 to about 70% by weight of molybdenum boride, from about 20 to about 40% by weight of nickel or cobalt, from about 5 to about 20% by weight of chromium, and from about 5 to about 10% by weight of at least one metal boride selected from the borides of Cr, W, Zr, Ni and Nb.
    Type: Grant
    Filed: July 25, 1997
    Date of Patent: May 29, 2001
    Assignees: Chubu Sukegawa Enterprise Co., Ltd., Showa Denko Kabushiki Kaisha
    Inventors: Tsujihiko Yasuda, Akiyoshi Banno, Tamio Ito, Koji Kiyoshi, Kunimoto Ishibayashi
  • Publication number: 20010001048
    Abstract: A protective coat formed by thermal spraying, and having an outstanding durability against corrosion by a molten light alloy. A thermal spraying composite material used to form such a coat contains from about 30 to about 70% by weight of molybdenum boride, from about 20 to about 40% by weight of nickel or cobalt, from about 5 to about 20% by weight of chromium, and from about 5 to about 10% by weight of at least one metal boride selected from the borides of Cr, W, Zr, Ni and Nb.
    Type: Application
    Filed: December 22, 2000
    Publication date: May 10, 2001
    Applicant: Chubu Sukegawa Enterprise Co., Ltd.
    Inventors: Tsujihiko Yasuda, Akiyoshi Banno, Tamio Ito, Koji Kiyoshi, Kunimoto Ishibayashi
  • Patent number: 6218028
    Abstract: Reproducible texturing of magnetic recording media is enhanced by sputtering a buffer layer, such as Ni—P, on a nonmagnetic substrate, prior to sputtering a textured bump layer. A magnetic recording medium comprising a sputter textured metal layer and high coercivity is achieved by employing an underlayer, such as NiAl or FeAl, preferably a composite underlayer containing a chromium or chromium-alloy layer and a NiAl layer, on the sputter textured layer. Advantageously, the buffer layer, underlayer, textured bump layer, magnetic layer and carbon overcoat can be sputter deposited in a single apparatus.
    Type: Grant
    Filed: March 19, 1998
    Date of Patent: April 17, 2001
    Assignee: Seagate Technology LLC
    Inventors: Xing Song, Ga-Lane Chen, Charles Leu, Qixu Chen
  • Patent number: 6218029
    Abstract: A multi-layer thermal barrier coating for a superalloy article includes a metallic matrix coating containing particles, a MCrAlY alloy bond coating on the metallic matrix coating, a thin oxide layer on the MCrAlY alloy bond coating and a columnar grain ceramic thermal barrier coating. The metallic matrix coating includes a 80 wt % nickel-20 wt % chromium alloy. The particles include metallic compounds such as carbides, oxides, borides and nitrides, which react with harmful transition metal elements such as titanium, tantalum and hafnium, in the superalloy substrate. One suitable compound is chromium carbide because the harmful transition metal elements will take part in an exchange reaction with the chromium in the chromium carbide to form a stable carbide of the harmful transition metal element. This reduces the amount of harmful elements in the superalloy reaching the oxide layer and increases the service life of the thermal barrier coating.
    Type: Grant
    Filed: November 17, 1997
    Date of Patent: April 17, 2001
    Assignees: Rolls-Royce, PLC, Chromalloy United Kingdom Limited
    Inventor: David S Rickerby
  • Patent number: 6210547
    Abstract: A process for altering surface properties of a mass of metal alloy solder comprising a first metal and a second metal. The process comprises exposing the mass to energized ions to preferentially sputter atoms of the first metal to form a surface layer ratio of first metal to second metal atoms that is less than the bulk ratio. The solder may be located on the surface of a substrate, wherein the process may further comprise masking the substrate to shield all but a selected area from the ion beam. The sputtering gas may comprises a reactive gas such as oxygen and the substrate may be an organic substrate. The process may further comprise simultaneously exposing the organic substrate to energized ions of the reactive gas to roughen the organic substrate surface.
    Type: Grant
    Filed: August 24, 1999
    Date of Patent: April 3, 2001
    Assignee: International Business Machines Corporation
    Inventors: Frank D. Egitto, Edmond O. Fey, Luis J. Matienzo, David L. Questad, Rajinder S. Rai, Daniel C. Van Hart
  • Patent number: 6207297
    Abstract: A turbine component contains a substrate (22) such as a superalloy, a basecoat (24) of the type MCrAlY, and a continuous barrier layer (28) between the substrate and basecoat, where the barrier layer (28) is made of an alloy of (Re, Ta, Ru, Os)X, where X can be Ni, Co or their mixture, where the barrier layer is at least 2 micrometers thick and substantially prevents materials from both the basecoat and substrate from migrating through it.
    Type: Grant
    Filed: September 29, 1999
    Date of Patent: March 27, 2001
    Assignee: Siemens Westinghouse Power Corporation
    Inventors: Stephen M. Sabol, John G. Goedjen, Steven J. Vance
  • Patent number: 6203931
    Abstract: The present invention provides a lead frame material and a process for manufacturing a lead frame material. The process includes forming an intermediate layer on a lead frame substrate by vacuum deposition and forming a top protective layer on the intermediate layer by vacuum deposition. By using vacuum deposition, the coating material can be selected from a wider variety of materials; thus, coatings with novel compositions can be formed. The intermediate layer can be Ni, Ag, W, Zn, Cr, Mo, Cu, Sn, Al, Ta, Co, Nb, or alloys thereof, and the top protective layer can be Pt, Ir, Re, Ru, Rh, Pd, Au, Ag, or alloys thereof.
    Type: Grant
    Filed: February 5, 1999
    Date of Patent: March 20, 2001
    Assignee: Industrial Technology Research Institute
    Inventors: Chun-Hsun Chu, Shyi-Yi Chen, Jui-Fen Pai
  • Patent number: 6203926
    Abstract: A corrosion resistant, multi-layer structure on a substrate including an adhesion metallic layer on the substrate, a cushion metallic layer on the adhesion layer, a diffusion barrier layer on the cushion layer, and an impermeable gold layer that encapsulates all the layers, is substantially even on all sides of the layers, and contacts a region on the substrate adjacent the layers to prevent oxidation and corrosion.
    Type: Grant
    Filed: December 28, 1999
    Date of Patent: March 20, 2001
    Assignee: International Business Machines Corporation
    Inventors: Umar Moez Uddin Ahmad, Harsaran Singh Bhatia, Satya Pal Singh Bhatia, Hormazdyar Minocher Dalal, William Henry Price, Sampath Purushothaman
  • Patent number: 6197439
    Abstract: Non-magnetic transition metal spacer layers 2.5 to 50 Angstroms thick with compositions of Os, Ru and Re are used in laminated magnetic structures. The ultra-thin non-magnetic transition metal spacer layers are useful to fabricate micron and sub-micron laminated magnetic devices. The laminated magnetic structures using ultra-thin non-magnetic transition metal spacer layers of Os, Ru and Re have anti-ferromagnetic coupling between the magnetic layers. The anti-ferromagnetic coupling provides a mechanism for reduced edge curling and efficient directional magnetization. Alloying the non-magnetic transition metal layer provides a method for engineering coupling strengths, coercivities and remanences in magnetic structures useful for high frequency applications. These laminated magnetic structure have applications in magnetic read head, magnetic write head, magnetic memory, and miniature transformer devices.
    Type: Grant
    Filed: January 28, 1999
    Date of Patent: March 6, 2001
    Assignee: International Business Machines Corporation
    Inventors: Stuart Stephen Papworth Parkin, David Allen Thompson
  • Patent number: 6197435
    Abstract: An article comprising a metal circuit and/or a heat-radiating metal plate formed on a ceramic substrate, wherein the metal circuit and/or the heat-radiating metal plate comprise either (1) the following first metal-second metal bonded product, wherein the first metal and the second metal are different, or (2) the following first metal-third metal-second metal bonded product, and wherein in (1) and (2), the first metal is bonded to the ceramic substrate; first metal: a metal selected from the group consisting of aluminum (Al), lead (Pb), platinum (Pt) and an alloy containing at least one of these metal components; second metal: a metal selected from the group consisting of copper (Cu), silver (Ag), gold (Au), aluminum (Al) and an alloy containing at least one of these metal components; and third metal: a metal selected from the group consisting of titanium (Ti), nickel (Ni), zirconium (Zr), molybdenum (Mo), tungsten (W) and an alloy containing at least one of these metal components.
    Type: Grant
    Filed: October 20, 1998
    Date of Patent: March 6, 2001
    Assignee: Denki Kagaku Kogyo Kabushiki Kaisha
    Inventors: Yoshihiko Tsujimura, Miyuki Nakamura, Yasuhito Fushii
  • Patent number: 6197437
    Abstract: A composite barrel for use in extrusion or injection molding is disclosed. The composite barrel includes an outer housing having a cylindrical bore that extends throughout the length of the outer housing. A wear-resistant lining is disposed on an interior surface that defines the cylindrical bore. The lining is fabricated from an alloy that includes a base metal and phosphorus and the lining may contain hard abrasion-resistant particulate, such as tungsten carbide. The base metal is nickel or cobalt or a mixture of nickel and cobalt. The alloy is typically applied by centrifugal casting and can be cast in a nitrogen-rich atmosphere without creating undesirable lining porosity. Such linings can be made for a fraction of the cost of comparable linings that must be cast under vacuum or in an atmosphere of argon.
    Type: Grant
    Filed: February 22, 1999
    Date of Patent: March 6, 2001
    Assignee: Wall Colmonoy Corporation
    Inventors: David Martin Bielec, Samuel Conrad DuBois, Subramaniam Rangaswamy
  • Patent number: 6197434
    Abstract: A glazing covered ferrite core electrode terminal has a ferrite core, a glazing covered layer coated on a surface of the ferrite core, a silver paste layer disposed on the glazing covered layer, a nickel plated layer disposed on the silver paste layer, a solder plated layer disposed on the nickel plated layer, and a solder paste layer disposed on the solder plated layer.
    Type: Grant
    Filed: January 7, 2000
    Date of Patent: March 6, 2001
    Inventor: Joseph M. E. Hsu
  • Patent number: 6183893
    Abstract: The present invention relates to a perpendicular magnetic recording medium and a magnetic storage apparatus which are improved to be suitable for high-density magnetic recording. An object thereof is to provide the perpendicular magnetic recording medium and the magnetic storage apparatus which have a low noise property for realizing a recording density of 10 Gb/in.2 or more and a high stability against thermal fluctuation. The perpendicular magnetic recording medium comprising a perpendicular magnetic film formed through an underlayer on a nonmagnetic substrate, wherein the underlayer comprises a material having a hexagonal close packed structure or an amorphous structure, and has a first underlayer nearer to the substrate, and a second underlayer having a hexagonal close packed structure formed on the first underlayer and a preferred growth orientation of [0001] and comprising a material capable of hetero-epitaxy growth onto the perpendicular magnetic film.
    Type: Grant
    Filed: April 5, 1999
    Date of Patent: February 6, 2001
    Assignee: Hitachi, Ltd.
    Inventors: Masaaki Futamoto, Yoshiyuki Hirayama, Kenya Ito, Kazuetsu Yoshida, Yukio Honda, Nobuyuki Inaba
  • Patent number: 6180259
    Abstract: In order to advantageously solve problems such as lowering of the productivity, contamination of alloy coating due to the adoption of different metal, increase of the cost due to the adoption of different coating process, a coating of MCrAlX alloy containing an oxide such as CoO, NiO or the like is directly formed at a thickness of 10˜500 &mgr;m through a low pressure plasma spraying process containing substantially no oxide and thereafter the same MCrAlX alloy xontaining no oxide is applied thereonto at a thickness of 100˜800 &mgr;m through a low pressure plasma spraying process in a non-oxidizing atmosphere to form a composite sprayed coating.
    Type: Grant
    Filed: November 20, 1998
    Date of Patent: January 30, 2001
    Assignee: Tocalo Co., Ltd.
    Inventors: Yoshio Harada, Tatsuo Suizu, Takema Teratani
  • Patent number: 6177204
    Abstract: A multi-layer magnetic material (10) has magnetic vectors (21,22) that point along a length (27) of the material (10). Opposing magnetic fields cause the vectors to snap past the perpendicular position with a rapid change in the resistance of the material. The material is used as a memory cell (37,38,39,41) of a memory (36).
    Type: Grant
    Filed: September 17, 1997
    Date of Patent: January 23, 2001
    Assignee: Motorola, Inc.
    Inventors: Eugene Chen, Saied N. Tehrani
  • Patent number: 6165628
    Abstract: An article is described, which includes a metal-based substrate, such as a superalloy; a dense, primary bond layer; and a spongy secondary bond layer. A thermal barrier coating is applied over the secondary bond layer. The spongy layer has a microstructure which includes an open network of interconnected pores. A process is also described. It includes the step of applying a spongy, metallic bond layer over the substrate, followed by the application of a thermal barrier coating. A dense, primary bond layer may optionally be applied before the application of the spongy layer.
    Type: Grant
    Filed: August 30, 1999
    Date of Patent: December 26, 2000
    Assignee: General Electric Company
    Inventors: Marcus Preston Borom, Dennis Michael Gray, Yuk-Chiu Lau, Surinder Singh Pabla
  • Patent number: 6149389
    Abstract: On a turbine blade a protective corrosion resistant surface layer consisting of a MCrAlY alloy is generated by melting the surface of the turbine blade with the MCrAlY alloy uniformly distributed over the surface of the turbine blade by a pulsed electron beam to a depth of 5-50 .mu.m whereby a smooth surface is generated.
    Type: Grant
    Filed: September 11, 1998
    Date of Patent: November 21, 2000
    Assignee: Forschungszentrum Karlsruhe GmbH
    Inventors: Hans-Henning Hennies, Gunther Kessler, Gerd Krafft, Georg Muller, Gustav Schumacher
  • Patent number: 6150038
    Abstract: A reproducing layer, an intermediate layer, and a recording layer are successively stacked. The reproducing layer is made of a perpendicularly magnetized film whose domain wall coercivity is relatively smaller and whose domain wall mobility is relatively larger as compared with the recording layer around a reproducing temperature. When the reproducing layer, the intermediate layer, and the recording layer have Curie temperatures of Tc1, Tc2, and Tc3, Tc1, Tc2, and Tc3 satisfy a relationship of Tc2<Tc1<Tc3. Upon reproducing information, the reproducing layer is partially heated to more than the Curie temperature by irradiating with a light beam. This arrangement makes it possible to expand and reproduce a domain without causing a repetition of reproduction and to reproduce a signal having a period which is not more than an optical diffraction limit without reducing an amplitude of the reproduced signal, thereby dramatically improving a recording density.
    Type: Grant
    Filed: April 27, 1999
    Date of Patent: November 21, 2000
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Junji Hirokane, Noboru Iwata