Process feed management for semiconductor substrate processing

- ASM America, Inc.

Embodiments related to managing the process feed conditions for a semiconductor process module are provided. In one example, a gas channel plate for a semiconductor process module is provided. The example gas channel plate includes a heat exchange surface including a plurality of heat exchange structures separated from one another by intervening gaps. The example gas channel plate also includes a heat exchange fluid director plate support surface for supporting a heat exchange fluid director plate above the plurality of heat exchange structures so that at least a portion of the plurality of heat exchange structures are spaced from the heat exchange fluid director plate.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of and claims priority to U.S. patent application Ser. No. 13/284,642 entitled “PROCESS FEED MANAGEMENT FOR SEMICONDUCTOR SUBSTRATE PROCESSING,” filed Oct. 28, 2011, the disclosure of which is hereby incorporated herein by reference.

BACKGROUND

Supplying process reactants to semiconductor processing tools can be difficult. For example, ambient gases may diffuse into low pressure portions of the process tool, potentially contaminating process reactants. Further, some process reactants may condense on various process tool surfaces under some processing conditions. Contamination and/or condensation of process reactants may lead to substrate quality problems as well as potential process control problems.

SUMMARY

Various embodiments are disclosed herein that relate to managing the process feed conditions for a semiconductor process module. For example, one embodiment provides a gas channel plate for a semiconductor process module. The example gas channel plate includes a heat exchange surface including a plurality of heat exchange structures separated from one another by intervening gaps. The example gas channel plate also includes a heat exchange fluid director plate support surface for supporting a heat exchange fluid director plate above the plurality of heat exchange structures so that at least a portion of the plurality of heat exchange structures are spaced from the heat exchange fluid director plate.

This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. Furthermore, the claimed subject matter is not limited to implementations that solve any or all disadvantages noted in any part of this disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 schematically shows a semiconductor process module according to an embodiment of the present disclosure.

FIG. 2 schematically shows an exploded isometric view of a portion of the semiconductor process module of FIG. 1

FIG. 3 schematically shows a larger isometric view taken along line 3 of the portion of the semiconductor process module shown in FIG. 2.

FIG. 4 schematically shows a cross-section taken along line 4 of the portion of the semiconductor process module shown in FIG. 3.

FIG. 5 schematically shows a larger isometric view taken along line 5 of the portion of the semiconductor process module shown in FIG. 3.

FIG. 6 schematically shows a cross-section taken along line 6 of the portion of the semiconductor process module shown in FIG. 5.

FIG. 7 schematically shows a larger isometric view taken along line 7 of the portion of the semiconductor process module shown in FIG. 2.

FIG. 8 schematically shows a cross-section taken along line 8 of the portion of the semiconductor process module shown in FIG. 7.

FIG. 9 schematically shows a cross-section taken along line 9 of the portion of the semiconductor process module shown in FIG. 7.

FIG. 10 schematically shows a sectioned isometric view of a showerhead volume profile according to an embodiment of the present disclosure.

FIG. 11 schematically shows a sectioned isometric view of a showerhead volume profile according to another embodiment of the present disclosure.

FIG. 12 schematically shows a sectioned isometric view of a two-piece showerhead according to an embodiment of the present disclosure.

FIG. 13 schematically shows a heat exchange fluid channel formed above a gas channel plate according to an embodiment of the present disclosure.

FIG. 14 schematically shows a blower and duct for providing air to a heat exchange plenum assembly according to an embodiment of the present disclosure.

FIG. 15 schematically shows an exploded isometric view of a heat exchange plenum assembly according to an embodiment of the present disclosure.

FIG. 16 schematically shows a sectioned isometric view of air flow distribution from a heat exchange plenum assembly to a heat exchange fluid channel formed above a gas channel plate according to an embodiment of the present disclosure.

FIG. 17 shows a flowchart for a method of processing a semiconductor substrate in a semiconductor process module according to an embodiment of the present disclosure.

DETAILED DESCRIPTION

Modern semiconductor devices may include integrated structures formed by the deposition of films in high-aspect ratio cavities or under low thermal budget conditions. Typical chemical vapor deposition (CVD), thermal growth, and/or physical vapor deposition (PVD) approaches may not be suited to the process integration constraints for such structures. Atomic layer deposition (ALD) processes are sometimes used to address these challenges. In ALD processes, thin layers of film are deposited by alternately adsorbing two or more reactants to the substrate without supplying the reactants to the substrate process environment concurrently. By supplying each reactant separately, only deposited film layers and the surface active species of one reactant chemisorbed to those film layers are present on the substrate when the other reactant is supplied. Consequently, highly conformal films may be formed on the substrate surface, even in high-aspect ratio features.

The layer-by-layer nature of ALD processes may present challenges to enhance substrate throughput during manufacturing. For example, some approaches to increase throughput include selecting process reactants based on reactivity characteristics that may enhance surface decomposition reactions on the substrate relative to other process reactants. However, the presence of ambient gases, such as oxygen and/or water vapor, may lead to increases in gas phase decomposition as the reactivity of process reactants increases, potentially leading to substrate non-uniformity defects, small particle defects that may decorate the substrate surface, and/or film composition contamination.

Other approaches to enhance throughput include supplying the substrate with a quantity of reactant suitable to provide acceptable substrate coverage of surface active species in a short-duration, high-concentration pulse. However, because some process reactants, such as those including metals, may have higher molecular weights than the carrier gases with which they may be mixed, it may be more difficult to distribute the process reactant on the substrate surface with suitable coverage as pulse duration decreases. Consequently, cross-substrate concentration gradients may form in the gas phase above the substrate during process reactant exposure phases that may lead to substrate non-uniformity defects. In some settings, process reactants may condense on process surfaces even under vacuum conditions. Such reactant condensation upstream of the substrate may lead to small particle defect decoration on the substrate surface. Additionally or alternatively, some process reactants may undergo gas phase or surface decomposition upstream of the substrate, potentially leading to film contamination or other process quality problems. While the problems that may result from process reactants like those described above, such as organometallic reactants having low vapor pressures, are described herein in the context of ALD processes, it will be understood that similar issues may exist for some process reactants used m some low-pressure CVD deposition processes, low-pressure etch processes, and so on.

The disclosed embodiments relate to hardware and methods for managing the process feed conditions for a semiconductor process module. For example, one embodiment provides a network of purge gas channels included in a gas channel plate or a showerhead for a semiconductor process module. The example purge gas channels fluidly communicate with an ambient environment via gaps positioned between the ambient environment and a gasket sealing the gas channel plate or the showerhead to another portion of the semiconductor process module. Consequently, ambient gas diffusion or permeation across the gasket and into the low pressure reactor may be mitigated, potentially reducing film impurities and/or particle defects.

Another embodiment provides a semiconductor process module including a showerhead volume upstream of a substrate. The example showerhead volume includes contours configured to form a radially symmetric profile within the showerhead volume with respect to an axial centerline of a process feed inlet opening into the showerhead volume. The example showerhead volume contours are shaped so that opposing surfaces of the semiconductor process module forming the outer edges of the showerhead volume are closer to one another than those same surfaces at a central region of the showerhead volume. Thus, though process feed is distributed to the substrate via showerhead gas distribution holes distributed across the showerhead, the process feed velocity may remain approximately constant as the radial distance from the process feed inlet increases, potentially enhancing substrate uniformity.

Another embodiment provides a heat exchanger for a showerhead volume of a semiconductor process module. The example heat exchanger includes a heat exchanger fluid director plate and a gas channel plate. The example gas channel plate includes a plurality of heat exchange structures separated from one another by intervening gaps. The example heat exchange fluid director plate is supported above a heat exchange surface of the gas channel plate to form a heat exchange fluid channel into which the plurality of heat exchange structures protrude so that heat exchange fluid may flow between and above a portion of the heat exchange structures. Consequently, condensation of process reactants within the showerhead volume may potentially be reduced, as may gas phase and/or surface reaction of process reactants upstream of the substrate. In turn, defect generation caused by gas phase and/or condensed phase reactions may potentially be avoided. It will be understood that the various embodiments described herein are not intended to be limited to solving the example problems referenced within this disclosure, which are provided for illustrative purposes.

The disclosed embodiments may be fabricated from virtually any suitable materials. For example, various structural portions may be fabricated from aluminum, titanium, and/or stainless steel that may provide suitable mechanical, thermal, and/or chemical properties relevant to a particular portion of a selected embodiment. Other portions may be made from suitable ceramics or polymers. For example, various gaskets may include synthetic elastomer and/or fluoroelastomer materials that may provide enhanced chemical resistance to some the process feeds, such as halogenated inorganic compounds, relative to alternative sealing materials. Accordingly, it will be understood that descriptions of example materials or fabrication techniques are provided for illustrative purposes alone. Such descriptions are not intended to be limiting.

FIG. 1 schematically shows a cross-section of an embodiment of a semiconductor process module 100. Semiconductor process module 100 may be used for processing semiconductor substrates via any suitable process, e.g., film deposition, film etch, and the like. While the embodiment of semiconductor process module 100 depicted in FIG. 1 shows a single module, it will be appreciated that any suitable number of process modules may be included in a processing tool so that substrates may be transferred between process modules without being exposed to ambient conditions. For example, some processing tools may include just one module while other processing tools may include two or more modules. While not shown in FIG. 1, various load locks, load ports, and substrate transfer handling robots may be used to transfer substrates between ambient conditions and semiconductor process module 100 before, during, and after substrate processing.

As shown in FIG. 1, semiconductor process module 100 includes a low pressure reactor 102 for processing semiconductor substrates. The process feed is supplied to reactor 102 via a pulse valve manifold 104. Pulse valve manifold 104 delivers the process feeds, including reactant gases and/or inert gases, to reactor 102 via suitable valves and distribution plumbing that manage the flow of the process feed during various portions of substrate processing and/or module maintenance processing events. The process feed is supplied from pulse valve manifold 104 to reactor 102 via a process feed inlet 106.

Process feed inlet 106 opens into a central region of showerhead volume 108 formed between a gas channel plate 110 and a showerhead 112. For example, in some embodiments, an axial centerline of process feed inlet 106 may be aligned with a central axis of showerhead volume 108, so that process feed may potentially be uniformly distributed radially within showerhead volume 108. Showerhead volume 108 provides a space for the process feed flow to develop upon exit from process feed inlet 106, potentially providing time and space for the velocity and flow of the process feed to adjust from the higher velocity conditions likely present within pulse valve manifold 104 to the comparatively lower velocity conditions likely selected for substrate processing. In some embodiments, showerhead volume 108 may enclose a volume of between 100,000 and 800,000 mm3. In one non-limiting example, showerhead volume 108 may enclose a volume of between 300,000 and 500,000 mm3 upstream of a single 300-mm diameter substrate.

In the embodiment shown in FIG. 1, the process feed flows radially from process feed inlet 106 toward the outer edges of showerhead volume 108 while being drawn downward toward showerhead distribution holes 114. In some embodiments, the showerhead volume contours may be shaped so that opposing surfaces of gas channel plate 110 and showerhead 112 that form showerhead volume 108 are closer to one another at the outer edges of showerhead volume 108 than those same surfaces at a central region of showerhead volume 108.

Showerhead distribution holes 114 direct the process feed toward substrate process environment 116 where substrate processing occurs. A susceptor 118 supports a substrate (not shown) within substrate process environment 116 during processing operations. Susceptor 118 may include a heater used to adjust a temperature of the substrate before, during, and/or after substrate processing. Susceptor 118 is mounted on an elevator 120 so that the substrate may be raised and lowered within lower reactor 122 to facilitate substrate transfer in and out of semiconductor process module 100. A lift pin 124 is included to raise and lower the substrate from susceptor 118 during substrate transfer operations.

Portions of unreacted process feed, carrier gases, and gases produced during substrate processing are exhausted from substrate process environment 116 via process exhaust outlet 126. In the embodiment shown in FIG. 1, the process exhaust outlet 126 is formed at least in part by a gap extending around an outer circumference of substrate process environment 116 between showerhead 112 and flow control ring 128. Thus, in the depicted embodiment, a portion of process exhaust flows in radial direction away from a center of substrate process environment 116 toward the process exhaust outlet 126. Other portions of the process exhaust may also flow into lower reactor 122, sealed to showerhead 112 via purge plate 130 with a gasket, via a gap formed between a susceptor 120 and flow control ring 128.

Pressure within reactor 102 is controlled at least in part by one or more pressure control devices (not shown), such as a throttle valve, fluidly coupled with upper reactor exhaust 132 and lower reactor exhaust 134. However, it will be appreciated that pressure within reactor 102 may also be controlled by suitable manipulation of various gas feeds to and bypasses around reactor 102. Accordingly, such feeds and bypasses may also be considered pressure control devices within the scope of the present disclosure.

FIG. 2 schematically shows an exploded isometric view of portions of the embodiment of semiconductor process module 100 shown in FIG. 1. As shown in FIG. 2, a system process controller 202 (described in more detail below) for controlling various aspects of semiconductor process module 100 is provided. System process controller 202 and pulse valve manifold 104 are shown in FIG. 2 as being mounted above gas channel plate 110, showerhead 112, and a heat exchange plenum assembly 204 (described in more detail below) via a support plate 206. A lift point 208 is provided for raising portions of semiconductor process module 100, such as pulse valve manifold 104, for maintenance procedures.

FIG. 2 also shows a plurality of showerhead access covers 210 positioned around showerhead 112. Though not shown in FIG. 2, it will be appreciated that other suitable covers may be provided to shield access to portions of pulse valve manifold 104, portions of upper reactor 104, and/or portions of lower reactor 102. Such access covers may include ventilation ports to permit the passage of air while generally restricting casual tool and/or user access.

FIG. 3 schematically shows a sectioned isometric view of gas channel plate 110 and showerhead 112 taken along line 3 of the embodiment shown in FIG. 2. As shown in FIG. 3, gas channel plate 110 is connected to showerhead 112 by a plurality of clips 302 adapted to maintain a predetermined gap 304 between gas channel plate 110 and showerhead 112. Retaining gas channel plate 110 and showerhead 112 with clips 302 may help to maintain a relative position between the respective parts when semiconductor process module 100 is at ambient pressure.

When semiconductor process module 100 is under vacuum, ambient gases, such as oxygen and water vapor, may diffuse into low pressure environments like showerhead volume 108 and/or process environment 116, potentially contaminating the process feed, generating small particle defects, causing film contamination, impurity incorporation, and/or substrate non-uniformity defects. As used herein, a low pressure environment refers to portions of semiconductor process module 100 that experience sub-ambient pressure during process and/or maintenance operations. For example, showerhead volume 108 may exhibit a pressure within a range of 0.5 to 20 Torr in some non-limiting process settings. As another example, process environment 116 may experience a pressure within a range of 0.5 to 5 Torr in some non-limiting process settings. By reducing the pressure below an ambient pressure within showerhead volume 108 or process environment 116, a low pressure environment is created within that respective portion of semiconductor process module 100.

In some embodiments, gap 304 may act as an exit path for purge gases used to dilute the concentration of ambient gases, reducing their chemical potential for permeation from the outer perimeter (e.g., from an ambient side) of a gasket positioned between showerhead 112 and gas channel plate 110. For example, FIG. 3 shows a purge gas inlet 306 fluidly connected to a network of purge gas channels that that supply purge gas to gap 304. As shown in FIG. 3, a suitable purge gas, like nitrogen, argon, helium, or the like, may be delivered via annular purge channel 308 and a plurality of vertical purge channels 310 to form a near-continuous annular curtain of dry gas emerging from gap 304. Consequently, moisture and/or oxygen permeation across a seal between showerhead 112 and gas channel plate 110 into reactor 102 may be mitigated, potentially reducing film impurities and/or particle defects.

FIG. 4 shows a cross-section taken along line 4 of the embodiment of FIG. 3 illustrating a portion of a purge gas channel 400. Purge gas channel 400 fluidly communicates with an ambient environment via gap 304 at a location between the ambient environment and a gasket 402 disposed between showerhead 112 and gas channel plate 110. So positioned, a positive flow of purge gas from purge gas inlet 306 toward gap 304 may prevent the diffusion of ambient gas toward and/or across gasket 402 and into substrate process environment 116.

As shown in FIG. 4, purge gas channel 400 receives purge gas via a horizontal purge feed 404 from purge gas inlet 306 and distributes the purge gas around gas channel plate 110 via annular purge channel 308. Portions of the purge gas are diverted to vertical purge channels 310 formed at intervals around the outer edge of gas channel plate 110. Vertical purge channels 310 are connected to horizontal purge channels 406 at preselected intervals. Almost any suitable number of vertical purge channels 310 may be provided at virtually any suitable interval. In some embodiments, eighteen vertical purge channels 310 may be evenly spaced around annular purge channel 308. Horizontal purge channels direct the purge gas to gap 304, where the gas emerges into the ambient environment.

The purge gas channels described herein may be formed in almost any suitable manner. Non-limiting examples of techniques for forming the various annular purge gas channels include milling and/or casting. The various vertical purge gas channels may also be formed by drilling, casting, or other suitable techniques. It will be understood that the fabrication of the purge gas channels may leave openings that may result in fugitive emissions of purge gas, potentially leading to pressure drop within the purge system and/or reduced flow rate from gap 304. In some embodiments, some or all of these openings may be fitted with removable and/or permanent closures or seals. For example, FIG. 4 depicts a flexible cord or gasket 408 that may seal an opening above annular purge channel 308 and a cap 410 used to seal horizontal purge feed 404 in some embodiments. Such seals and caps may avoid or reduce fugitive emissions of purge gas from openings used to fabricate the purge gas channels.

Ambient gases may also contaminate the low pressure environment by diffusion from confined spaces after maintenance activity. Such “virtual leaks” can be difficult to trace, as the ambient gas results from gas trapped in so-called “dead volumes,” or volumes that are exposed to the low pressure environment but that are not readily purged or pumped down. Thus, in some embodiments, some seals and gaskets may be positioned within a preselected distance of a low pressure environment such as showerhead volume 108, process environment 116, suitable portions of the process feed upstream of showerhead volume 108 and suitable portions of the process exhaust downstream of process environment 116.

For example, FIG. 4 schematically shows gasket 402 positioned near showerhead volume 108 so that a low pressure environment formed within showerhead volume 108 may pump away residual ambient gases that may be trapped between mating surfaces of showerhead 112 and gas channel plate 110 on a low pressure side of gasket 402. In some embodiments, a seal or gasket may be positioned within a range of 0.5 to 20 mm of a low pressure environment. For example, in some non-limiting scenarios, a gasket may be positioned within a range of 0.5 to 20 mm from a nearest outer edge of showerhead volume 108. In some other scenarios, a gasket may be positioned within 4 mm of a nearest outer edge of showerhead volume 108, within an acceptable tolerance.

As another example, in some embodiments, a seal or gasket sealing showerhead volume 108 may be positioned within a preselected distance of a showerhead distribution hole 114. In the embodiment shown in FIG. 4, gasket 402 is shown positioned near showerhead distribution hole 114. Positioning a gasket near showerhead distribution hole 114 may allow the low pressure environment to rapidly pump away residual ambient gases that may be trapped between mating surfaces of showerhead 112 and gas channel plate 110 on a low pressure side of gasket 402. In some embodiments, a seal or gasket may be positioned within a range of 0.5 to 20 mm of a showerhead distribution hole 114. For example, in some non-limiting scenarios, a gasket may be positioned 5 mm from a nearest showerhead distribution hole 114, within an acceptable tolerance.

It will be appreciated that the approaches to managing ambient gas exposure to the low pressure environment may also be applied to other portions of semiconductor process module 100. For example, purge gas channels may also be included in other portions of semiconductor process module 100 to prevent ambient gas diffusion into substrate process environment 116 and/or low pressure environments. For example, in some embodiments, gas channel plate 110 may include a purge gas channel fluidly communicating with an ambient environment at a location between the ambient environment and a gasket disposed between the gas channel plate and a pulse valve manifold positioned upstream of the gas channel plate.

FIG. 5 schematically shows a sectioned isometric view taken along line 5 of the embodiment shown in FIG. 3. The embodiment shown in FIG. 5 shows an island 312 included in gas channel plate 110 used to mount pulse valve manifold 104 to gas channel plate 110. As shown in FIG. 5, island 312 includes a purge gas inlet 502 fluidly connected to a network of purge gas channels for distributing purge gas within island 312, including an annular purge channel 504 and a plurality of vertical purge channels 506 that supply purge gas to the ambient environment via scallop-shaped gaps 508. In the embodiment depicted in FIG. 5, gaps 508 positioned on an ambient side of a groove 510 adapted retain a gasket sealing island 312 to pulse valve manifold 104 potentially allow a purge gas to prevent ambient gases from permeating beyond the gasket and into the low pressure environment.

FIG. 6 shows a cross-section taken along line 6 of the embodiment shown in FIG. 5, illustrating a portion of a purge gas channel 600. In the embodiment depicted, purge gas enters purge gas channel 600 via purge gas inlet 502 and is distributed to annular purge channel 504 via a horizontal purge feed 602. Annular purge channel 504 distributes the purge gas around island 312 to vertical purge channels 506, which divert portions of the purge gas toward gaps 508 at preselected intervals. Virtually any suitable number of vertical purge channels 506 may be provided at almost any suitable interval. In some embodiments, six vertical purge channels 506 may be evenly spaced around annular purge channel 504 within island 312. As shown in FIG. 6, gaps 508 opening on to each vertical purge channel 506 permit purge gas to flow from purge gas channel 600 into the ambient environment at a position between the ambient environment and sealing groove 510. FIG. 6 also depicts a flexible cord or gasket 604 that may seal an opening above annular purge channel 504 and a cap 606 used to seal horizontal purge feed 602 in some embodiments. Such closures may avoid or reduce fugitive emissions of purge gas from openings used to fabricate the purge gas channels.

As another example, in some embodiments, a purge plate 130 may include purge gas channels configured to prevent diffusion of ambient gases across gaskets sealing showerhead 112 to purge plate 130 and/or lower reactor 122 to purge plate 130. For example, FIG. 7 shows a close-up of the embodiment of purge plate 130 shown in FIG. 2 taken along line 7. As shown in FIG. 7, purge plate 130 includes a purge gas inlet 702 fluidly connected to a purge gas channel for distributing purge gas within purge plate 130. For reference, the embodiment of purge plate 130 shown in FIG. 7 includes an upper surface 704 that interfaces with showerhead 112 and a lower surface 706 that interfaces with lower reactor 122.

The purge gas channel shown in FIG. 7 includes an annular purge channel 708 that is fluidly connected with a plurality of upwardly extending vertical purge channels 710 that purge an ambient environment around a gasket that seals upper surface 704 to showerhead 112. Annular purge channel 708 is also fluidly connected with a plurality of downwardly extending vertical purge channels 712 that purge an ambient environment around a gasket that seals lower surface 706 to lower reactor 122.

FIGS. 8 and 9 show cross-sections of the embodiment shown in FIG. 7 taken along lines 8 and 9, respectively, illustrating portions of a purge gas channel 800. As shown in FIG. 8, purge gas enters purge gas channel 800 via purge gas inlet 702 and is distributed to annular purge channel 708 via a horizontal purge feed 802. Annular purge channel 708 distributes the purge gas around purge plate 130 to vertical purge channels 710 and 712, which divert portions of the purge gas toward gaps 904, shown in FIG. 9 as 904a and 904b, at preselected intervals. Virtually any suitable number of vertical purge channels 710 and 712 may be provided at almost any suitable interval. In some embodiments, fourteen pairs of vertical purge channels 710 and 712 may be evenly spaced around annular purge channel 708 within purge plate 130.

The embodiment shown in FIG. 9 shows gaps 904a and 904b coupling vertical purge channels 710 and 712 with the ambient environment at positions between the ambient environment and gaskets provided to seal purge plate 130 to adjacent surfaces. So positioned, gaps 904a and 904b allow purge gas to sweep ambient gases away from the gaskets, potentially reducing permeation of ambient gases across those gaskets. Thus, purge gas flowing toward showerhead 112 will flow into gap 904a at a position between the ambient environment and gasket 906a, and purge gas flowing toward lower reactor 122 will flow into gap 904b at a position between the ambient environment and gasket 906b. FIGS. 8 and 9 also depict a flexible cord or gasket 804 that may be used to seal an opening above annular purge channel 708 and a cap 806 that may be used to seal horizontal purge feed 802 in some embodiments. Such closures may avoid or reduce fugitive emissions of purge gas from openings used to fabricate the purge gas channels.

Process feed conditions within pulse valve manifold 104 may be adapted to high speed, high pressure delivery of various process feed species to enhance substrate throughput and process speed. However, the rapid expansion of process feed from these conditions into lower pressure conditions within showerhead volume 108 may potentially contribute to substrate process control problems and/or substrate quality excursions. For example, the process feed may experience transient cooling as process feed pressure drops in the vicinity of process feed inlet 106, potentially cooling surfaces surrounding process feed inlet 106. In turn, this may cause condensation of some species of the process feed onto gas channel plate 110 near process feed inlet 106. Further, in some settings, rapid expansion of the process feed may alter fluid mixing of various reactants and inert species included in the process feed. Accordingly, in some embodiments, flow expansion structures may be provided upstream of process feed inlet 106 to transition flow conditions within the process feed.

FIG. 10 schematically shows a sectioned isometric view of an embodiment of showerhead volume 108 formed between a diffusion surface 1012 of gas channel plate 110 and showerhead 112. As shown in FIG. 10, an optional flow expansion structure 1002 is provided upstream of process feed inlet 106. In some embodiments, flow expansion structure 1002 may assist in transitioning and mixing higher velocity process feed flows exiting pulse valve manifold 104 (shown in FIG. 1) into slower velocity flows within showerhead volume 108 prior to distribution to process environment 116 via showerhead distribution holes 114. For example, in embodiments used in ALD processes, higher velocity pulse trains provided from pulse valve manifold 104 may be transitioned to a slower flow velocity, at least in part, by transmission of the pulse train through flow expansion structure 1002 before a subsequent expansion at the process feed inlet 106.

In the embodiment shown in FIG. 10, a centerline of a flow path included in flow expansion structure 1002 is aligned with a centerline of process feed inlet 106, so that fluid flow within flow expansion structure 1002 may transition smoothly between a smaller upstream diameter and a larger downstream diameter of flow expansion structure 1002. In some embodiments, an upstream diameter of flow expansion structure 1002 may be approximately ⅝ of an inch and a downstream diameter may be approximately 1 inch.

Virtually any suitable manner of expanding fluid flow within flow expansion structure 1002 may be employed without departing from the scope of the present disclosure. As shown in FIG. 10, flow expansion structure 1002 includes a concentric conical expansion shape formed on an inner surface 1006 of the flow expansion structure. Other non-limiting examples of expansion shapes that may be formed on inner surface 1006 include bell-shaped expansion shapes, spiral expansion shapes, and the like, implementations of which may have upstream and downstream diameters that may be concentric or eccentric with one another.

In the embodiment shown in FIG. 10, flow expansion structure 1002 is retained in gas channel plate 110 by a support ledge. A gasket 1050 forms a seal between the support ledge and flow expansion structure 1002. In some embodiments, gasket 1050 may be provided within a predetermined distance, such as a predetermined vertical distance, of showerhead volume 108. This may reduce an interfacial volume formed between mating surfaces of flow expansion structure 1002 and gas channel plate 110 on a low pressure side of gasket 1050, so that residual ambient gases within that interfacial volume may be rapidly pumped away.

The example shown in FIG. 10 also depicts a gasket 1052 for sealing flow expansion structure 1002 to pulse valve manifold 104 (not shown). In some embodiments, gasket 1052 may be provided within a predetermined distance of inner surface 1006. This may reduce an interfacial volume formed between mating surfaces of flow expansion structure 1002 and pulse valve manifold 104 on a low pressure side of gasket 1052, which may potentially have the effect of rapidly pumping away residual ambient gases within that interfacial volume.

An optional impingement plate 1010 is shown in FIG. 10 that may protect showerhead 108 from particles entrained in the process feed and/or assist in redirecting flow of process feed toward outer edges of showerhead volume 108. In some embodiments, impingement plate 1010 may include holes aligned with showerhead distribution holes 114 to avoid formation of a shadow on center portion of a substrate disposed beneath impingement plate 1010. As shown in FIG. 10, impingement plate may be fastened to flow expansion structure 1002 by attachment to a retaining position formed on inner surface 1006 and supported by one or more mounting structures 1008. In embodiments that exclude flow expansion structure 1002, impingement plate 1010 may be attached to a suitable retaining position formed on an inner surface of process feed inlet 106.

As the process feed entering showerhead volume 108 via process feed inlet 106 expands, the velocity and flow orientation of the process feed changes. In the embodiment shown in FIG. 10, the process feed spreads radially from process feed inlet 106 toward outer edges of showerhead volume 108 and showerhead distribution holes 114. Without wishing to be bound by theory, a radial pressure distribution may develop within the embodiment of showerhead volume 108 depicted in FIG. 10. This pressure distribution may result from frictional forces as the process feed flows across diffusion surface 1012 and along an upper surface 1014 of showerhead 112. Radial pressure variation may also result from flow of the process feed out of showerhead volume 108 via showerhead distribution holes 114. In turn, the process feed velocity may diminish as the distance from the process feed inlet 106 increases. Further, because various species within the process feed, such as reactant gases and carrier gases, may have different molecular weights, diffusion rates of those species within showerhead volume 108 may also be affected by local changes in pressure and gas density. Consequently, process feed distribution to the substrate may be time and position variant, potentially leading to substrate non-uniformity defects.

Accordingly, in some embodiments, showerhead volume 108 may be contoured to enhance the flow of the process feed toward the radial edges of showerhead volume 108. In the embodiment shown in FIG. 10, diffusion surface 1012 includes a radially symmetric profile with respect to an axial centerline of the process feed inlet 106, so that diffusion surface 1012 becomes closer to showerhead 112 as a distance from the axial centerline of the process feed inlet 106 increases. In other words, the surfaces of gas channel plate 110 and showerhead 112 are closer together at the outer edges of showerhead volume 108 than they are at a central region of showerhead volume 108. Thus, as portions of the process feed are distributed via showerhead distribution holes 114, the process feed pressure within a fluid element moving radially outward in showerhead volume 108 may remain approximately constant (within an acceptable tolerance). In turn, the velocity and concentration characteristics of that fluid element may remain approximately constant.

While the embodiment in FIG. 10 shows contours of showerhead volume 108 formed by diffusion surface 1012 of gas channel plate 110, it will be appreciated that some embodiments of showerhead volume 108 may include contours formed in gas channel plate 110 and/or showerhead 112. For example, FIG. 11 schematically shows a sectioned isometric view of another embodiment of a showerhead volume 1100 formed between an upper surface 1102 of showerhead 112 and a diffusion surface 1104 of gas channel plate 110. In the embodiment shown in FIG. 11, upper surface 1102 and diffusion surface 1104 are depicted as being parallel with one another, each surface including a radially symmetric profile with respect to an axial centerline of the process feed inlet 106, so that the surfaces remain the same distance apart as a distance from the axial centerline of the process feed inlet 106 increases. For example, in some embodiments, the distance between upper surface 1102 and a lower surface 1150 of showerhead 112 defining an upper surface of process environment 116 may be contoured to provide a preselected residence time distribution of fluid flowing through showerhead distribution holes 114. In one non-limiting scenario, the distance between upper surface 1102 and lower surface 1150 may be configured so that a residence time of a fluid element flowing through a showerhead distribution hole 114 at the center of showerhead 112 (shown in FIG. 11 at 114a) may be within ten percent of a residence time of a fluid element flowing through a showerhead distribution hole 114 positioned at an outer edge of showerhead 112 (shown at 114b). In some settings, providing a constant residence time (within an acceptable tolerance) for fluid flowing within showerhead distribution holes 114 may provide an approximately constant delivery of reactive process feed to the surface of the substrate. In turn, film deposition on the substrate may have enhanced thickness uniformity. In still other embodiments, the diffusion surface of gas channel plate 110 may be configured as a plane surface while a surface of showerhead 112 exposed to showerhead volume 108 may be contoured.

It will be appreciated that almost any suitable contour may be applied to the showerhead volumes described herein without departing from the scope of the present disclosure. In some embodiments, a linearly-shaped radially symmetric profile may be formed on a portion of diffusion surface 1012 and/or upper surface 1014 of the showerhead exposed to showerhead volume 108, the linearly-shaped portion being disposed at an angle of between 0 and 5 degrees with respect to a reference plane positioned parallel with the substrate, such as a reference plane defining a widest portion of showerhead volume 108. For example, where diffusion surface 1012 of gas channel plate 110 is contoured, the linearly shaped portion may be formed at a negative angle of between 0 and −5 degrees with respect to the reference plane. Where upper surface 1014 of showerhead 112 is contoured, the linearly-shaped portion may be formed at a positive angle of between 0 and 5 degrees with respect to the reference plane. Thus, in the embodiment shown in FIG. 10, diffusion surface 1012 may have linear portion being disposed at an angle of between 0 and −5 degrees with respect to a reference plane defining a widest portion of showerhead volume 108. In the embodiment shown in FIG. 11, diffusion surface 1104 may have linear portion being disposed at an angle of between 0 and −5 degrees and upper surface 1102 may have linear portion being disposed at an angle of between 0 and +5 degrees with a reference plane defining a widest portion of showerhead volume 108.

In some other embodiments, non-linear shapes may be formed into portions of a diffusion surface and/or surfaces of a showerhead exposed to a showerhead volume. For example, a portion of a diffusion surface may exhibit a Gaussian-shaped or bell-shaped profile when viewed in cross-section with respect to a reference plane positioned parallel to a substrate, such as a reference plane defining a widest portion of a showerhead volume. The various contours described herein may be formed over any suitable portion of the surfaces on which they are formed. For example, a contour formed on gas channel plate 110 and/or showerhead 112 may be formed so that more than 95% of a surface of respective part exhibits a contour as described herein. Such contours may be formed in almost any suitable manner. For example, the contours may be formed by milling, casting, water jet cutting and/or laser cutting.

While the embodiments illustrated in the figures depict contoured surfaces of example showerheads 112 and gas channel plates 110 that are integrated into those respective items, it will be understood that in some embodiments contoured surfaces may be prepared as separate parts that may be installed into and removed from their respective parts. For example, a first set of contours configured for a first process chemistry may be fitted to a gas channel plate 110 and/or a showerhead 112 and later removed and replaced by a second set of contours configured for a second process chemistry. This may allow for the rapid development and testing of various contours, for example using suitable three-dimensional printing technology, without the replacement of entire showerhead and/or gas channel plate assemblies.

As shown in FIGS. 10 and 11, showerhead 112 includes an annular exhaust passage 1016 integrated within a single body. Annular exhaust passage 1016 conducts the process exhaust from substrate process environment 116 via process exhaust outlet 126 toward upper reactor exhaust 132 (as shown in FIG. 1).

In some embodiments, showerhead 112 may comprise an exhaust body configured to gather process exhaust that is separate from a body that distributes the process feed to the substrate. While a single-body showerhead may potentially avoid some dead volumes formed near the outer region of process environment 116, it will be appreciated that a two-piece showerhead may offer other advantages. For example, a two-piece showerhead 112 may allow differently profiled gas distribution bodies to be retrofitted to semiconductor process module 100 without moving the exhaust collection body. In turn, re-calibration of a gap included in the process exhaust outlet 126 may be minor relative to procedures for replacement of a single-body showerhead. FIG. 12 schematically shows a section isometric view of an embodiment of a two-piece showerhead 1200 including a gas distribution body 1202 and an annularly-shaped exhaust passage body 1204. As shown in FIG. 12, gas distribution body 1202 includes a plurality of showerhead distribution holes 114 that distribute process feed to substrate process environment 116. In the embodiment illustrated in FIG. 12, gas distribution body 1202 is sealed to gas channel plate 110 via gasket 402 and to exhaust passage body 1204 via gasket 1206. In some embodiments, gasket 1206 may be positioned within a predetermined distance of process environment 116, which may reduce the potential to trap ambient gases between gas distribution body 1202 and exhaust passage body 1204. Exhaust passage body 1204 is depicted as being sealed to purge plate 130 via gasket 906. Exhaust passage body 1204 includes an annular exhaust passage 1208 that conducts process exhaust from process environment 116 via a gap formed between exhaust passage body 1204 and flow control ring 128.

Some low vapor pressure species included in process feeds supplied to a substrate during substrate processing may condense on process surfaces under some process conditions. For example, some species may condense on surfaces within showerhead volume 108. Accordingly, in some embodiments, semiconductor process module 100 may include heat exchange structures thermally coupled with showerhead volume 108 to adjust a temperature of showerhead volume 108. As used herein, being thermally coupled means that causing a change in temperature of at a heat exchange structure will cause in a change in temperature at a surface of showerhead volume 108 and vice-versa. Such temperature changes may be determined by various suitable techniques, such as infrared- or thermocouple-based temperature measurement techniques.

Such heat exchange structures may be included on a heat exchange surface of gas channel plate 110 that project into a heat exchange fluid. Other heat exchange mechanisms, such as heaters, may also be thermally coupled with showerhead volume 108. In turn, the temperature of showerhead volume 108 may be adjusted during substrate processing so that process feed condensation might potentially be avoided.

FIG. 13 schematically shows a close-up sectioned isometric view of a portion of an embodiment of gas channel plate 110. The embodiment shown in FIG. 13 depicts a heater groove included in gas channel plate 110, shown as heater groove 1302a. A heater is included in the heater groove, shown as heater 1304a. Heater 1304a provides heat to gas channel plate 110 and to various surfaces in thermal contact with gas channel plate 110, such as diffusion surface 1012, showerhead 112, and so on. In turn, condensation of process feed on diffusion surface 1012, flow expansion structure 1002 (shown in FIG. 10), and/or surfaces of showerhead volume 108 may potentially be avoided.

In some embodiments, a plurality of heaters may be provided in gas channel plate 110 and showerhead 112, each controlled and powered independently from one another. For example, FIG. 13 shows a heater 1304b included in a heater groove 1302b included in showerhead 112, heater 1304b being independent from and controlled separately from heater 1304a. Such an arrangement may be used to provide locational “zone” heating to different portions of gas channel plate 110 and/or showerhead 112. In combination with suitable heater control, zone heating permit the creation of various temperature profiles within showerhead volume 108, showerhead 112, and gas channel plate 110. For example, gas channel plate 110 may be maintained at a lower temperature than showerhead 112, potentially preventing the accumulation of reaction byproducts in exhaust passage 1016. As another example, an arrangement of annularly-nested independently-zoned heaters provided within gas channel plate 110 may allow the creation of a radial temperature profile extending from process feed inlet 106 toward the outer edges of showerhead volume 108. In turn, a central region of showerhead volume 108 may be maintained at a comparatively higher temperature than the outer edges. This approach may potentially prevent condensation of a low-vapor pressure process species near process feed inlet 106, where the partial pressure of that species may be higher.

It will be understood that almost any suitable heater may be employed without departing from the scope of the present disclosure. In some embodiments, a flexible, cable-style heater may be provided that is configured to fit into a heater groove cut into gas channel plate 110. In some embodiments, a heater may include positive temperature coefficient materials configured to exhibit an increase in electrical resistance as temperature increases beyond a predetermined threshold, potentially reducing a risk of damage from temperature excursions exceeding a predetermined ceiling relative to alternate style heaters. In the embodiment shown in FIG. 13, a heater is powered by electricity supplied via a heater power connection 1306 which receives power from a heater controller via a heater power lead (shown as heater power lead 1308 in FIGS. 10-12).

As introduced above, a heater groove is formed into gas channel plate 110 and/or showerhead 112 to receive heat from a heater. Viewed as a cross-section, the sidewalls and bottom of a heater groove may make contact with a heater at several locations, potentially improving heat transfer from heater relative to configurations where a heater makes contact on one side only, such as a heater resting on a surface. It will be understood that the heater groove may be formed into gas channel plate 110 and/or showerhead 112 in virtually any suitable manner. For example, a heater groove may be milled and/or cast in some embodiments. Further, the heater groove may be shaped into virtually any suitable form. Non-limiting examples of shapes for a heater groove include annular, serpentine paths having twists in at least two directions, and spiral paths that may or may not include branches. Such shapes may be arranged in almost any suitable position within gas channel plate 110 and/or showerhead 112. For example, in some embodiments, heater grooves may be positioned around a center of gas channel plate 110 and/or showerhead 112 in a radially-symmetric arrangement.

In some embodiments, a retainer, shown as retainers 1310a and 1310b in FIG. 13, may be provided above heater 1304a and 1304b, respectively to apply a downward force to the heaters, potentially enhancing conduction between the heater groove and the heater. Further, in some of such embodiments, the retainer may have heat transfer properties that further enhance heat transfer from the heater to gas channel plate 110 and/or showerhead 112. For example, the retainer may be formed from a flexible aluminum wire that may help conduct heat from a top surface of the heater to upper sidewalls of the heater groove.

Additionally or alternatively, in some embodiments, a temperature of gas channel plate 110 may be adjusted using a suitable heat exchange fluid supplied to heat exchange surfaces thereon. For example, in one scenario, cool air may be provided to moderate heating provided by the heater. In another scenario, warm air may be provided in place of or to supplement heating provided by the heater. In each scenario, use of a heat exchange fluid may potentially smooth a thermal profile within gas channel plate 110, so that hot and/or cold spots may be avoided. Virtually any suitable heat exchange fluid may be employed without departing from the scope of the present disclosure. Example suitable heat exchange fluids include, but are not limited to, gases like air and nitrogen, and liquids like water and heat transfer oils.

The embodiment depicted in FIG. 13 shows a plurality of heat exchange structures 1312 separated from one another by gaps 1314 on a heat exchange surface 1316 of gas channel plate 110. Heat exchange structures 1312 and gaps 1314 provide surface area for heat transfer and flow space, respectively, for the heat exchange fluid.

It will be understood that heat exchange structures 1312 may have almost any suitable shape. The embodiment shown in FIG. 13 illustrates heat exchange structures 1312 as rectangularly-shaped, block-like structures projecting outward from heat exchange surface 1316. In some embodiments, heat exchange structures 1312 may be rectangular prisms that are 4 mm wide by 6 mm deep, within an acceptable tolerance, and that may have heights that vary between 12 mm and 5 mm, so that the volume of heat exchange structures 1312 may vary with position as described in more detail below. In some embodiments, gaps 1314 between heat exchange structures 1312 may be approximately 6-7 mm wide. Additionally or alternatively, in some embodiments, gaps 1314 may be sized so that they are no wider than one-half of a thickness of gas channel plate 110 at a location on gas channel plate 110 where heat exchange structures 1312 are positioned on gas channel plate 110. For example, in some embodiments, gaps 1314 may be sized according to a preselected ratio defined as of a distance from a base of heat exchange structure 1312 to diffusion surface 1012 divided by a distance between adjacent heat exchange structures 1312. In some embodiments, the ratio may be greater than 2. For example, in some non-limiting scenarios, the ratio may be in a range between 3 and 5. Spacing heat exchange structures 1312 in this way may avoid the formation of local hot and/or cold spots on diffusion surface 1012. Other non-limiting heat exchange structures may include outwardly projected fin- or vane-shaped structures, honeycomb or mesh type baffled structures, and stacked plates.

In some embodiments, the volume of heat exchange structures 1312 may vary according to a radial position on heat exchange surface 1316. By varying the volume according to radial position, it is possible that the amount of heat exchanged with the heat exchange fluid may be regulated. In the embodiment shown in FIG. 13, volume of heat exchange structures 1312 increases with radial distance from a center of gas channel plate 110. In one scenario according to this embodiment, less heat may be transferred to the heat exchange fluid near the center of the gas channel plate relative to an amount of heat transferred near the outer edge. As a result, the center region of the diffusion surface may be maintained at a comparatively higher temperature than the outer region. This approach may potentially prevent condensation of a low-vapor pressure process species near the process feed inlet, where the partial pressure of that species may be higher. Further, by transitioning to a lower temperature near the outer edge of the diffusion surface, the defect generation caused by gas phase reactions may potentially be avoided.

Heat exchange structures 1312 may be formed in any suitable manner and from any suitable material. For example, in some embodiments, heat exchange structures 1312 may be formed from aluminum, stainless steel, or titanium. Heat exchange structures 1312 may also be formed during fabrication of gas channel plate 110 or added at a later time. For example, in some embodiments, heat exchange structures 1312 may be machined into gas channel plate 110. In some other embodiments, heat exchange structures 1312 may be separate parts that may be added, subtracted, and rearranged on heat exchange surface 1316.

Heat exchange structures 1312 may be distributed in virtually any suitable arrangement on gas channel plate 110. In the embodiment shown in FIG. 13, heat exchange structures 1312 are distributed in an annular region, being radially arranged about a centerline of gas channel plate 110. FIG. 3 and FIGS. 10-12 also show examples of heat exchange structures 1312 arranged in circular patterns around process feed inlet 106 in an annular region of gas channel plate 110.

As shown in FIG. 13, heat exchange structures 1312 project into a heat exchange fluid channel 1318 formed between heat exchange surface 1316 and a heat exchange fluid director plate 1320 supported by a heat exchange fluid director plate support surface of gas channel plate 110. Thus, heat exchange fluid director plate 1320 and gas channel plate 110 form a heat exchanger in the region of heat exchange fluid channel 1318, where heat exchange fluid director plate 1320 directs heat exchange fluid in between of heat exchange structures 1312 and also across the tops of at least a portion of heat exchange structures 1312.

The broad flow direction arrows illustrated in FIG. 13 depict an example flow of heat exchange fluid from an inlet 1324 into heat exchange fluid channel 1318 where heat is exchanged with heat exchange structures 1312 and then exhausted via an outlet 1326. By arranging heat exchange structures 1312 in circular patterns around a center of gas channel plate 110 and directing the heat exchange fluid radially outward from inlet 1324, the heat exchange fluid flowing in heat exchange fluid channel 1318 may flow co-currently with process feed flowing within showerhead volume 108. Consequently, a temperature of the process feed at the edge of showerhead volume 108 may be at least as great as a temperature of the heat exchange fluid exiting outlet 1326. This may potentially avoid decomposition reactions within the process feed or on the various surfaces defining showerhead volume 108.

While the flow direction arrows in FIG. 13 depict a flow of heat exchange fluid flowing radially outward in a circularly symmetric flow, it will be appreciated that virtually any suitable flow of heat exchange fluid may be employed without departing from the scope of the present disclosure. For example, in some embodiments, heat exchange fluid may be directed radially inward from an outer edge of gas channel plate 110 toward island 312. In some of such embodiments, the locations of inlet 1324 and outlet 1326 may be reversed or otherwise suitable relocated. In still other embodiments, heat exchange fluid may be directed in other directions around and/or across heat exchange surface 1316 so that it flows around and/or above heat exchange structures 1312.

In some embodiments, heat exchange fluid director plate 1320 may be included in heat exchange plenum assembly 204. Heat exchange plenum assembly 204 may provide ambient air as a heat exchange fluid to heat exchange surface 1316 via heat exchange fluid channel 1318 and then exhaust the air back into the ambient environment. FIG. 14 schematically shows heat exchange plenum assembly 204 fluidly coupled to an embodiment of a blower 1402 by a flexible duct 1404. As shown in FIG. 14, blower 1402 draws ambient air into intake 1406. The air is delivered by flexible duct 1404 to heat exchange plenum assembly 204. After passing over the heat exchange surface of the gas channel plate (not shown), the air is exhausted via exhaust holes 1408 into the ambient environment.

FIG. 15 schematically shows an exploded isometric view of an embodiment of a heat exchange plenum assembly 1500. As shown in FIG. 15, heat exchange plenum assembly 1500 includes a heat exchange fluid director plate 1502 and a cover plate 1504. Heat exchange fluid director plate 1502 includes a ring-shaped inner wall 1506, a ring-shaped outer wall 1508 having a larger diameter than inner wall 1506, and a floor ring 1510 that connects inner wall 1506 and outer wall 1508. Outer wall 1508 includes opening 1512 to receive an inlet duct 1514 coupled to a blower (not shown). Inlet duct 1514 may include an optional switch 1516 used to control the blower. Floor ring 1510 includes one or more openings adjacent to inner wall 1506 that form inlets 1518.

In some embodiments, heat exchange fluid director plate 1502 is configured to be supported by a heat exchange fluid director plate support surface included on gas channel plate 110. For example, in some embodiments, inner wall 1506 may be sized to fit snugly about and/or be physically connected with island 312 of gas channel plate 110 for supporting heat exchange fluid director plate 1502. Additionally or alternatively, in some embodiments, heat exchange fluid director plate 1502 may be supported by island 312 via retainer 1520 and/or cover plate 1504. By supporting heat exchange fluid director plate 1502 on island 312, floor ring 1510 of heat exchange fluid director plate 1502 may be spaced from heat exchange surface 1316 of gas channel plate 110 so that heat exchange fluid channel 1318 is formed above heat exchange structures 1312. In turn, heat exchange fluid flowing in heat exchange fluid channel 1318 may flow between and above heat exchange structures 1312 while flowing from inlet 1324 to outlet 1326, as shown in FIG. 13. Consequently, heat exchange fluid channel 1318 may accommodate heat exchange structures 1312 of varying heights as described above, and may also exchange heat along top surfaces of heat exchange structures 1312 in contact with the heat exchange fluid.

Returning to FIG. 15, in some embodiments, one or more inlets 1518 may be distributed around a base of inner wall 1506, so that heat exchange fluid may be supplied in an annular flow to gas channel plate 110. In such embodiments, the assembly of heat exchange fluid director plate 1502 to cover plate 1504 via retainer 1520 and gasket 1522 forms an annular fluid flow space between inner wall 1506, outer wall 1508, cover plate 1504, and floor ring 1510. Thus, a heat exchange fluid may enter via opening 1512, travel around the annular flow space, and be distributed to heat exchange fluid channel 1318 via inlets 1518 where it may be redirected to travel radially outward toward the edges of gas channel plate 110. For example, FIG. 16 schematically shows a sectioned isometric view of an embodiment of a portion of inlet duct 1514 directing air toward an annular region 1602 formed between heat exchange fluid director plate 1502 and cover plate 1504. In the embodiment shown in FIG. 16, air flows radially outward from annular region 1602 via heat exchange fluid channel 1318 where it is exhausted from semiconductor process module 100 via exhaust holes 1408.

In some embodiments, heat exchange plenum assembly 1500 may include a flow restrictor positioned at outlet 1326 of heat exchange fluid channel 1318 and configured to adjust the flow of heat exchange fluid therein. For example, FIG. 15 shows an embodiment of a flow restrictor ring 1524 coupled to heat exchange fluid director plate 1502. As shown in FIG. 15, flow restrictor ring 1524 includes at least one restriction orifice 1526 positioned to restrict flow through outlet 1326 and a clearance opening 1528 configured to receive inlet duct 1514.

In some embodiments, the height of flow restrictor ring 1524 may be adjusted to vary the heat exchange characteristics of heat exchange fluid channel 1318. For example, given constant inlet and outlet cross-sectional areas, increasing the height of flow restrictor ring 1524 may increase the residence time of the heat exchange fluid within the heat exchange fluid channel 1318, potentially varying the radial temperature profile of the gas channel plate. It will be appreciated that adjustments to the cross-sectional areas of the inlet and outlet may have a similar effect.

It will be appreciated that thermal management of showerhead volume 108 may be systematically controlled by suitable temperatures sensors and heater and/or heat exchanger controllers in some embodiments. Thus, a temperature of gas channel plate 110, showerhead 112, flow expansion structure 1002 and/or other portions of semiconductor process module 100 thermally coupled with showerhead volume 108 may be adjusted during substrate processing, potentially avoiding condensation and/or gas phase reactions of the process feed.

For example, FIG. 16 shows a temperature sensor 1604 included in showerhead 112 and thermally coupled with showerhead volume 108. While temperature sensor 1604 is physically positioned in showerhead 112 in the embodiment shown in FIG. 16, it will be appreciated that one or more temperature sensors 1604 may be provided at suitable locations in showerhead 112 and/or gas channel plate 110. In some embodiments, a plurality of temperature sensors 1604 may be provided in various locations around showerhead 112 and/or gas channel plate 110 to provide a thermal map of those parts and nearby portions of showerhead volume 108. Virtually any suitable temperature sensor 1604 may be employed without departing from the scope of the present disclosure. Non-limiting examples include bi-junction thermocouples and resistance thermometers.

Temperature information collected by one or more temperature sensors 1604 may be provided to a thermal controller 1606 with which the temperature sensors 1604 are electrically connected. In some embodiments, thermal controller 1606 may include a heater controller for controlling heaters 1304 and/or a blower controller for controller blower 1402. In some embodiments, thermal controller 1606 may be included in system controller 202. In turn, thermal controller 1606 may adjust power supplied to heater 1304 via heater power connection 1306. Additionally or alternatively, in some embodiments, thermal controller 1606 may adjust operation of blower 1402 in response to temperature information provided by temperature sensors 1604. For example, thermal controller 1606 may turn blower 1402 off or on or vary the blower speed to adjust an amount of air delivered.

It will be understood that the hardware described herein may be used to adjust the temperature of the process feeds a showerhead volume in a semiconductor processing module and, in turn, deliver the process feeds from the showerhead volume to the substrate to process a substrate within the module.

FIG. 17 shows a flow chart for an embodiment of a method 1700 for processing a substrate in a processing environment of a reactor included in semiconductor processing module. Method 1700 may be performed by any suitable hardware and software. It will be appreciated that portions of the processes described in method 1700 may be omitted, reordered, and/or supplemented without departing from the scope of the present disclosure.

Method 1700 includes, at 1702, supporting the substrate with a susceptor within the reactor and, at 1704, supplying process feed to the reactor via a showerhead positioned above the substrate. For example, in an ALD process, the process feed may be supplied to the reactor via the showerhead so that a suitable coverage of a surface active species derived from the process feed is generated on a process surface of the substrate.

At 1706, method 1700 includes adjusting a temperature of the process feed within a showerhead volume upstream of the showerhead by supplying a heat exchange fluid to a heat exchange fluid channel into which a plurality of heat exchange structures extend so that the heat exchange fluid flows between and above the heat exchange structures within the heat exchange fluid channel, the heat exchange structures being thermally coupled with the showerhead volume.

In some embodiments, adjusting the temperature at 1706 may include, at 1708, receiving a temperature of a heat exchange surface from which the heat exchange structures extend from a temperature sensor thermally coupled with the heat exchange surface. For example, process feed temperature information may be received from one or more temperature sensors. If a temperature of the process feed is judged to be too low relative to a predetermined temperature, action may be taken to raise the temperature of the heat exchange surface so that a temperature of the process feed within the showerhead may be raised. Alternatively, if a temperature of the heat exchange surface is judged to be too high relative to a predetermined temperature, a different action may be taken to lower the temperature of the heat exchange surface so that the temperature of the process feed within the showerhead volume may be lowered.

For example, in some embodiments, method 1700 may include, at 1710, adjusting a power supplied to a heating element included in the heat exchange surface. In a scenario where the heat exchange surface exceeds the predetermined temperature, the power supplied to the heater may be reduced. Alternatively, in a scenario where the heat exchange surface is less than the predetermined temperature, the power supplied to the heater may be increased. It will be appreciated that almost any suitable method of controlling the heater power may be employed without departing from the scope of the present disclosure, including control schemes that include one or more of proportional, derivative, and integral elements.

As another example, in some embodiments, method 1700 may include, at 1712, adjusting power supplied to a blower or pump configured to supply heat exchange fluid to the heat exchange surface. In a scenario where the heat exchange surface exceeds the predetermined temperature, the power supplied to the blower or pump may be reduced. Alternatively, in a scenario where the heat exchange surface is less than the predetermined temperature, the power supplied to the blower or pump may be increased. It will be appreciated that almost any suitable method of controlling the blower or pump power may be employed without departing from the scope of the present disclosure, including control schemes that include one or more of proportional, derivative, and integral elements.

In some embodiments, the heater and the blower or pump may be operated concurrently. For example, in one scenario, a blower may provide cool air continuously while a heater power is adjusted to vary heat input to the heat exchange surface. In another scenario, a heater may provide a continuous heat input while a blower power is adjusted to vary cooling provided to the heat exchange surface. In yet another scenario, both heater and blower power may be adjusted concurrently to control heating and cooling of the heat exchange surface.

In some embodiments, method 1700 may be performed by a system process controller comprising a data-holding subsystem comprising instructions executable by a logic subsystem to perform the processes described herein. Virtually any suitable system process controller may be employed without departing from the scope of the present disclosure.

For example, FIG. 2 shows an embodiment of a system process controller 202 provided for controlling semiconductor process module 100. System process controller 202 may operate process module control subsystems, such as gas control subsystems, pressure control subsystems, temperature control subsystems, electrical control subsystems, and mechanical control subsystems. Such control subsystems may receive various signals provided by sensors, relays, and controllers and make suitable adjustments in response.

System process controller 202 comprises a computing system that includes a data-holding subsystem and a logic subsystem. The data-holding subsystem may include one or more physical, non-transitory, devices configured to hold data and/or instructions executable by the logic subsystem to implement the methods and processes described herein. The logic subsystem may include one or more physical devices configured to execute one or more instructions stored in the data-holding subsystem. The logic subsystem may include one or more processors that are configured to execute software instructions.

In some embodiments, such instructions may control the execution of process recipes. Generally, a process recipe includes a sequential description of process parameters used to process a substrate, such parameters including time, temperature, pressure, and concentration, etc., as well as various parameters describing electrical, mechanical, and environmental aspects of the tool during substrate processing. The instructions may also control the execution of various maintenance recipes used during maintenance procedures and the like. In some embodiments, such instructions may be stored on removable computer-readable storage media, which may be used to store and/or transfer data and/or instructions executable to implement the methods and processes described herein. It will be appreciated that any suitable removable computer-readable storage media may be employed without departing from the scope of the present disclosure. Non-limiting examples include DVDs, CD-ROMs, floppy discs, and flash drives.

It is to be understood that the configurations and/or approaches described herein are exemplary in nature, and that these specific embodiments or examples are not to be considered in a limiting sense, because numerous variations are possible. The specific routines or methods described herein may represent one or more of any number of processing strategies. Thus, the various acts illustrated may be performed in the sequence illustrated, in other sequences, or omitted in some cases.

The subject matter of the present disclosure includes all novel and nonobvious combinations and subcombinations of the various processes, systems and configurations, and other features, functions, acts, and/or properties disclosed herein, as well as any and all equivalents thereof.

Claims

1. A semiconductor process module comprising a reactor, wherein the reactor comprises:

a gas channel plate, the gas channel plate comprising:
a heat exchange surface including a plurality of heat exchange structures separated from one another by intervening gaps;
a heat exchange fluid director plate support surface for supporting a heat exchange fluid director plate above the plurality of heat exchange structures so that at least a portion of the plurality of heat exchange structures are spaced from the heat exchange fluid director plate; and
a purge gas channel fluidly communicating with an ambient environment at a location between the ambient environment and a gasket disposed between a showerhead and the gas channel plate.

2. The semiconductor process module of claim 1, further comprising a process feed inlet for supplying a process feed to a showerhead volume formed between a diffusion surface disposed opposite the heat exchange surface and the showerhead sealably coupled to the gas channel plate.

3. The semiconductor process module of claim 2, where the process feed inlet includes a flow expansion structure upstream of the process feed inlet, the flow expansion structure being aligned with a centerline of the process feed inlet.

4. The semiconductor process module of claim 3, where the flow expansion structure includes a concentric conical expansion formed on an inner surface of the flow expansion structure.

5. The semiconductor process module of claim 2, further comprising a pulse valve manifold positioned upstream of the gas channel plate.

6. The semiconductor process module of claim 2, where the diffusion surface has a radially symmetric profile with respect to a centerline of the gas channel plate, the diffusion surface becoming closer to the showerhead as distance from a centerline of the gas channel plate increases.

7. The semiconductor process module of claim 6, where the radially symmetric profile includes a portion of the diffusion surface being disposed at an angle of between 0 and 5 degrees with respect to a reference plane defining a widest portion of the showerhead volume.

8. The semiconductor process module of claim 2, where the diffusion surface has a radially symmetric profile with respect to a centerline of the gas channel plate, where the radially symmetric profile includes a portion of the diffusion surface disposed at an angle of between 0 and 5 degrees with respect to a reference plane defining a widest portion of the showerhead volume, and where an upper surface of the showerhead facing the showerhead volume is spaced from the portion of the diffusion surface so that the portion of the diffusion surface and a respective portion of the upper surface remain a constant distance apart as distance from a centerline of the gas channel plate increases.

9. The semiconductor process module of claim 2, where the gas channel plate is sealably coupled to the showerhead by a gasket positioned within 20 mm of a showerhead distribution hole included in the showerhead.

10. The semiconductor process module of claim 1, further comprising: a heating element disposed in a spiral groove included in the heat exchange surface; a temperature controller electrically connected with the heating element for adjusting a temperature of the heating element in response to a temperature of the heat exchange surface.

11. The semiconductor process module of claim 10, where the showerhead includes a heating element independent from the heating element included in the heat exchange surface.

12. A semiconductor reactor comprising a gas channel plate, wherein the gas channel plate comprises:

a heat exchange surface including a plurality of heat exchange structures separated from one another by intervening gaps;
a heat exchange fluid director plate support surface for supporting a heat exchange fluid director plate above the plurality of heat exchange structures so that at least a portion of the plurality of heat exchange structures are spaced from the heat exchange fluid director plate; and
a purge gas channel fluidly communicating with an ambient environment at a location between the ambient environment and a gasket disposed between a showerhead and the gas channel plate.

13. The semiconductor reactor of claim 12, further comprising a process feed inlet for supplying a process feed to a showerhead volume formed between a diffusion surface disposed opposite the heat exchange surface and the showerhead sealably coupled to the gas channel plate.

14. The semiconductor reactor of claim 13, where the process feed inlet includes a flow expansion structure upstream of the process feed inlet, the flow expansion structure being aligned with a centerline of the process feed inlet.

15. The semiconductor reactor of claim 14, where the flow expansion structure includes a concentric conical expansion formed on an inner surface of the flow expansion structure.

16. A processing tool comprising the semiconductor process module of claim 1.

17. A gas channel plate for a semiconductor process module, the gas channel plate comprising:

a heat exchange surface including a plurality of heat exchange structures separated from one another by intervening gaps;
a heat exchange fluid director plate support surface for supporting a heat exchange fluid director plate above the plurality of heat exchange structures so that at least a portion of the plurality of heat exchange structures are spaced from the heat exchange fluid director plate; and
a purge gas channel fluidly communicating with an ambient environment at a location between the ambient environment and a gasket disposed between a showerhead and the gas channel plate.
Referenced Cited
U.S. Patent Documents
D56051 August 1920 Cohn
2161626 June 1939 Loughner et al.
2745640 May 1956 Cushman
2990045 September 1959 Root
3089507 May 1963 Drake et al.
3833492 September 1974 Bollyky
3854443 December 1974 Baerg
3862397 January 1975 Anderson et al.
3887790 June 1975 Ferguson
4054071 October 18, 1977 Patejak
4058430 November 15, 1977 Suntola et al.
4134425 January 16, 1979 Gussefeld et al.
4145699 March 20, 1979 Hu et al.
4176630 December 4, 1979 Elmer
4181330 January 1, 1980 Kojima
4194536 March 25, 1980 Stine et al.
4322592 March 30, 1982 Martin
4389973 June 28, 1983 Suntola et al.
4393013 July 12, 1983 McMenamin
4401507 August 30, 1983 Engle
4414492 November 8, 1983 Hanlet
4436674 March 13, 1984 McMenamin
4499354 February 12, 1985 Hill et al.
4512113 April 23, 1985 Budinger
4570328 February 18, 1986 Price et al.
4579623 April 1, 1986 Suzuki et al.
D288556 March 3, 1987 Wallgren
4653541 March 31, 1987 Oehlschlaeger et al.
4654226 March 31, 1987 Jackson et al.
4681134 July 21, 1987 Paris
4718637 January 12, 1988 Contin
4722298 February 2, 1988 Rubin et al.
4735259 April 5, 1988 Vincent
4753192 June 28, 1988 Goldsmith et al.
4780169 October 25, 1988 Stark et al.
4789294 December 6, 1988 Sato et al.
4821674 April 18, 1989 deBoer et al.
4827430 May 2, 1989 Aid et al.
4837185 June 6, 1989 Yau et al.
4854263 August 8, 1989 Chang et al.
4857137 August 15, 1989 Tashiro et al.
4857382 August 15, 1989 Sheng et al.
4882199 November 21, 1989 Sadoway et al.
4985114 January 15, 1991 Okudaira
4986215 January 22, 1991 Yamada
4987856 January 29, 1991 Hey
4991614 February 12, 1991 Hammel
5013691 May 7, 1991 Lory et al.
5028366 July 2, 1991 Harakal et al.
5060322 October 29, 1991 Delepine
5062386 November 5, 1991 Christensen
5074017 December 24, 1991 Toya et al.
5116018 May 26, 1992 Friemoth et al.
D327534 June 30, 1992 Manville
5119760 June 9, 1992 McMillan et al.
5167716 December 1, 1992 Boitnott et al.
5178682 January 12, 1993 Tsukamoto et al.
5183511 February 2, 1993 Yamazaki et al.
5192717 March 9, 1993 Kawakami
5194401 March 16, 1993 Adams et al.
5199603 April 6, 1993 Prescott
5221556 June 22, 1993 Hawkins et al.
5242539 September 7, 1993 Kumihashi et al.
5243195 September 7, 1993 Nishi
5288684 February 22, 1994 Yamazaki et al.
5306946 April 26, 1994 Yamamoto
5326427 July 5, 1994 Jerbic
5354580 October 11, 1994 Goela et al.
5356478 October 18, 1994 Chen et al.
5380367 January 10, 1995 Bertone
5382311 January 17, 1995 Ishikawa et al.
5404082 April 4, 1995 Hernandez et al.
5415753 May 16, 1995 Hurwitt et al.
5421893 June 6, 1995 Perlov
5422139 June 6, 1995 Shinriki et al.
5430011 July 4, 1995 Tanaka et al.
5447570 September 5, 1995 Schmitz
5494494 February 27, 1996 Mizuno et al.
5496408 March 5, 1996 Motoda et al.
5504042 April 2, 1996 Cho et al.
5518549 May 21, 1996 Hellwig
5527417 June 18, 1996 Iida et al.
5531835 July 2, 1996 Fodor et al.
5574247 November 12, 1996 Nishitani et al.
5589002 December 31, 1996 Su
5589110 December 31, 1996 Motoda et al.
5595606 January 21, 1997 Fujikawa et al.
5601641 February 11, 1997 Stephens
5604410 February 18, 1997 Vollkommer et al.
5616947 April 1, 1997 Tamura
5632919 May 27, 1997 MacCracken et al.
D380527 July 1, 1997 Velez
5679215 October 21, 1997 Barnes et al.
5681779 October 28, 1997 Pasch et al.
5683517 November 4, 1997 Shan
5695567 December 9, 1997 Kordina
5718574 February 17, 1998 Shimazu
5728223 March 17, 1998 Murakarni et al.
5730801 March 24, 1998 Tepman et al.
5732744 March 31, 1998 Barr et al.
5736314 April 7, 1998 Hayes et al.
5781693 July 14, 1998 Balance et al.
5796074 August 18, 1998 Edelstein et al.
5801104 September 1, 1998 Schuegraf et al.
5819434 October 13, 1998 Herchen et al.
5827757 October 27, 1998 Robinson, Jr. et al.
5836483 November 17, 1998 Disel
5837320 November 17, 1998 Hampden-Smith et al.
5853484 December 29, 1998 Jeong
5855680 January 5, 1999 Soininen et al.
5855681 January 5, 1999 Maydan et al.
5873942 February 23, 1999 Park
5877095 March 2, 1999 Tamura et al.
5908672 June 1, 1999 Ryu
5916365 June 29, 1999 Sherman
5920798 July 6, 1999 Higuchi et al.
5968275 October 19, 1999 Lee et al.
5975492 November 2, 1999 Brenes
5979506 November 9, 1999 Aarseth
5997588 December 7, 1999 Goodwin
D419652 January 25, 2000 Hall et al.
6013553 January 11, 2000 Wallace
6015465 January 18, 2000 Kholodenko et al.
6017779 January 25, 2000 Miyasaka
6024799 February 15, 2000 Chen
6035101 March 7, 2000 Sajoto et al.
6042652 March 28, 2000 Hyun
6044860 April 4, 2000 Nue
6050506 April 18, 2000 Guo et al.
6060691 May 9, 2000 Minami et al.
6074443 June 13, 2000 Venkatesh
6083321 July 4, 2000 Lei et al.
6086677 July 11, 2000 Umotoy et al.
6099302 August 8, 2000 Hong et al.
6122036 September 19, 2000 Yamasaki et al.
6124600 September 26, 2000 Moroishi et al.
6125789 October 3, 2000 Gupta et al.
6129044 October 10, 2000 Zhao et al.
6129046 October 10, 2000 Mizuno
6137240 October 24, 2000 Bogdan et al.
6140252 October 31, 2000 Cho et al.
6148761 November 21, 2000 Majewski et al.
6160244 December 12, 2000 Ohashi
6161500 December 19, 2000 Kopacz et al.
6162323 December 19, 2000 Koshimizu et al.
6180979 January 30, 2001 Hofman et al.
6187691 February 13, 2001 Fukuda
6194037 February 27, 2001 Terasaki et al.
6201999 March 13, 2001 Jevtic
6207932 March 27, 2001 Yoo
6250250 June 26, 2001 Maishev et al.
6271148 August 7, 2001 Kao
6274878 August 14, 2001 Li et al.
6287965 September 11, 2001 Kang et al.
D449873 October 30, 2001 Bronson
6296909 October 2, 2001 Spitsberg
6299133 October 9, 2001 Waragai et al.
6302964 October 16, 2001 Umotoy et al.
6303523 October 16, 2001 Cheung
6305898 October 23, 2001 Yamagishi et al.
6312525 November 6, 2001 Bright et al.
6315512 November 13, 2001 Tabrizi et al.
D451893 December 11, 2001 Robson
D452220 December 18, 2001 Robson
6326597 December 4, 2001 Lubomirsky et al.
6329297 December 11, 2001 Balish
6342427 January 29, 2002 Choi et al.
6347636 February 19, 2002 Xia
6350320 February 26, 2002 Sherstinsky
6352945 March 5, 2002 Matsuki
6367410 April 9, 2002 Leahey et al.
6368987 April 9, 2002 Kopacz et al.
6370796 April 16, 2002 Zucker
6372583 April 16, 2002 Tyagi
6374831 April 23, 2002 Chandran
6375312 April 23, 2002 Ikeda et al.
D457609 May 21, 2002 Piano
6383566 May 7, 2002 Zagdoun
6383955 May 7, 2002 Matsuki
6387207 May 14, 2002 Janakiraman
6391803 May 21, 2002 Kim et al.
6398184 June 4, 2002 Sowada et al.
6410459 June 25, 2002 Blalock et al.
6413321 July 2, 2002 Kim et al.
6413583 July 2, 2002 Moghadam et al.
6420279 July 16, 2002 Ono et al.
D461233 August 6, 2002 Whalen
D461882 August 20, 2002 Piano
6435798 August 20, 2002 Satoh
6436819 August 20, 2002 Zhang
6437444 August 20, 2002 Andideh
6446573 September 10, 2002 Hirayama et al.
6450757 September 17, 2002 Saeki
6454860 September 24, 2002 Metzner et al.
6455445 September 24, 2002 Matsuki
6461435 October 8, 2002 Littau
6468924 October 22, 2002 Lee
6472266 October 29, 2002 Yu et al.
6475930 November 5, 2002 Junker et al.
6478872 November 12, 2002 Chae et al.
6482331 November 19, 2002 Lu et al.
6482663 November 19, 2002 Buckland
6483989 November 19, 2002 Okada et al.
6499533 December 31, 2002 Yamada
6503562 January 7, 2003 Saito et al.
6503826 January 7, 2003 Oda
6511539 January 28, 2003 Raaijmakers
6521295 February 18, 2003 Remington
6521547 February 18, 2003 Chang et al.
6528430 March 4, 2003 Kwan
6528767 March 4, 2003 Bagley et al.
6531193 March 11, 2003 Fonash et al.
6531412 March 11, 2003 Conti et al.
6534395 March 18, 2003 Werkhoven et al.
6569239 May 27, 2003 Arai et al.
6573030 June 3, 2003 Fairbairn et al.
6576062 June 10, 2003 Matsuse
6576064 June 10, 2003 Griffiths et al.
6576300 June 10, 2003 Berry et al.
6579372 June 17, 2003 Park
6579833 June 17, 2003 McNallan et al.
6583048 June 24, 2003 Vincent et al.
6590251 July 8, 2003 Kang et al.
6594550 July 15, 2003 Okrah
6598559 July 29, 2003 Vellore et al.
6602346 August 5, 2003 Gochberg
6627503 September 30, 2003 Ma et al.
6632478 October 14, 2003 Gaillard et al.
6633364 October 14, 2003 Hayashi
6635117 October 21, 2003 Kinnard et al.
6638839 October 28, 2003 Deng et al.
6645304 November 11, 2003 Yamaguchi
6648974 November 18, 2003 Ogliari et al.
6649921 November 18, 2003 Cekic et al.
6652924 November 25, 2003 Sherman
6673196 January 6, 2004 Oyabu
6682973 January 27, 2004 Paton et al.
D486891 February 17, 2004 Cronce
6688784 February 10, 2004 Templeton
6689220 February 10, 2004 Nguyen
6692575 February 17, 2004 Omstead et al.
6692576 February 17, 2004 Halpin et al.
6699003 March 2, 2004 Saeki
6709989 March 23, 2004 Ramdani et al.
6710364 March 23, 2004 Guldi et al.
6712909 March 30, 2004 Tometsuka
6716571 April 6, 2004 Gabriel
6730614 May 4, 2004 Lim et al.
6734090 May 11, 2004 Agarwala et al.
6740853 May 25, 2004 Kitayama et al.
6743475 June 1, 2004 Skarp et al.
6743738 June 1, 2004 Todd et al.
6753507 June 22, 2004 Fure et al.
6756318 June 29, 2004 Nguyen et al.
6759098 July 6, 2004 Han
6784108 August 31, 2004 Donohoe et al.
6815350 November 9, 2004 Kim et al.
6820570 November 23, 2004 Kilpela et al.
6821910 November 23, 2004 Adomaitis et al.
6824665 November 30, 2004 Shelnut et al.
6825134 November 30, 2004 Law et al.
6846515 January 25, 2005 Vrtis
6847014 January 25, 2005 Benjamin et al.
6858524 February 22, 2005 Haukka et al.
6858547 February 22, 2005 Metzner
6863019 March 8, 2005 Shamouilian
6864041 March 8, 2005 Brown
6872258 March 29, 2005 Park et al.
6872259 March 29, 2005 Strang
6874480 April 5, 2005 Ismailov
6875677 April 5, 2005 Conley, Jr. et al.
6876017 April 5, 2005 Goodner
6884066 April 26, 2005 Nguyen et al.
6884319 April 26, 2005 Kim
6889864 May 10, 2005 Lindfors et al.
6895158 May 17, 2005 Alyward et al.
6899507 May 31, 2005 Yamagishi et al.
6909839 June 21, 2005 Wang et al.
6911092 June 28, 2005 Sneh
6913796 July 5, 2005 Albano et al.
6930059 August 16, 2005 Conley, Jr. et al.
6935269 August 30, 2005 Lee et al.
6939817 September 6, 2005 Sandhu et al.
6951587 October 4, 2005 Narushima
6953609 October 11, 2005 Carollo
6955836 October 18, 2005 Kumagai et al.
6972478 December 6, 2005 Waite et al.
6974781 December 13, 2005 Timmermans et al.
6976822 December 20, 2005 Woodruff
6984595 January 10, 2006 Yamazaki
6990430 January 24, 2006 Hosek
7021881 April 4, 2006 Yamagishi
7045430 May 16, 2006 Ahn et al.
7049247 May 23, 2006 Gates et al.
7053009 May 30, 2006 Conley, Jr. et al.
7055875 June 6, 2006 Bonora
7071051 July 4, 2006 Jeon et al.
7084079 August 1, 2006 Conti et al.
7088003 August 8, 2006 Gates et al.
7092287 August 15, 2006 Beulens et al.
7098149 August 29, 2006 Lukas
7109098 September 19, 2006 Ramaswamy et al.
7115838 October 3, 2006 Kurara et al.
7122085 October 17, 2006 Shero et al.
7122222 October 17, 2006 Xiao et al.
7129165 October 31, 2006 Basol et al.
7132360 November 7, 2006 Schaeffer et al.
7135421 November 14, 2006 Ahn et al.
7143897 December 5, 2006 Guzman et al.
7147766 December 12, 2006 Uzoh et al.
7153542 December 26, 2006 Nguyen et al.
7163721 January 16, 2007 Zhang et al.
7163900 January 16, 2007 Weber
7172497 February 6, 2007 Basol et al.
7192824 March 20, 2007 Ahn et al.
7192892 March 20, 2007 Ahn et al.
7195693 March 27, 2007 Cowans
7204887 April 17, 2007 Kawamura et al.
7205246 April 17, 2007 MacNeil et al.
7205247 April 17, 2007 Lee et al.
7207763 April 24, 2007 Lee
7208389 April 24, 2007 Tipton et al.
7211524 May 1, 2007 Ryu et al.
7234476 June 26, 2007 Arai
7235137 June 26, 2007 Kitayama et al.
7235482 June 26, 2007 Wu
7235501 June 26, 2007 Ahn et al.
7238596 July 3, 2007 Kouvetakis et al.
7265061 September 4, 2007 Cho et al.
D553104 October 16, 2007 Oohashi et al.
7290813 November 6, 2007 Bonora
7294581 November 13, 2007 Haverkort et al.
7297641 November 20, 2007 Todd et al.
7298009 November 20, 2007 Yan et al.
D557226 December 11, 2007 Uchino et al.
7307178 December 11, 2007 Kiyomori et al.
7312148 December 25, 2007 Ramaswamy et al.
7312162 December 25, 2007 Ramaswamy et al.
7312494 December 25, 2007 Ahn et al.
7323401 January 29, 2008 Ramaswamy et al.
7326657 February 5, 2008 Xia et al.
7327948 February 5, 2008 Shrinivasan
7329947 February 12, 2008 Adachi et al.
7335611 February 26, 2008 Ramaswamy et al.
7354847 April 8, 2008 Chan et al.
7357138 April 15, 2008 Ji et al.
7393418 July 1, 2008 Yokogawa
7393736 July 1, 2008 Ahn et al.
7393765 July 1, 2008 Hanawa et al.
7396491 July 8, 2008 Marking et al.
7399388 July 15, 2008 Moghadam et al.
7402534 July 22, 2008 Mahajani
7405166 July 29, 2008 Liang et al.
7405454 July 29, 2008 Ahn et al.
7414281 August 19, 2008 Fastow
7422775 September 9, 2008 Ramaswamy et al.
7429532 September 30, 2008 Ramaswamy et al.
7431966 October 7, 2008 Derderian et al.
7437060 October 14, 2008 Wang et al.
7442275 October 28, 2008 Cowans
7476291 January 13, 2009 Wang et al.
7479198 January 20, 2009 Guffrey
D585968 February 3, 2009 Elkins et al.
7489389 February 10, 2009 Shibazaki et al.
7498242 March 3, 2009 Kumar et al.
7501292 March 10, 2009 Matsushita et al.
7503980 March 17, 2009 Kido et al.
7514375 April 7, 2009 Shanker et al.
7541297 June 2, 2009 Mallick et al.
D593969 June 9, 2009 Li
7547363 June 16, 2009 Tomiyasu et al.
7566891 July 28, 2009 Rocha-Alvarez et al.
7575968 August 18, 2009 Sadaka et al.
7579785 August 25, 2009 DeVincentis et al.
7582555 September 1, 2009 Lang
7589003 September 15, 2009 Kouvetakis et al.
7589029 September 15, 2009 Derderian et al.
D602575 October 20, 2009 Breda
7601223 October 13, 2009 Lindfors et al.
7601225 October 13, 2009 Tuominen et al.
7611980 November 3, 2009 Wells et al.
7618226 November 17, 2009 Takizawa
7618493 November 17, 2009 Yamada
7629277 December 8, 2009 Ghatnagar
7632549 December 15, 2009 Goundar
7640142 December 29, 2009 Tachikawa et al.
7651568 January 26, 2010 Ishizaka
7651583 January 26, 2010 Kent et al.
7651961 January 26, 2010 Clark
D609655 February 9, 2010 Sugimoto
7678197 March 16, 2010 Maki
7682657 March 23, 2010 Sherman
D613829 April 13, 2010 Griffin et al.
D614153 April 20, 2010 Fondurulia et al.
D614267 April 20, 2010 Breda
D614268 April 20, 2010 Breda
7690881 April 6, 2010 Yamagishi
7691205 April 6, 2010 Ikedo
7713874 May 11, 2010 Milligan
7720560 May 18, 2010 Menser et al.
7723648 May 25, 2010 Tsukamoto et al.
7727864 June 1, 2010 Elers
7732343 June 8, 2010 Niroomand et al.
7740705 June 22, 2010 Li
7767262 August 3, 2010 Clark
7780440 August 24, 2010 Shibagaki et al.
7789965 September 7, 2010 Matsushita et al.
7790633 September 7, 2010 Tarafdar et al.
7803722 September 28, 2010 Liang
7807578 October 5, 2010 Bencher et al.
7816278 October 19, 2010 Reed et al.
7824492 November 2, 2010 Tois et al.
7825040 November 2, 2010 Fukazawa et al.
7833353 November 16, 2010 Furukawahara et al.
7838084 November 23, 2010 Derderian et al.
7842518 November 30, 2010 Miyajima
7842622 November 30, 2010 Lee et al.
D629874 December 28, 2010 Hermans
7851019 December 14, 2010 Tuominen et al.
7851232 December 14, 2010 van Schravendijk et al.
7865070 January 4, 2011 Nakamura
7884918 February 8, 2011 Hattori
7888233 February 15, 2011 Gauri
D634719 March 22, 2011 Yasuda et al.
7897215 March 1, 2011 Fair et al.
7902582 March 8, 2011 Forbes et al.
7910288 March 22, 2011 Abatchev et al.
7915139 March 29, 2011 Lang
7919416 April 5, 2011 Lee et al.
7925378 April 12, 2011 Gilchrist et al.
7935940 May 3, 2011 Smargiassi
7963736 June 21, 2011 Takizawa et al.
7972980 July 5, 2011 Lee et al.
7981751 July 19, 2011 Zhu et al.
D643055 August 9, 2011 Takahashi
7994721 August 9, 2011 Espiau et al.
8003174 August 23, 2011 Fukazawa
8004198 August 23, 2011 Bakre et al.
8038835 October 18, 2011 Hayashi et al.
8041197 October 18, 2011 Kasai et al.
8041450 October 18, 2011 Takizawa et al.
8055378 November 8, 2011 Numakura
8060252 November 15, 2011 Gage et al.
8071451 December 6, 2011 Uzoh
8071452 December 6, 2011 Raisanen
8072578 December 6, 2011 Yasuda et al.
8076230 December 13, 2011 Wei
8076237 December 13, 2011 Uzoh
8082946 December 27, 2011 Laverdiere et al.
D652896 January 24, 2012 Gether
8092604 January 10, 2012 Tomiyasu et al.
D653734 February 7, 2012 Sisk
D655055 February 28, 2012 Toll
8137462 March 20, 2012 Fondurulia et al.
8137465 March 20, 2012 Shrinivasan et al.
8138676 March 20, 2012 Mills
8142862 March 27, 2012 Lee et al.
8143174 March 27, 2012 Xia et al.
8147242 April 3, 2012 Shibagaki et al.
8173554 May 8, 2012 Lee et al.
8187951 May 29, 2012 Wang
8192901 June 5, 2012 Kageyama
8196234 June 12, 2012 Glunk
8197915 June 12, 2012 Oka et al.
8216380 July 10, 2012 White et al.
8231799 July 31, 2012 Bera et al.
D665055 August 7, 2012 Yanagisawa et al.
8241991 August 14, 2012 Hsieh et al.
8242031 August 14, 2012 Mallick et al.
8252114 August 28, 2012 Vukovic
8252116 August 28, 2012 Sneh
8252659 August 28, 2012 Huyghabaert et al.
8252691 August 28, 2012 Beynet et al.
8278176 October 2, 2012 Bauer et al.
8282769 October 9, 2012 Iizuka
8287648 October 16, 2012 Reed et al.
8293016 October 23, 2012 Bahng et al.
8298951 October 30, 2012 Nakano
8307472 November 13, 2012 Saxon et al.
8309173 November 13, 2012 Tuominen et al.
8323413 December 4, 2012 Son
8329599 December 11, 2012 Fukazawa et al.
8334219 December 18, 2012 Lee et al.
8367528 February 5, 2013 Bauer et al.
8372204 February 12, 2013 Nakamura
8394466 March 12, 2013 Hong et al.
8415259 April 9, 2013 Lee et al.
8440259 May 14, 2013 Chiang et al.
8444120 May 21, 2013 Gregg et al.
8454749 June 4, 2013 Li
8465811 June 18, 2013 Ueda
8466411 June 18, 2013 Arai
8470187 June 25, 2013 Ha
8484846 July 16, 2013 Dhindsa
8496756 July 30, 2013 Cruse et al.
8506713 August 13, 2013 Takagi
8535767 September 17, 2013 Kimura
D691974 October 22, 2013 Osada et al.
8551892 October 8, 2013 Nakano
8563443 October 22, 2013 Fukazawa
8569184 October 29, 2013 Oka
8591659 November 26, 2013 Fang et al.
8592005 November 26, 2013 Ueda
8608885 December 17, 2013 Goto et al.
8647722 February 11, 2014 Kobayashi et al.
8664627 March 4, 2014 Ishikawa et al.
8669185 March 11, 2014 Onizawa
8683943 April 1, 2014 Onodera et al.
8711338 April 29, 2014 Liu et al.
D705745 May 27, 2014 Kurs et al.
8720965 May 13, 2014 Hino et al.
8722546 May 13, 2014 Fukazawa et al.
8726837 May 20, 2014 Patalay et al.
8728832 May 20, 2014 Raisanen et al.
8742668 June 3, 2014 Nakano et al.
8764085 July 1, 2014 Urabe
8784950 July 22, 2014 Fukazawa et al.
8784951 July 22, 2014 Fukazawa et al.
8785215 July 22, 2014 Kobayashi et al.
8790749 July 29, 2014 Omori et al.
8802201 August 12, 2014 Raisanen et al.
8820809 September 2, 2014 Ando et al.
8821640 September 2, 2014 Cleary et al.
8845806 September 30, 2014 Aida et al.
D715410 October 14, 2014 Lohmann
8864202 October 21, 2014 Schrameyer
D716742 November 4, 2014 Jang et al.
8877655 November 4, 2014 Shero et al.
8883270 November 11, 2014 Shero et al.
8901016 December 2, 2014 Ha et al.
8911826 December 16, 2014 Adachi et al.
8912101 December 16, 2014 Tsuji et al.
D720838 January 6, 2015 Yamagishi et al.
8933375 January 13, 2015 Dunn et al.
8940646 January 27, 2015 Chandrasekharan
8946830 February 3, 2015 Jung et al.
D724701 March 17, 2015 Yamagishi et al.
8967608 March 3, 2015 Mitsumori et al.
8986456 March 24, 2015 Fondurulia et al.
8991887 March 31, 2015 Shin et al.
8993054 March 31, 2015 Jung et al.
D726884 April 14, 2015 Yamagishi et al.
9005539 April 14, 2015 Halpin et al.
9017481 April 28, 2015 Pettinger
9018093 April 28, 2015 Tsuji et al.
9018111 April 28, 2015 Milligan et al.
9021985 May 5, 2015 Alokozai et al.
9023737 May 5, 2015 Beynet et al.
9029253 May 12, 2015 Milligan et al.
9029272 May 12, 2015 Nakano
D732644 June 23, 2015 Yamagishi et al.
D733261 June 30, 2015 Yamagishi et al.
D733843 July 7, 2015 Yamagishi et al.
9096931 August 4, 2015 Yednak et al.
9117657 August 25, 2015 Nakano et al.
9123510 September 1, 2015 Nakano et al.
9136108 September 15, 2015 Matsushita et al.
9142393 September 22, 2015 Okabe et al.
9171716 October 27, 2015 Fukuda
9190263 November 17, 2015 Ishikawa et al.
9202727 December 1, 2015 Dunn et al.
20010017103 August 30, 2001 Takeshita et al.
20010018267 August 30, 2001 Shinriki et al.
20010019777 September 6, 2001 Tanaka et al.
20010019900 September 6, 2001 Hasegawa
20010028924 October 11, 2001 Sherman
20010046765 November 29, 2001 Cappellani et al.
20010049202 December 6, 2001 Maeda et al.
20020001974 January 3, 2002 Chan
20020011210 January 31, 2002 Satoh et al.
20020014204 February 7, 2002 Pyo
20020064592 May 30, 2002 Datta et al.
20020076490 June 20, 2002 Chiang
20020076507 June 20, 2002 Chiang et al.
20020079714 June 27, 2002 Soucy et al.
20020088542 July 11, 2002 Nishikawa et al.
20020098627 July 25, 2002 Pomarede et al.
20020108670 August 15, 2002 Baker et al.
20020110991 August 15, 2002 Li
20020114886 August 22, 2002 Chou et al.
20020115252 August 22, 2002 Haukka et al.
20020172768 November 21, 2002 Endo et al.
20020179011 December 5, 2002 Jonnalagadda
20020187650 December 12, 2002 Blalock et al.
20020197849 December 26, 2002 Mandal
20030003635 January 2, 2003 Paranjpe et al.
20030010452 January 16, 2003 Park et al.
20030012632 January 16, 2003 Saeki
20030019428 January 30, 2003 Ku et al.
20030019580 January 30, 2003 Strang
20030025146 February 6, 2003 Narwankar et al.
20030040158 February 27, 2003 Saitoh
20030042419 March 6, 2003 Katsumata et al.
20030049375 March 13, 2003 Nguyen et al.
20030054670 March 20, 2003 Wang et al.
20030059535 March 27, 2003 Luo et al.
20030059980 March 27, 2003 Chen et al.
20030066826 April 10, 2003 Lee et al.
20030075925 April 24, 2003 Lindfors et al.
20030091938 May 15, 2003 Fairbairn et al.
20030094133 May 22, 2003 Yoshidome et al.
20030111963 June 19, 2003 Tolmachev et al.
20030134038 July 17, 2003 Paranjpe
20030141820 July 31, 2003 White et al.
20030157436 August 21, 2003 Manger et al.
20030168001 September 11, 2003 Sneh
20030170583 September 11, 2003 Nakashima
20030180458 September 25, 2003 Sneh
20030183156 October 2, 2003 Dando
20030198587 October 23, 2003 Kaloyeros
20030209323 November 13, 2003 Yokogaki
20030228772 December 11, 2003 Cowans
20030232138 December 18, 2003 Tuominen et al.
20040009679 January 15, 2004 Yeo et al.
20040013577 January 22, 2004 Ganguli et al.
20040013818 January 22, 2004 Moon et al.
20040018307 January 29, 2004 Park et al.
20040018750 January 29, 2004 Sophie et al.
20040023516 February 5, 2004 Londergan et al.
20040029052 February 12, 2004 Park et al.
20040036129 February 26, 2004 Forbes et al.
20040106249 June 3, 2004 Huotari
20040063289 April 1, 2004 Ohta
20040071897 April 15, 2004 Verplancken
20040077182 April 22, 2004 Lim et al.
20040079960 April 29, 2004 Shakuda
20040080697 April 29, 2004 Song
20040082171 April 29, 2004 Shin et al.
20040101622 May 27, 2004 Park et al.
20040103914 June 3, 2004 Cheng et al.
20040124549 July 1, 2004 Curran
20040134429 July 15, 2004 Yamanaka
20040144980 July 29, 2004 Ahn et al.
20040146644 July 29, 2004 Xia et al.
20040168627 September 2, 2004 Conley et al.
20040169032 September 2, 2004 Murayama et al.
20040198069 October 7, 2004 Metzner et al.
20040200499 October 14, 2004 Harvey et al.
20040209477 October 21, 2004 Buxbaum et al.
20040212947 October 28, 2004 Nguyen
20040219793 November 4, 2004 Hishiya et al.
20040221807 November 11, 2004 Verghese et al.
20040247779 December 9, 2004 Selvamanickam et al.
20040261712 December 30, 2004 Hayashi et al.
20040266011 December 30, 2004 Lee et al.
20050008799 January 13, 2005 Tomiyasu et al.
20050019026 January 27, 2005 Wang et al.
20050020071 January 27, 2005 Sonobe et al.
20050023624 February 3, 2005 Ahn et al.
20050034674 February 17, 2005 Ono
20050037154 February 17, 2005 Koh et al.
20050051093 March 10, 2005 Makino et al.
20050054228 March 10, 2005 March
20050059262 March 17, 2005 Yin et al.
20050064207 March 24, 2005 Senzaki et al.
20050064719 March 24, 2005 Liu
20050066893 March 31, 2005 Soininen
20050069651 March 31, 2005 Miyoshi
20050070123 March 31, 2005 Hirano
20050070729 March 31, 2005 Kiyomori et al.
20050072357 April 7, 2005 Shero et al.
20050074983 April 7, 2005 Shinriki et al.
20050092249 May 5, 2005 Kilpela et al.
20050095770 May 5, 2005 Kumagai et al.
20050100669 May 12, 2005 Kools et al.
20050101154 May 12, 2005 Huang
20050106893 May 19, 2005 Wilk
20050110069 May 26, 2005 Kil et al.
20050120962 June 9, 2005 Ushioda et al.
20050123690 June 9, 2005 Derderian et al.
20050133161 June 23, 2005 Carpenter et al.
20050142361 June 30, 2005 Nakanishi
20050145338 July 7, 2005 Park et al.
20050153571 July 14, 2005 Senzaki
20050173003 August 11, 2005 Laverdiere et al.
20050181535 August 18, 2005 Yun et al.
20050187647 August 25, 2005 Wang et al.
20050191828 September 1, 2005 Al-Bayati et al.
20050208718 September 22, 2005 Lim et al.
20050212119 September 29, 2005 Shero
20050214457 September 29, 2005 Schmitt et al.
20050214458 September 29, 2005 Meiere
20050218462 October 6, 2005 Ahn et al.
20050221618 October 6, 2005 AmRhein et al.
20050223994 October 13, 2005 Blomiley et al.
20050227502 October 13, 2005 Schmitt et al.
20050229848 October 20, 2005 Shinriki
20050229972 October 20, 2005 Hoshi et al.
20050241176 November 3, 2005 Shero et al.
20050241763 November 3, 2005 Huang et al.
20050255257 November 17, 2005 Choi et al.
20050258280 November 24, 2005 Goto et al.
20050260347 November 24, 2005 Narwankar et al.
20050260850 November 24, 2005 Loke
20050263075 December 1, 2005 Wang et al.
20050263932 December 1, 2005 Heugel
20050271813 December 8, 2005 Kher et al.
20050274323 December 15, 2005 Seidel et al.
20050282101 December 22, 2005 Adachi
20050287725 December 29, 2005 Kitagawa
20050287771 December 29, 2005 Seamons et al.
20060013946 January 19, 2006 Park et al.
20060014384 January 19, 2006 Lee et al.
20060014397 January 19, 2006 Seamons et al.
20060016783 January 26, 2006 Wu et al.
20060019033 January 26, 2006 Muthukrishnan et al.
20060019502 January 26, 2006 Park et al.
20060021703 February 2, 2006 Umotoy et al.
20060024439 February 2, 2006 Tuominen et al.
20060046518 March 2, 2006 Hill et al.
20060051520 March 9, 2006 Behle et al.
20060051925 March 9, 2006 Ahn et al.
20060060930 March 23, 2006 Metz et al.
20060062910 March 23, 2006 Meiere
20060063346 March 23, 2006 Lee et al.
20060068121 March 30, 2006 Lee et al.
20060068125 March 30, 2006 Radhakrshnan
20060105566 May 18, 2006 Waldfried et al.
20060110934 May 25, 2006 Fukuchi
20060113675 June 1, 2006 Chang et al.
20060113806 June 1, 2006 Tsuji et al.
20060128168 June 15, 2006 Ahn et al.
20060130767 June 22, 2006 Herchen
20060137609 June 29, 2006 Puchacz et al.
20060147626 July 6, 2006 Blomberg
20060148180 July 6, 2006 Ahn et al.
20060163612 July 27, 2006 Kouvetakis et al.
20060172531 August 3, 2006 Lin et al.
20060191555 August 31, 2006 Yoshida et al.
20060193979 August 31, 2006 Meiere et al.
20060199357 September 7, 2006 Wan et al.
20060205223 September 14, 2006 Smayling
20060208215 September 21, 2006 Metzner et al.
20060213439 September 28, 2006 Ishizaka
20060223301 October 5, 2006 Vanhaelemeersch et al.
20060226117 October 12, 2006 Bertram et al.
20060228888 October 12, 2006 Lee et al.
20060236934 October 26, 2006 Choi et al.
20060240574 October 26, 2006 Yoshie
20060240662 October 26, 2006 Conley et al.
20060251827 November 9, 2006 Nowak
20060257563 November 16, 2006 Doh et al.
20060257584 November 16, 2006 Derderian et al.
20060258078 November 16, 2006 Lee et al.
20060258173 November 16, 2006 Xiao et al.
20060260545 November 23, 2006 Ramaswamy et al.
20060264060 November 23, 2006 Ramaswamy et al.
20060264066 November 23, 2006 Bartholomew
20060266289 November 30, 2006 Verghese et al.
20060269692 November 30, 2006 Balseanu
20060278162 December 14, 2006 Ohmi
20060278524 December 14, 2006 Stowell
20070006806 January 11, 2007 Imai
20070010072 January 11, 2007 Bailey et al.
20070020953 January 25, 2007 Tsai et al.
20070022954 February 1, 2007 Iizuka
20070028842 February 8, 2007 Inagawa et al.
20070031598 February 8, 2007 Okuyama et al.
20070031599 February 8, 2007 Gschwandtner et al.
20070032082 February 8, 2007 Ramaswamy et al.
20070037412 February 15, 2007 Dip et al.
20070042117 February 22, 2007 Kupurao et al.
20070049053 March 1, 2007 Mahajani
20070054499 March 8, 2007 Jang
20070059948 March 15, 2007 Metzner et al.
20070062453 March 22, 2007 Ishikawa
20070065578 March 22, 2007 McDougall
20070066010 March 22, 2007 Ando
20070077355 April 5, 2007 Chacin et al.
20070084405 April 19, 2007 Kim
20070096194 May 3, 2007 Streck et al.
20070098527 May 3, 2007 Hall et al.
20070107845 May 17, 2007 Ishizawa et al.
20070111545 May 17, 2007 Lee et al.
20070116873 May 24, 2007 Li et al.
20070119370 May 31, 2007 Ma
20070123037 May 31, 2007 Lee et al.
20070125762 June 7, 2007 Cui et al.
20070128538 June 7, 2007 Fairbairn et al.
20070134942 June 14, 2007 Ahn et al.
20070146621 June 28, 2007 Yeom
20070148990 June 28, 2007 Deboer et al.
20070155138 July 5, 2007 Tomasini et al.
20070158026 July 12, 2007 Amikura
20070163440 July 19, 2007 Kim et al.
20070166457 July 19, 2007 Yamoto et al.
20070166966 July 19, 2007 Todd et al.
20070166999 July 19, 2007 Vaarstra
20070173071 July 26, 2007 Afzali-Aldakani et al.
20070175393 August 2, 2007 Nishimura et al.
20070175397 August 2, 2007 Tomiyasu et al.
20070186952 August 16, 2007 Honda et al.
20070207275 September 6, 2007 Nowak et al.
20070209590 September 13, 2007 Li
20070210890 September 13, 2007 Hsu et al.
20070215048 September 20, 2007 Suzuki et al.
20070218200 September 20, 2007 Suzuki et al.
20070218705 September 20, 2007 Matsuki et al.
20070224777 September 27, 2007 Hamelin
20070224833 September 27, 2007 Morisada et al.
20070232031 October 4, 2007 Singh et al.
20070232071 October 4, 2007 Balseanu et al.
20070232501 October 4, 2007 Tonomura
20070234955 October 11, 2007 Suzuki et al.
20070237697 October 11, 2007 Clark
20070241688 October 18, 2007 DeVancentis et al.
20070248767 October 25, 2007 Okura
20070249131 October 25, 2007 Allen et al.
20070252532 November 1, 2007 DeVancentis et al.
20070251444 November 1, 2007 Gros-Jean et al.
20070252244 November 1, 2007 Srividya et al.
20070264807 November 15, 2007 Leone et al.
20070275166 November 29, 2007 Thridandam et al.
20070277735 December 6, 2007 Mokhesi et al.
20070281496 December 6, 2007 Ingle et al.
20070298362 December 27, 2007 Rocha-Alvarez et al.
20080003824 January 3, 2008 Padhi et al.
20080003838 January 3, 2008 Haukka et al.
20080006208 January 10, 2008 Ueno et al.
20080023436 January 31, 2008 Gros-Jean et al.
20080026574 January 31, 2008 Brcka
20080026597 January 31, 2008 Munro et al.
20080029790 February 7, 2008 Ahn et al.
20080036354 February 14, 2008 Letz et al.
20080038485 February 14, 2008 Lukas
20080054332 March 6, 2008 Kim et al.
20080054813 March 6, 2008 Espiau et al.
20080057659 March 6, 2008 Forbes et al.
20080061667 March 13, 2008 Gaertner et al.
20080066778 March 20, 2008 Matsushita et al.
20080069955 March 20, 2008 Hong et al.
20080075881 March 27, 2008 Won et al.
20080076266 March 27, 2008 Fukazawa et al.
20080081104 April 3, 2008 Hasebe et al.
20080081113 April 3, 2008 Clark
20080081121 April 3, 2008 Morita et al.
20080085226 April 10, 2008 Fondurulia et al.
20080092815 April 24, 2008 Chen et al.
20080113094 May 15, 2008 Casper
20080113096 May 15, 2008 Mahajani
20080113097 May 15, 2008 Mahajani et al.
20080124197 May 29, 2008 van der Meulen
20080124908 May 29, 2008 Forbes et al.
20080133154 June 5, 2008 Krauss et al.
20080149031 June 26, 2008 Chu et al.
20080152463 June 26, 2008 Chidambaram et al.
20080153311 June 26, 2008 Padhi et al.
20080173240 July 24, 2008 Furukawahara
20080173326 July 24, 2008 Gu et al.
20080176375 July 24, 2008 Erben et al.
20080182075 July 31, 2008 Chopra
20080182390 July 31, 2008 Lemmi et al.
20080191193 August 14, 2008 Li et al.
20080199977 August 21, 2008 Weigel et al.
20080203487 August 28, 2008 Hohage et al.
20080211423 September 4, 2008 Shinmen et al.
20080211526 September 4, 2008 Shinma
20080216077 September 4, 2008 Emani et al.
20080224240 September 18, 2008 Ahn et al.
20080233288 September 25, 2008 Clark
20080237572 October 2, 2008 Chui et al.
20080241384 October 2, 2008 Jeong
20080242116 October 2, 2008 Clark
20080248310 October 9, 2008 Kim et al.
20080261413 October 23, 2008 Mahajani
20080264337 October 30, 2008 Sano et al.
20080267598 October 30, 2008 Nakamura
20080277715 November 13, 2008 Ohmi et al.
20080282970 November 20, 2008 Heys et al.
20080295872 December 4, 2008 Riker et al.
20080299326 December 4, 2008 Fukazawa
20080302303 December 11, 2008 Choi et al.
20080305246 December 11, 2008 Choi et al.
20080305443 December 11, 2008 Nakamura
20080315292 December 25, 2008 Ji et al.
20080317972 December 25, 2008 Hendriks
20090000550 January 1, 2009 Tran et al.
20090000551 January 1, 2009 Choi et al.
20090011608 January 8, 2009 Nabatame
20090020072 January 22, 2009 Mizunaga et al.
20090023229 January 22, 2009 Matsushita
20090029528 January 29, 2009 Sanchez et al.
20090029564 January 29, 2009 Yamashita et al.
20090033907 February 5, 2009 Watson
20090035947 February 5, 2009 Horii
20090041952 February 12, 2009 Yoon et al.
20090041984 February 12, 2009 Mayers et al.
20090045829 February 19, 2009 Awazu
20090050621 February 26, 2009 Awazu
20090061644 March 5, 2009 Chiang et al.
20090061647 March 5, 2009 Mallick et al.
20090085156 April 2, 2009 Dewey et al.
20090090382 April 9, 2009 Morisada
20090093094 April 9, 2009 Ye et al.
20090095221 April 16, 2009 Tam et al.
20090107404 April 30, 2009 Ogliari et al.
20090122293 May 14, 2009 Shibazaki
20090136668 May 28, 2009 Gregg et al.
20090136683 May 28, 2009 Fukasawa et al.
20090139657 June 4, 2009 Lee et al.
20090142935 June 4, 2009 Fukazawa et al.
20090146322 June 11, 2009 Weling et al.
20090156015 June 18, 2009 Park
20090169744 July 2, 2009 Byun
20090209081 August 20, 2009 Matero
20090211523 August 27, 2009 Kuppurao et al.
20090211525 August 27, 2009 Sarigiannis et al.
20090239386 September 24, 2009 Suzaki et al.
20090242957 October 1, 2009 Ma et al.
20090246374 October 1, 2009 Vukovic
20090246399 October 1, 2009 Goundar
20090250955 October 8, 2009 Aoki
20090261331 October 22, 2009 Yang et al.
20090269506 October 29, 2009 Okura et al.
20090275205 November 5, 2009 Kiehlbauch et al.
20090277510 November 12, 2009 Shikata
20090283041 November 19, 2009 Tomiyasu et al.
20090283217 November 19, 2009 Lubomirsky et al.
20090286400 November 19, 2009 Heo et al.
20090286402 November 19, 2009 Xia et al.
20090289300 November 26, 2009 Sasaki et al.
20090304558 December 10, 2009 Patton
20090311857 December 17, 2009 Todd et al.
20100001409 January 7, 2010 Humbert et al.
20100006031 January 14, 2010 Choi et al.
20100014479 January 21, 2010 Kim
20100015813 January 21, 2010 McGinnis et al.
20100024727 February 4, 2010 Kim et al.
20100025796 February 4, 2010 Dabiran
20100041179 February 18, 2010 Lee
20100041243 February 18, 2010 Cheng et al.
20100055312 March 4, 2010 Kato et al.
20100055317 March 4, 2010 Kato
20100055347 March 4, 2010 Kato
20100055442 March 4, 2010 Kellock
20100075507 March 25, 2010 Chang et al.
20100089320 April 15, 2010 Kim
20100093187 April 15, 2010 Lee et al.
20100102417 April 29, 2010 Ganguli et al.
20100116209 May 13, 2010 Kato
20100124610 May 20, 2010 Aikawa et al.
20100124618 May 20, 2010 Kobayashi et al.
20100124621 May 20, 2010 Kobayashi et al.
20100126605 May 27, 2010 Stones
20100130017 May 27, 2010 Luo et al.
20100134023 June 3, 2010 Mills
20100136216 June 3, 2010 Tsuei et al.
20100140221 June 10, 2010 Kikuchi et al.
20100144162 June 10, 2010 Lee et al.
20100151206 June 17, 2010 Wu et al.
20100162752 July 1, 2010 Tabata et al.
20100170441 July 8, 2010 Won et al.
20100178137 July 15, 2010 Chintalapati et al.
20100178423 July 15, 2010 Shimizu et al.
20100184302 July 22, 2010 Lee et al.
20100193501 August 5, 2010 Zucker et al.
20100195392 August 5, 2010 Freeman
20100221452 September 2, 2010 Kang
20100230051 September 16, 2010 Iizuka
20100233886 September 16, 2010 Yang et al.
20100243166 September 30, 2010 Hayashi et al.
20100244688 September 30, 2010 Braun et al.
20100255198 October 7, 2010 Cleary et al.
20100255625 October 7, 2010 De Vries
20100259152 October 14, 2010 Yasuda et al.
20100270675 October 28, 2010 Harada
20100275846 November 4, 2010 Kitagawa
20100285319 November 11, 2010 Kwak et al.
20100294199 November 25, 2010 Tran et al.
20100301752 December 2, 2010 Bakre et al.
20100304047 December 2, 2010 Yang et al.
20100307415 December 9, 2010 Shero et al.
20100317198 December 16, 2010 Antonelli
20100322604 December 23, 2010 Fondurulia et al.
20110000619 January 6, 2011 Suh
20110006402 January 13, 2011 Zhou
20110006406 January 13, 2011 Urbanowicz et al.
20110014795 January 20, 2011 Lee
20110034039 February 10, 2011 Liang et al.
20110048642 March 3, 2011 Mihara et al.
20110052833 March 3, 2011 Flanawa et al.
20110056513 March 10, 2011 Hombach et al.
20110056626 March 10, 2011 Brown et al.
20110061810 March 17, 2011 Ganguly et al.
20110070380 March 24, 2011 Shero et al.
20110081519 April 7, 2011 Dillingh
20110086516 April 14, 2011 Lee et al.
20110089469 April 21, 2011 Merckling
20110097901 April 28, 2011 Banna et al.
20110107512 May 12, 2011 Gilbert
20110108194 May 12, 2011 Yoshioka et al.
20110108741 May 12, 2011 Ingram
20110108929 May 12, 2011 Meng
20110117490 May 19, 2011 Bae et al.
20110117737 May 19, 2011 Agarwala et al.
20110124196 May 26, 2011 Lee
20110143032 June 16, 2011 Vrtis et al.
20110159202 June 30, 2011 Matsushita
20110159673 June 30, 2011 Hanawa et al.
20110175011 July 21, 2011 Ehrne et al.
20110180233 July 28, 2011 Bera
20110183079 July 28, 2011 Jackson et al.
20110183269 July 28, 2011 Zhu
20110210468 September 1, 2011 Shannon et al.
20110220874 September 15, 2011 Hanrath
20110223334 September 15, 2011 Yudovsky
20110236600 September 29, 2011 Fox et al.
20110239936 October 6, 2011 Suzaki et al.
20110254052 October 20, 2011 Kouvetakis
20110256726 October 20, 2011 Lavoie et al.
20110256727 October 20, 2011 Beynet et al.
20110256734 October 20, 2011 Hausmann et al.
20110265549 November 3, 2011 Cruse et al.
20110265951 November 3, 2011 Xu et al.
20110275166 November 10, 2011 Shero et al.
20110281417 November 17, 2011 Gordon et al.
20110283933 November 24, 2011 Makarov et al.
20110294075 December 1, 2011 Chen et al.
20110308460 December 22, 2011 Hong et al.
20120003500 January 5, 2012 Yoshida et al.
20120006268 January 12, 2012 Ozaki
20120006489 January 12, 2012 Okita
20120024479 February 2, 2012 Palagashvili et al.
20120052681 March 1, 2012 Marsh
20120070136 March 22, 2012 Koelmel et al.
20120070997 March 22, 2012 Larson
20120090704 April 19, 2012 Laverdiere et al.
20120098107 April 26, 2012 Raisanen et al.
20120100464 April 26, 2012 Kageyama
20120103264 May 3, 2012 Choi et al.
20120103939 May 3, 2012 Wu et al.
20120107607 May 3, 2012 Takaki et al.
20120114877 May 10, 2012 Lee
20120121823 May 17, 2012 Chhabra
20120128897 May 24, 2012 Xiao et al.
20120135145 May 31, 2012 Je et al.
20120156108 June 21, 2012 Fondurulia et al.
20120160172 June 28, 2012 Wamura et al.
20120164327 June 28, 2012 Sato
20120164837 June 28, 2012 Tan et al.
20120164842 June 28, 2012 Watanabe
20120171391 July 5, 2012 Won
20120171874 July 5, 2012 Thridandam et al.
20120207456 August 16, 2012 Kim et al.
20120212121 August 23, 2012 Lin
20120214318 August 23, 2012 Fukazawa et al.
20120220139 August 30, 2012 Lee et al.
20120225561 September 6, 2012 Watanabe
20120240858 September 27, 2012 Taniyama et al.
20120270339 October 25, 2012 Xie et al.
20120270393 October 25, 2012 Pore et al.
20120289053 November 15, 2012 Holland et al.
20120295427 November 22, 2012 Bauer
20120304935 December 6, 2012 Oosterlaken et al.
20120305196 December 6, 2012 Mori et al.
20120315113 December 13, 2012 Hiroki
20120318334 December 20, 2012 Bedell et al.
20120321786 December 20, 2012 Satitpunwaycha et al.
20120322252 December 20, 2012 Son et al.
20120325148 December 27, 2012 Yamagishi et al.
20120328780 December 27, 2012 Yamagishi et al.
20130005122 January 3, 2013 Schwarzenbach et al.
20130011983 January 10, 2013 Tsai
20130014697 January 17, 2013 Kanayama
20130014896 January 17, 2013 Shoji et al.
20130019944 January 24, 2013 Hekmatshoar-Tabai et al.
20130019945 January 24, 2013 Hekmatshoar-Tabai et al.
20130023129 January 24, 2013 Reed
20130048606 February 28, 2013 Mao et al.
20130068970 March 21, 2013 Matsushita
20130078392 March 28, 2013 Xiao et al.
20130081702 April 4, 2013 Mohammed et al.
20130104988 May 2, 2013 Yednak et al.
20130104992 May 2, 2013 Yednak et al.
20130115383 May 9, 2013 Lu et al.
20130122712 May 16, 2013 Kim et al.
20130126515 May 23, 2013 Shero et al.
20130129577 May 23, 2013 Halpin et al.
20130134148 May 30, 2013 Tachikawa
20130180448 July 18, 2013 Sakaue et al.
20130183814 July 18, 2013 Huang et al.
20130210241 August 15, 2013 Lavoie et al.
20130217239 August 22, 2013 Mallick et al.
20130217240 August 22, 2013 Mallick et al.
20130217241 August 22, 2013 Underwood et al.
20130217243 August 22, 2013 Underwood et al.
20130224964 August 29, 2013 Fukazawa
20130230814 September 5, 2013 Dunn et al.
20130256838 October 3, 2013 Sanchez et al.
20130264659 October 10, 2013 Jung
20130292047 November 7, 2013 Tian et al.
20130292676 November 7, 2013 Milligan et al.
20130292807 November 7, 2013 Raisanen et al.
20130319290 December 5, 2013 Xiao et al.
20130323435 December 5, 2013 Xiao et al.
20130330165 December 12, 2013 Wimplinger
20130330911 December 12, 2013 Huang et al.
20140000843 January 2, 2014 Dunn et al.
20140014642 January 16, 2014 Elliot et al.
20140014644 January 16, 2014 Akiba et al.
20140020619 January 23, 2014 Vincent et al.
20140027884 January 30, 2014 Tang et al.
20140036274 February 6, 2014 Marquardt et al.
20140056679 February 27, 2014 Yamabe et al.
20140060147 March 6, 2014 Sarin et al.
20140062304 March 6, 2014 Nakano et al.
20140067110 March 6, 2014 Lawson et al.
20140073143 March 13, 2014 Alokozai et al.
20140077240 March 20, 2014 Roucka et al.
20140084341 March 27, 2014 Weeks
20140087544 March 27, 2014 Tolle
20140096716 April 10, 2014 Chung et al.
20140099798 April 10, 2014 Tsuji
20140103145 April 17, 2014 White
20140116335 May 1, 2014 Tsuji et al.
20140120487 May 1, 2014 Kaneko
20140127907 May 8, 2014 Yang
20140159170 June 12, 2014 Raisanen et al.
20140174354 June 26, 2014 Arai
20140175054 June 26, 2014 Carlson et al.
20140182053 July 3, 2014 Huang
20140217065 August 7, 2014 Winkler et al.
20140220247 August 7, 2014 Haukka et al.
20140225065 August 14, 2014 Rachmady et al.
20140227072 August 14, 2014 Lee et al.
20140251953 September 11, 2014 Winkler et al.
20140251954 September 11, 2014 Winkler et al.
20140283747 September 25, 2014 Kasai et al.
20140346650 November 27, 2014 Raisanen et al.
20140349033 November 27, 2014 Nonaka et al.
20140363980 December 11, 2014 Kawamata et al.
20140367043 December 18, 2014 Bishara et al.
20150004316 January 1, 2015 Thompson et al.
20150004317 January 1, 2015 Dussarrat et al.
20150007770 January 8, 2015 Chandrasekharan et al.
20150014632 January 15, 2015 Kim et al.
20150024609 January 22, 2015 Milligan et al.
20150048485 February 19, 2015 Tolle
20150078874 March 19, 2015 Sansoni
20150086316 March 26, 2015 Greenberg
20150091057 April 2, 2015 Xie et al.
20150096973 April 9, 2015 Dunn et al.
20150099072 April 9, 2015 Takamure et al.
20150132212 May 14, 2015 Winkler et al.
20150140210 May 21, 2015 Jung et al.
20150147483 May 28, 2015 Fukazawa
20150147877 May 28, 2015 Jung
20150167159 June 18, 2015 Halpin et al.
20150170954 June 18, 2015 Agarwal
20150174768 June 25, 2015 Rodnick
20150184291 July 2, 2015 Alokozai et al.
20150187568 July 2, 2015 Pettinger et al.
20150217456 August 6, 2015 Tsuji et al.
20150240359 August 27, 2015 Jdira et al.
20150267295 September 24, 2015 Hill et al.
20150267297 September 24, 2015 Shiba
20150267298 September 24, 2015 Saitou
20150267299 September 24, 2015 Hawkins
20150267301 September 24, 2015 Hill et al.
20150284848 October 8, 2015 Nakano et al.
20150287626 October 8, 2015 Arai
20150308586 October 29, 2015 Shugrue et al.
20150315704 November 5, 2015 Nakano et al.
20150376784 December 31, 2015 Wu
Foreign Patent Documents
1563483 January 2005 CN
101330015 December 2008 CN
101522943 September 2009 CN
101423937 September 2011 CN
2036600 March 2009 EP
2426233 July 2012 EP
03-044472 February 1991 JP
04115531 April 1992 JP
07-034936 August 1995 JP
7-272694 October 1995 JP
07283149 October 1995 JP
08-181135 July 1996 JP
08335558 December 1996 JP
10-064696 March 1998 JP
10-0261620 September 1998 JP
2845163 January 1999 JP
2004134553 April 2001 JP
2001342570 December 2001 JP
2004014952 January 2004 JP
2004091848 March 2004 JP
2004294638 October 2004 JP
2004310019 November 2004 JP
2004538374 December 2004 JP
2005507030 March 2005 JP
2006186271 July 2006 JP
3140111 March 2008 JP
2008060304 March 2008 JP
2008527748 July 2008 JP
2008202107 September 2008 JP
2009016815 January 2009 JP
2009099938 May 2009 JP
2010097834 April 2010 JP
2010205967 September 2010 JP
2010251444 October 2010 JP
2012089837 May 2012 JP
I226380 January 2005 TW
200701301 January 2007 TW
1998032893 July 1998 WO
2004010467 January 2004 WO
2006054854 May 2006 WO
2006056091 June 2006 WO
2006078666 July 2006 WO
2006080782 August 2006 WO
2006101857 September 2006 WO
2007140376 December 2007 WO
2010039363 April 2010 WO
2010118051 January 2011 WO
2011019950 February 2011 WO
2013078065 May 2013 WO
2013078066 May 2013 WO
Other references
  • USPTO; Notice of Allowance dated Aug. 4, 2015 in U.S. Appl. No. 13/677,133.
  • USPTO; Notice of Allowance dated Jul. 6, 2015 in U.S. Appl. No. 29/447,298.
  • USPTO; Office Action dated Aug. 27, 2010 in U.S. Appl. No. 12/118,596.
  • USPTO; Office Action dated Feb. 15, 2011 in U.S. Appl. No. 12/118,596.
  • USPTO; Notice of Allowance dated Aug. 4, 2011 in U.S. Appl. No. 12/118,596.
  • USPTO; Notice of Allowance dated Jun. 16, 2011 in U.S. Appl. No. 12/430,751.
  • USPTO; Notice of Allowance dated Jul. 27, 2011 in U.S. Appl. No. 12/430,751.
  • USPTO; Restriction Requirement dated Jan. 15, 2013 in U.S. Appl. No. 12/754,223.
  • USPTO; Office Action dated Feb. 26, 2013 in U.S. Appl. No. 12/754,223.
  • USPTO; Final Office Action dated Jun. 28, 2013 in U.S. Appl. No. 12/754,223.
  • USPTO; Office Action dated Feb. 25, 2014 in U.S. Appl. No. 12/754,223.
  • USPTO; Final Office Action dated Jul. 14, 2014 in U.S. Appl. No. 12/754,223.
  • USPTO; Non-Final Office Action dated Mar. 25, 2015 in U.S. Appl. No. 12/754,223.
  • USPTO; Office Action dated Apr. 23, 2013 in U.S. Appl. No. 12/763,037.
  • USPTO; Final Office Action dated Oct. 21, 2013 in U.S. Appl. No. 12/763,037.
  • USPTO; Office Action dated Oct. 8, 2014 in U.S. Appl. No. 12/763,037.
  • USPTO; Notice of Allowance dated Jan. 27, 2015 in U.S. Appl. No. 12/763,037.
  • USPTO; Restriction Requirement dated Sep. 25, 2012 in U.S. Appl. No. 12/854,818.
  • USPTO; Office Action dated Dec. 6, 2012 in U.S. Appl. No. 12/854,818.
  • USPTO; Final Office Action dated Mar. 13, 2013 in U.S. Appl. No. 12/854,818.
  • USPTO; Office Action dated Aug. 30, 2013 in U.S. Appl. No. 12/854,818.
  • USPTO; Final Office Action dated Mar. 26, 2014 in U.S. Appl. No. 12/854,818.
  • USPTO; Office Action dated Jun. 3, 2014 in U.S. Appl. No. 12/854,818.
  • USPTO; Restriction Requirement dated May 8, 2013 in U.S. Appl. No. 13/102,980.
  • USPTO; Office Action dated Oct. 7, 2013 in U.S. Appl. No. 13/102,980.
  • USPTO; Final Office Action dated Mar. 25, 2014 in U.S. Appl. No. 13/102,980.
  • USPTO; Notice of Allowance dated Jul. 3, 2014 in U.S. Appl. No. 13/102,980.
  • USPTO; Non-Final Office Action dated Sep. 17, 2014 in U.S. Appl. No. 13/187,300.
  • USPTO; Final Office Action dated Apr. 15, 2015 in U.S. Appl. No. 13/187,300.
  • USPTO; Non-Final Office Action dated Jul. 2, 2014 in U.S. Appl. No. 13/283,408.
  • USPTO; Final Office Action dated Jan. 29, 2015 in U.S. Appl. No. 13/283,408.
  • USPTO; Non-Final Office Action dated Jun. 17, 2015 in U.S. Appl. No. 13/283,408.
  • USPTO; Restriction Requirement dated Dec. 16, 2013 in U.S. Appl. No. 13/284,642.
  • USPTO; Restriction Requirement dated Apr. 21, 2014 in U.S. Appl. No. 13/284,642.
  • USPTO; Office Action dated Jul. 30, 2014 in U.S. Appl. No. 13/284,642.
  • USPTO; Notice of Allowance dated Feb. 11, 2015 in U.S. Appl. No. 13/284,642.
  • USPTO; Office Action dated Jan. 28, 2014 in U.S. Appl. No. 13/312,591.
  • USPTO; Final Office Action dated May 14, 2014 in U.S. Appl. No. 13/312,591.
  • USPTO; Non-Final Office Action dated Nov. 26, 2014 in U.S. Appl. No. 13/312,591.
  • USPTO; Final Office Action dated Mar. 20, 2015 in U.S. Appl. No. 13/312,591.
  • USPTO; Notice of Allowance dated May 14, 2015 in U.S. Appl. No. 13/312,591.
  • USPTO; Office Action dated Jan. 10, 2013 in U.S. Appl. No. 13/339,609.
  • USPTO; Office Action dated Feb. 11, 2013 in U.S. Appl. No. 13/339,609.
  • USPTO; Final Office Action dated May 17, 2013 in U.S. Appl. No. 13/339,609.
  • USPTO; Office Action dated Aug. 29, 2013 in U.S. Appl. No. 13/339,609.
  • USPTO; Final Office Action dated Dec. 18, 2013 in U.S. Appl. No. 13/339,609.
  • USPTO; Notice of Allowance dated Apr. 7, 2014 in U.S. Appl. No. 13/339,609.
  • USPTO; Office Action dated Feb. 13, 2014 in U.S. Appl. No. 13/411,271.
  • USPTO; Office Action dated Jul. 31, 2014 in U.S. Appl. No. 13/411,271.
  • USPTO; Final Office Action dated Jan. 16, 2015 in U.S. Appl. No. 13/411,271.
  • USPTO; Restriction Requirement dated Oct. 29, 2013 in U.S. Appl. No. 13/439,528.
  • USPTO; Office Action dated Feb. 4, 2014 in U.S. Appl. No. 13/439,528.
  • USPTO; Final Office Action dated Jul. 8, 2014 in U.S. Appl. No. 13/439,528.
  • USPTO; Notice of Allowance dated Oct. 21, 2014 in U.S. Appl. No. 13/439,528.
  • USPTO; Office Action dated May 23, 2013 in U.S. Appl. No. 13/465,340.
  • USPTO; Final Office Action dated Oct. 30, 2013 in U.S. Appl. No. 13/465,340.
  • USPTO; Notice of Allowance dated Feb. 12, 2014 in U.S. Appl. No. 13/465,340.
  • USPTO; Office Action dated Dec. 20, 2013 in U.S. Appl. No. 13/535,214.
  • USPTO; Final Office Action dated Jun. 18, 2014 in U.S. Appl. No. 13/535,214.
  • USPTO; Notice of Allowance dated Oct. 23, 2014 in U.S. Appl. No. 13/535,214.
  • USPTO; Non-Final Office Action dated Aug. 8, 2014 in U.S. Appl. No. 13/563,066.
  • USPTO; Final Office Action dated Feb. 12, 2015 in U.S. Appl. No. 13/563,066.
  • USPTO; Notice of Allowance dated Jun. 12, 2015 in U.S. Appl. No. 13/563,066.
  • USPTO; Non-Final Office Action dated Oct. 15, 2014 in U.S. Appl. No. 13/597,043.
  • USPTO; Final Office Action dated Mar. 13, 2015 in U.S. Appl. No. 13/597,043.
  • USPTO; Non-Final Office Action dated Feb. 12, 2015 in U.S. Appl. No. 13/597,108.
  • USPTO; Final Office Action dated Jun. 1, 2015 in U.S. Appl. No. 13/597,108.
  • USPTO; Office Action dated Nov. 15, 2013 in U.S. Appl. No. 13/612,538.
  • USPTO; Office Action dated Jul. 10, 2014 in U.S. Appl. No. 13/612,538.
  • USPTO; Non-Final Office Action dated May 28, 2015 in U.S. Appl. No. 13/651,144.
  • USPTO; Non-Final Office Action dated Apr. 3, 2015 in U.S. Appl. No. 13/677,133.
  • USPTO; Office Action dated Jun. 2, 2014 in U.S. Appl. No. 13/677,151.
  • USPTO; Final Office Action dated Nov. 14, 2014 in U.S. Appl. No. 13/677,151.
  • USPTO; Notice of Allowance dated Feb. 26, 2015 in U.S. Appl. No. 13/677,151.
  • USPTO; Office Action dated Apr. 24, 2014 in U.S. Appl. No. 13/784,362.
  • USPTO; Notice of Allowance dated Aug. 13, 2014 in U.S. Appl. No. 13/784,362.
  • USPTO; Final Office Action dated Mar. 25, 2015 in U.S. Appl. No. 13/791,246.
  • USPTO; Restriction Requirement dated Jun. 26, 2014 in U.S. Appl. No. 13/874,708.
  • USPTO; Non-Final Office Action dated Oct. 9, 2014 in U.S. Appl. No. 13/874,708.
  • USPTO; Notice of Allowance dated Mar. 10, 2015 in U.S. Appl. No. 13/874,708.
  • USPTO; Restriction Requirement dated May 8, 2014 in U.S. Appl. No. 13/791,246.
  • USPTO; Non-Final Office Action dated Sep. 19, 2014 in U.S. Appl. No. 13/791,246.
  • USPTO; Non-Final Office Action dated Sep. 12, 2014 in U.S. Appl. No. 13/941,134.
  • USPTO; Notice of Allowance dated Jan. 20, 2015 in U.S. Appl. No. 13/941,134.
  • USPTO; Restriction Requirement dated Apr. 30, 2015 in U.S. Appl. No. 13/941,216.
  • USPTO; Restriction Requirement dated Sep. 16, 2014 in U.S. Appl. No. 13/948,055.
  • USPTO; Non-Final Office Action dated Oct. 30, 2014 in U.S. Appl. No. 13/948,055.
  • USPTO; Restriction Requirement Action dated Jan. 28, 2015 in U.S. Appl. No. 14/018,345.
  • USPTO; Non-Final Office Action dated Apr. 7, 2015 in U.S. Appl. No. 14/018,345.
  • USPTO; Non-Final Office Action dated Apr. 28, 2015 in U.S. Appl. No. 14/040,196.
  • USPTO; Non-Final Office Action dated Mar. 19, 2015 in U.S. Appl. No. 14/079,302.
  • USPTO; Non-Final Office Action dated Mar. 19, 2015 in U.S. Appl. No. 14/166,462.
  • USPTO; Office Action dated May 29, 2014 in U.S. Appl. No. 14/183,187.
  • USPTO; Final Office Action dated Nov. 7, 2014 in U.S. Appl. No. 14/183,187.
  • USPTO; Non-Final Office Action dated Mar. 16, 2015 in U.S. Appl. No. 14/183,187.
  • USPTO; Non-Final Office Action dated Feb. 12, 2015 in U.S. Appl. No. 14/457,058.
  • USPTO; Non-Final Office Action dated Jan. 16, 2015 in U.S. Appl. No. 14/563,044.
  • USPTO; Non-Final Office Action dated Mar. 16, 2015 in U.S. Appl. No. 29/447,298.
  • PCT; International Search report and Written Opinion dated Nov. 12, 2010 in Application No. PCT/US2010/030126.
  • PCT; International Preliminary Report on Patentability dated Oct. 11, 2011 Application No. PCT/US2010/030126.
  • PCT; International Search report and Written Opinion dated Jan. 12, 2011 in Application No. PCT/US2010/045368.
  • PCT; International Search report and Written Opinion dated Feb. 6, 2013 in Application No. PCT/US2012/065343.
  • PCT; International Search report and Written Opinion dated Feb. 13, 2013 in Application No. PCT/US2012/065347.
  • Chinese Patent Office; Office Action dated Jan. 10, 2013 in Application No. 201080015699.9.
  • Chinese Patent Office; Office Action dated Jan. 12, 2015 in Application No. 201080015699.9.
  • Chinese Patent Office; Notice on the First Office Action dated May 24, 2013 in Application No. 201080036764.6.
  • Chinese Patent Office; Notice on the Second Office Action dated Jan. 2, 2014 in Application No. 201080036764.6.
  • Chinese Patent Office; Notice on the Third Office Action dated Jul. 1, 2014 in Application No. 201080036764.6.
  • Chinese Patent Office; Notice on the First Office Action dated Feb. 8, 2014 in Application No. 201110155056.
  • Chinese Patent Office; Notice on the Second Office Action dated Sep. 16, 2014 in Application No. 201110155056.
  • Chinese Patent Office; Notice on the Third Office Action dated Feb. 9, 2015 in Application No. 201110155056.
  • Japanese Patent Office; Office Action dated Jan. 25, 2014 in Application No. 2012-504786.
  • Japanese Patent Office; Office Action dated Dec. 1, 2014 in Application No. 2012-504786.
  • Taiwan Patent Office; Office Action dated Jul. 4, 2014 in Application No. 099110511.
  • Taiwan Patent Office; Office Action dated Dec. 19, 2014 in Taiwan Application No. 099127063.
  • Bearzotti, et al., “Fast Humidity Response of a Metal Halide-Doped Novel Polymer,” Sensors and Actuators B, 7, pp. 451-454, (1992).
  • Chang et al. “Small-Subthreshold-Swing and Low-Voltage Flexible Organic Thin-Film Transistors Which Use HfLaO as the Gate Dielectric,” IEEE Electron Device Society, 30, pp. 133-135, (2009).
  • Crowell, “Chemical Methods of Thin Film Deposition: Chemical Vapor Deposition, Atomic Layer Deposition, and Related Technologies,” Journal of Vacuum Science & Technology, S88-S95, (2003).
  • Koutsokeras et al., “Texture and Microstructure Evolution in Single-Phase TixTa1-xN Alloys of Rocksalt Structure” Journal of Applied Physics, 110, pp. 043535-1-043535-6, (2011).
  • Maeng et al., “Electrical Properties of Atomic Layer Disposition Hf02 and Hf0xNy on Si Substrates with Various Crystal Orientations,” Journal of the Electrochemical Society, 155, pp. H267-H271, Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, Korea (2008).
  • Novaro et al., “Theoretical Study on a Reaction Pathway of Ziegler-Natta-Type Catalysis,” J. Chem. Phys., 68, pp. 2337-2351, (1978).
  • Varma, et al., “Effect of Metal Halides on Thermal, Mechanical, and Electrical Properties of Polypyromelitimide Films,” Journal of Applied Polymer Science, 32, pp. 3987-4000, (1986).
  • USPTO; Non-Final Office Action dated Apr. 1, 2010 in U.S. Appl. No. 12/357,174.
  • USPTO; Final Office Action dated Sep. 1, 2010 in U.S. Appl. No. 12/357,174.
  • USPTO; Notice of Allowance dated Dec. 13, 2010 in U.S. Appl. No. 12/357,174.
  • USPTO; Non-Final Office Action dated Dec. 29, 2010 in U.S. Appl. No. 12/362,023.
  • USPTO; Non-Final Office Action dated Jul. 26, 2011 in U.S. Appl. No. 12/416,809.
  • USPTO; Final Office Action dated Dec. 6, 2011 in U.S. Appl. No. 12/416,809.
  • USPTO; Notice of Allowance dated Oct. 1, 2010 in U.S. Appl. No. 12/467,017.
  • USPTO; Non-Final Office Action dated Mar. 18, 2010 in U.S. Appl. No. 12/489,252.
  • USPTO; Notice of Allowance dated Sep. 2, 2010 in U.S. Appl. No. 12/489,252.
  • USPTO; Non-Final Office Action dated Dec. 15, 2010 in U.S. Appl. No. 12/553,759.
  • USPTO; Final Office Action dated May 4, 2011 in U.S. Appl. No. 12/553,759.
  • USPTO; Non-Final Office Action dated Sep. 6, 2011 in U.S. Appl. No. 12/553,759.
  • USPTO; Notice of Allowance dated 01/247/2012 in U.S. Appl. No. 12/553,759.
  • USPTO; Non-Final Office Action dated Oct. 19, 2012 in U.S. Appl. No. 12/618,355.
  • USPTO; Final Office Action dated May 8, 2013 in U.S. Appl. No. 12/618,355.
  • USPTO; Non-Final Office Action dated Apr. 8, 2015 in U.S. Appl. No. 12/618,355.
  • USPTO; Final Office Action dated Oct. 22, 2015 in U.S. Appl. No. 12/618,355.
  • USPTO; Non-Final Office Action dated Feb. 16, 2012 in U.S. Appl. No. 12/618,419.
  • USPTO; Final Office Action dated Jun. 22, 2012 in U.S. Appl. No. 12/618,419.
  • USPTO; Non-Final Office Action dated Nov. 27, 2012 in U.S. Appl. No. 12/618,419.
  • USPTO; Notice of Allowance dated Apr. 12, 2013 in U.S. Appl. No. 12/618,419.
  • USPTO; Non-Final Office Action dated Dec. 6, 2011 in U.S. Appl. No. 12/718,731.
  • USPTO; Notice of Allowance dated Mar. 16, 2012 in U.S. Appl. No. 12/718,731.
  • USPTO; Final Office Action dated Aug. 12, 2015 in U.S. Appl. No. 12/754,223.
  • USPTO; Non-Final Office Action dated Jan. 24, 2011 in U.S. Appl. No. 12/778,808.
  • USPTO; Notice of Allowance dated May 9, 2011 in U.S. Appl. No. 12/778,808.
  • USPTO; Notice of Allowance dated Oct. 12, 2012 in U.S. Appl. No. 12/832,739.
  • USPTO; Non-Final Office Action dated Oct. 16, 2012 in U.S. Appl. No. 12/847,848.
  • USPTO; Final Office Action dated Apr. 22, 2013 in U.S. Appl. No. 12/847,848.
  • USPTO; Notice of Allowance dated Jan. 16, 2014 in U.S. Appl. No. 12/847,848.
  • USPTO; Non-Final Office Action dated Jul. 11, 2012 in U.S. Appl. No. 12/875,889.
  • USPTO; Notice of Allowance dated Jan. 4, 2013 in U.S. Appl. No. 12/875,889.
  • USPTO; Notice of Allowance dated Jan. 9, 2012 in U.S. Appl. No. 12/901,323.
  • USPTO; Non-Final Office Action dated Nov. 20, 2013 in U.S. Appl. No. 12/910,607.
  • USPTO; Final Office Action dated Apr. 28, 2014 in U.S. Appl. No. 12/910,607.
  • USPTO; Notice of Allowance dated Aug. 15, 2014 in U.S. Appl. No. 12/910,607.
  • USPTO; Non-Final Office Action dated Oct. 24, 2012 in U.S. Appl. No. 12/940,906.
  • USPTO; Final Office Action dated Feb. 13, 2013 in U.S. Appl. No. 12/940,906.
  • USPTO; Notice of Allowance dated Apr. 23, 2013 in U.S. Appl. No. 12/940,906.
  • USPTO; Non-Final Office Action dated Dec. 7, 2012 in U.S. Appl. No. 12/953,870.
  • USPTO; Final Office Action dated Apr. 22, 2013 in U.S. Appl. No. 12/953,870.
  • USPTO; Non-Final Office Action dated Sep. 19, 2012 in U.S. Appl. No. 13/016,735.
  • USPTO; Final Office Action dated Feb. 11, 2013 in U.S. Appl. No. 13/016,735.
  • USPTO; Notice of Allowance dated Apr. 24, 2013 in U.S. Appl. No. 13/016,735.
  • USPTO; Non-Final Office Action dated Apr. 4, 2012 in U.S. Appl. No. 13/030,438.
  • USPTO; Final Office Action dated Aug. 22, 2012 in U.S. Appl. No. 13/030,438.
  • USPTO; Notice of Allowance dated Oct. 24, 2012 in U.S. Appl. No. 13/030,438.
  • USPTO; Non-Final Office Action dated Dec. 3, 2012 in U.S. Appl. No. 13/040,013.
  • USPTO; Notice of Allowance dated May 3, 2013 in U.S. Appl. No. 13/040,013.
  • USPTO; Notice of Allowance dated Sep. 13, 2012 in U.S. Appl. No. 13/085,968.
  • USPTO; Non-Final Office Action dated Mar. 29, 2013 in U.S. Appl. No. 13/094,402.
  • USPTO; Final Office Action dated Jul. 17, 2013 in U.S. Appl. No. 13/094,402.
  • USPTO; Notice of Allowance dated Sep. 30, 2013 in U.S. Appl. No. 13/094,402.
  • USPTO; Non-Final Office Action dated Jul. 17, 2014 in U.S. Appl. No. 13/154,271.
  • USPTO; Final Office Action dated Jan. 2, 2015 in U.S. Appl. No. 13/154,271.
  • USPTO; Non-Final Office Action dated May 27, 2015 in U.S. Appl. No. 13/154,271.
  • USPTO; Non-Final Office Action dated Oct. 27, 2014 in U.S. Appl. No. 13/169,951.
  • USPTO; Final Office Action dated May 26, 2015 in U.S. Appl. No. 13/169,591.
  • USPTO; Non-Final Office Action dated Sep. 1, 2015 in U.S. Appl. No. 13/169,951.
  • USPTO; Non-Final Office Action dated Jun. 24, 2014 in U.S. Appl. No. 13/181,407.
  • USPTO; Final Office Action dated Sep. 24, 2014 in U.S. Appl. No. 13/181,407.
  • USPTO; Non-Final Office Action dated Jan. 2, 2015 in U.S. Appl. No. 13/181,407.
  • USPTO; Final Office Action dated Apr. 8, 2015 in U.S. Appl. No. 13/181,407.
  • USPTO; Non-Final Office Action dated Jan. 23, 2013 in U.S. Appl. No. 13/184,351.
  • USPTO; Final Office Action dated Jul. 29, 2013 in U.S. Appl. No. 13/184,351.
  • USPTO; Non-Final Office Action dated Jul. 16, 2014 in U.S. Appl. No. 13/184,351.
  • USPTO; Final Office Action dated Feb. 17, 2015 in U.S. Appl. No. 13/184,351.
  • USPTO; Non-Final Office Action dated Aug. 10, 2015 in U.S. Appl. No. 13/184,351.
  • USPTO; Non-Final Office Action dated Oct. 1, 2012 in U.S. Appl. No. 13/191,762.
  • USPTO; Final Office Action dated Apr. 10, 2013 in U.S. Appl. No. 13/191,762.
  • USPTO; Notice of Allowance dated Aug. 15, 2013 in U.S. Appl. No. 13/191,762.
  • USPTO; Non-Final Office Action dated Oct. 22, 2012 in U.S. Appl. No. 13/238,960.
  • USPTO; Final Office Action dated May 3, 2013 in U.S. Appl. No. 13/238,960.
  • USPTO; Non-Final Office Action dated Apr. 26, 2013 in U.S. Appl. No. 13/250,721.
  • USPTO; Notice of Allowance dated Sep. 11, 2013 in U.S. Appl. No. 13/250,721.
  • USPTO; Non-Final Office Action dated Apr. 9, 2014 in U.S. Appl. No. 13/333,420.
  • USPTO; Notice of Allowance dated Sep. 15, 2014 in U.S. Appl. No. 13/333,420.
  • USPTO; Non-Final Office Action dated Oct. 10, 2012 in U.S. Appl. No. 13/406,791.
  • USPTO; Final Office Action dated Jan. 31, 2013 in U.S. Appl. No. 13/406,791.
  • USPTO; Non-Final Office Action dated Apr. 25, 2013 in U.S. Appl. No. 13/406,791.
  • USPTO; Final Office Action dated Aug. 23, 2013 in U.S. Appl. No. 13/406,791.
  • USPTO; Non-Final Office Action dated Dec. 4, 2013 in U.S. Appl. No. 13/406,791.
  • USPTO; Final Office Action dated Apr. 21, 2014 in U.S. Appl. No. 13/406,791.
  • USPTO; Non-Final Office Action dated Jan. 14, 2013 in U.S. Appl. No. 13/410,970.
  • USPTO; Notice of Allowance dated Feb. 14, 2013 in U.S. Appl. No. 13/410,970.
  • USPTO; Notice of Allowance dated Oct. 6, 2015 in U.S. Appl. No. 13/411,271.
  • USPTO; Non-Final Office Action dated Apr. 11, 2013 in U.S. Appl. No. 13/450,368.
  • USPTO; Notice of Allowance dated Jul. 17, 2013 in U.S. Appl. No. 13/450,368.
  • USPTO; Non-Final Office Action dated Oct. 17, 2013 in U.S. Appl. No. 13/493,897.
  • USPTO; Notice of Allowance dated Mar. 20, 2014 in U.S. Appl. No. 13/493,897.
  • USPTO; Non-Final Office Action dated Sep. 11, 2013 in U.S. Appl. No. 13/550,419.
  • USPTO; Final Office Action dated Jan. 27, 2014 in U.S. Appl. No. 13/550,419.
  • USPTO; Notice of Allowance dated May 29, 2014 in U.S. Appl. No. 13/550,419.
  • USPTO; Notice of Allowance dated Jul. 16, 2015 in U.S. Appl. No. 13/563,066.
  • USPTO; Non-Final Office Action dated Nov. 7, 2013 in U.S. Appl. No. 13/565,564.
  • USPTO; Final Office Action dated Feb. 28, 2014 in U.S. Appl. No. 13/565,564.
  • USPTO; Non-Final Office Action dated Jul. 2, 2014 in U.S. Appl. No. 13/565,564.
  • USPTO; Notice of Allowance dated Nov. 3, 2014 in U.S. Appl. No. 13/565,564.
  • USPTO; Non-Final Office Action dated Aug. 30, 2013 in U.S. Appl. No. 13/570,067.
  • USPTO; Notice of Allowance dated Jan. 6, 2014 in U.S. Appl. No. 13/570,067.
  • USPTO; USPTO; Notice of Allowance dated Aug. 28, 2015 in U.S. Appl. No. 13/597,043.
  • USPTO; Non-Final Office Action dated Dec. 8, 2015 in U.S. Appl. No. 13/597,108.
  • USPTO; Notice of Allowance dated Mar. 27, 2014 in U.S. Appl. No. 13/604,498.
  • USPTO; Non-Final Office Action dated Apr. 15, 2015 in U.S. Appl. No. 13/646,403.
  • USPTO; Final Office Action dated Oct. 15, 2015 in U.S. Appl. No. 13/646,403.
  • USPTO; Non-Final Office Action dated May 15, 2014 in U.S. Appl. No. 13/646,471.
  • USPTO; Final Office Action dated Aug. 18, 2014 in U.S. Appl. No. 13/646,471.
  • USPTO; Non-Final Office Action dated Dec. 16, 2014 in U.S. Appl. No. 13/646,471.
  • USPTO; Final Office Action dated Apr. 21, 2015 in U.S. Appl. No. 13/646,471.
  • USPTO; Non-Final Office Action dated Aug. 19, 2015 in U.S. Appl. No. 13/646,471.
  • USPTO; Final Office Action dated Nov. 19, 2015 in U.S. Appl. No. 13/651,144.
  • USPTO; Non-Final Office Action dated Nov. 19, 2015 in U.S. Appl. No. 14/659,437.
  • USPTO; Non-Final Office Action dated Jun. 18, 2015 in U.S. Appl. No. 13/665,366.
  • USPTO; Notice of Allowance dated Aug. 24, 2015 in U.S. Appl. No. 13/677,133.
  • USPTO; Non-Final Office Action dated Aug. 20, 2013 in U.S. Appl. No. 13/679,502.
  • USPTO; Final Office Action dated Feb. 25, 2014 in U.S. Appl. No. 13/679,502.
  • USPTO; Notice of Allowance dated May 2, 2014 in U.S. Appl. No. 13/679,502.
  • USPTO; Non-Final Office Action dated Jul. 21, 2015 in U.S. Appl. No. 13/727,324.
  • USPTO; Non-Final Office Action dated Oct. 24, 2013 in U.S. Appl. No. 13/749,878.
  • USPTO; Non-Final Office Action dated Jun. 18, 2014 in U.S. Appl. No. 13/749,878.
  • USPTO; Final Office Action dated Dec. 10, 2014 in U.S. Appl. No. 13/749,878.
  • USPTO; Notice of Allowance Mar. 13, 2015 dated in U.S. Appl. No. 13/749,878.
  • USPTO; Non-Final Office Action dated Dec. 19, 2013 in U.S. Appl. No. 13/784,388.
  • USPTO; Notice of Allowance dated Jun. 4, 2014 in U.S. Appl. No. 13/784,388.
  • USPTO; Non-Final Office Action dated Oct. 26, 2015 in U.S. Appl. No. 13/791,246.
  • USPTO; Non-Final Office Action dated Nov. 6, 2015 in U.S. Appl. No. 13/791,339.
  • USPTO; Non-Final Office Action dated Mar. 21, 2014 in U.S. Appl. No. 13/799,708.
  • USPTO; Notice of Allowance dated Oct. 31, 2014 in U.S. Appl. No. 13/799,708.
  • USPTO; Notice of Allowance dated Apr. 10, 2014 in U.S. Appl. No. 13/901,341.
  • USPTO; Notice of Allowance dated Jun. 6, 2014 in U.S. Appl. No. 13/901,341.
  • USPTO; Non-Final Office Action dated Jan. 2, 2015 in U.S. Appl. No. 13/901,372.
  • USPTO; Final Office Action dated Apr. 16, 2015 in U.S. Appl. No. 13/901,372.
  • USPTO; Non-Final Office Action dated Jul. 8, 2015 in U.S. Appl. No. 13/901,400.
  • USPTO; Notice of Allowance dated Aug. 5, 2015 in U.S. Appl. No. 13/901,372.
  • USPTO; Non-Final Office Action dated Apr. 24, 2014 in U.S. Appl. No. 13/912,666.
  • USPTO; Final Office Action dated Sep. 25, 2014 in U.S. Appl. No. 13/912,666.
  • USPTO; Non-Final Office Action dated Jan. 26, 2015 in U.S. Appl. No. 13/912,666.
  • USPTO; Notice of Allowance dated Jun. 25, 2015 in U.S. Appl. No. 13/912,666.
  • USPTO; Non-Final Office Action dated Dec. 16, 2014 in U.S. Appl. No. 13/915,732.
  • USPTO; Final Office Action dated Apr. 10, 2015 in U.S. Appl. No. 13/915,732.
  • USPTO; Notice of Allowance dated Jun. 19, 2015 in U.S. Appl. No. 13/915,732.
  • USPTO; Notice of Allowance dated Mar. 17, 2015 in U.S. Appl. No. 13/923,197.
  • USPTO; Non-Final Office Action dated Jul. 30, 2015 in U.S. Appl. No. 13/941,216.
  • USPTO; Non-Final Office Action dated Jun. 29, 2015 in U.S. Appl. No. 13/966,782.
  • USPTO; Notice of Allowance dated Oct. 7, 2015 in U.S. Appl. No. 13/973,777.
  • USPTO; Non-Final Office Action dated Feb. 20, 2015 in U.S. Appl. No. 14/018,231.
  • USPTO; Notice of Allowance dated Jul. 20, 2015 in U.S. Appl. No. 14/018,231.
  • USPTO; USPTO; Final Office Action dated Sep. 14, 2015 in U.S. Appl. No. 14/018,345.
  • USPTO; Non-Final Office Action dated Mar. 26, 2015 in U.S. Appl. No. 14/031,982.
  • USPTO; Final Office Action dated Aug. 28, 2015 in U.S. Appl. No. 14/031,982.
  • USPTO; Notice of Allowance dated Nov. 17, 2015 in U.S. Appl. No. 14/031,982.
  • USPTO; Notice of Allowance dated Sep. 11, 2015 in U.S. Appl. No. 14/040,196.
  • USPTO; Non-Final Office Action dated Dec. 15, 2014 in U.S. Appl. No. 14/065,114.
  • USPTO; Final Office Action dated Jun. 19, 2015 in U.S. Appl. No. 14/065,114.
  • USPTO; Non-Final Office Action dated Oct. 7, 2015 in U.S. Appl. No. 14/065,114.
  • USPTO; Non-Final Office Action dated Nov. 14, 2014 in U.S. Appl. No. 14/069,244.
  • USPTO; Notice of Allowance dated Mar. 25, 2015 in U.S. Appl. No. 14/069,244.
  • USPTO; Non-Final Office Action dated Sep. 9, 2015 in U.S. Appl. No. 14/090,750.
  • USPTO; Final Office Action dated Sep. 1, 2015 in U.S. Appl. No. 14/079,302.
  • USPTO; Notice of Allowance dated Sep. 3, 2015 in U.S. Appl. No. 14/166,462.
  • USPTO; Non-Final Office Action dated Nov. 17, 2015 in U.S. Appl. No. 14/172,220.
  • USPTO; Final Office Action dated Jul. 10, 2015 in U.S. Appl. No. 14/183,187.
  • USPTO; Non-Final Office Action dated Oct. 8, 2015 in U.S. Appl. No. 14/218,374.
  • USPTO; Non-Final Office Action dated Sep. 22, 2015 in U.S. Appl. No. 14/219,839.
  • USPTO; Non-Final Office Action dated Nov. 25, 2015 in U.S. Appl. No. 14/219,879.
  • USPTO; Non-Final Office Action dated Sep. 18, 2015 in U.S. Appl. No. 14/244,689.
  • USPTO; Non-Final Office Action dated Nov. 20, 2015 in U.S. Appl. No. 14/260,701.
  • USPTO; Non-Final Office Action dated Aug. 19, 2015 in U.S. Appl. No. 14/268,348.
  • USPTO; Non-Final Office Action dated Oct. 20, 2015 in U.S. Appl. No. 14/281,477.
  • USPTO; Final Office Action dated Jul. 14, 2015 in U.S. Appl. No. 14/457,058.
  • USPTO; Non-Final Office Action dated Nov. 6, 2015 in U.S. Appl. No. 14/457,058.
  • USPTO; Non-Final Office Action dated Apr. 10, 2015 in U.S. Appl. No. 14/505,290.
  • USPTO; Notice of Allowance dated Aug. 21, 2015 in U.S. Appl. No. 14/505,290.
  • USPTO; Final Office Action dated Jul. 16, 2015 in U.S. Appl. No. 14/563,044.
  • USPTO; Notice of Allowance dated Dec. 2, 2015 in U.S. Appl. No. 14/563,044.
  • USPTO; Non-Final Office Action dated Oct. 1, 2015 in U.S. Appl. No. 14/571,126.
  • USPTO; Notice of Allowance dated Nov. 26, 2014 in U.S. Appl. No. 29/481,301.
  • USPTO; Notice of Allowance dated Feb. 17, 2015 in U.S. Appl. No. 29/481,308.
  • USPTO; Notice of Allowance dated Jan. 12, 2015 in U.S. Appl. No. 29/481,312.
  • USPTO; Notice of Allowance dated Apr. 30, 2015 in U.S. Appl. No. 29/481,315.
  • USPTO; Notice of Allowance dated May 11, 2015 in U.S. Appl. No. 29/511,011.
  • USPTO; Notice of Allowance dated May 11, 2015 in U.S. Appl. No. 29/514,153.
  • Bhatnagar et al., “Copper Interconnect Advances to Meet Moore's Law Milestones,” Solid State Technology, 52, 10 (2009).
  • Buriak, “Organometallic Chemistry on Silicon and Germanium Surfaces,” Chemical Reviews, 102, 5 (2002).
  • Cant et al., “Chemisorption Sites on Porous Silica Glass and on Mixed-Oxide Catalysis,” Can. J. Chem. 46, 1373 (1968).
  • Chen et al., “A Self-Aligned Airgap Interconnect Scheme,” IEEE International Interconnect Technology Conference, vol. 1-3, 146-148 (2009).
  • Choi et al., “Improvement of Silicon Direct Bonding using Surfaces Activated by Hydrogen Plasma Treatement,” Journal of the Korean Physical Society, 37, 6, 878-881 (2000).
  • Choi et al., “Low Temperature Formation of Silicon Oxide Thin Films by Atomic Layer Deposition Using NH3/O2 Plasma,” ECS Solid State Letters, 2(12) p. 114-p. 116 (2013).
  • Cui et al., “Impact of Reductive N2/H2 Plasma on Porous Low-Dielectric Constant SiCOH Thin Films,” Journal of Applied Physics 97, 113302, 1-8 (2005).
  • Dingemans et al., “Comparison Between Aluminum Oxide Surface Passivation Films Deposited with Thermal Aid,” Plasma Aid and Pecvd, 35th IEEE PVCS, Jun. 2010.
  • Drummond et al., “Hydrophobic Radiofrequency Plasma-Deposited Polymer Films: Dielectric Properties and Surface Forces,” Colloids and Surfaces A, 129-130, 117-129 (2006).
  • Easley et al., “Thermal Isolation of Microchip Reaction Chambers for Rapid Non-Contact DNA Amplification,” J. Micromech. Microeng. 17, 1758-1766 (2007).
  • Ge et al., “Carbon Nanotube-Based Synthetic Gecko Tapes,” Department of Polymer Science, PNAS, 10792-10795 (2007).
  • George et al., “Atomic Layer Deposition: An Overview,” Chem. Rev. 110, 111-131 (2010).
  • Grill et al., “The Effect of Plasma Chemistry on the Damage Induced Porous SiCOH Dielectrics,” IBM Research Division, RC23683 (W0508-008), Materials Science, 1-19 (2005).
  • Heo et al., “Structural Characterization of Nanoporous Low-Dielectric Constant SiCOH Films Using Organosilane Precursors,” NSTI-Nanotech, vol. 4, 122-123 (2007).
  • Jung et al., “Double Patterning of Contact Array with Carbon Polymer,” Proc. Of SPIE, 6924, 69240C, 1-10 (2008).
  • Katamreddy et al., “ALD and Characterization of Aluminum Oxide Deposited on Si(100) using Tris(diethylamino) Aluminum and Water Vapor,” Journal of the Electrochemical Society, 153 (10) C701-C706 (2006).
  • Kim et al., “Passivation Effect on Low-k S/OC Dielectrics by H2 Plasma Treatment,” Journal of the Korean Physical Society, ″40, 1, 94-98 (2002).
  • Kim et al., “Characteristics of Low Temperaure High Quality Silicon Oxide by Plasma Enhanced Atomic Layer Deposition with In-Situ Plasma Densification Process,” The Electrochemical Society, ECS Transactions, College of Information and Communication Engineerign, Sunakvunkwan University, 53(1).
  • King, Plasma Enhanced Atomic Layer Deposition of SiNx: H and SiO2, J. Vac. Sci. Technol., A29(4) (2011).
  • Koo et al., “Characteristics of A12O3 Thin Films Deposited Using Dimethylaluminum Isopropoxide and Trimethylaluminum Precursors by the Plasma-Enhanced Atomic-Layer Deposition Method,” Journal of Physical Society, 48, 1. 131-136 (2006).
  • Kurosawa et al., “Synthesis and Characterization of Plasma-Polymerized Hexamethyldisioxane Films,” Thin Solid Films, 506-507, 176-179 (2006).
  • Lieberman, et al., “Principles of Plasma Discharges and Materials Processing,” Second Edition, 368-381.
  • Lim et al., “Low-Temperature Growth of SiO2 Films by Plasma-Enhanced Atomic Layer Deposition,” ETRI Journal, 27 (1), 118-121 (2005).
  • Liu et al., “Research, Design, and Experimen of End Effector for Wafer Transfer Robot,” Industrial Robot: An International Journal, 79-91 (2012).
  • Mackus et al., “Optical Emission Spectroscopy as a Tool for Studying Optimizing, and Monitoring Plasma-Assisted Atomic Layer Deposition Processes,” Journal of Vacuum Science and Technology, 77-87 (2010).
  • Maeno, “Gecko Tape Using Carbon Nanotubes,” Nitto Denko Gihou, 47, 48-51.
  • Marsik et al., “Effect of Ultraviolet Curing Wavelength on Low-k Dielectric Material Proerties and Plasma Damage Resistance,” Sciencedirect.com, 519, 11, 3619-3626 (2011).
  • Morishige et al., “Thermal Desorption and Infrared Studies of Ammonia Amines and Pyridines Chemisorbed on Chromic Oxide,” J.Chem. Soc., Faraday Trans. 1, 78, 2947-2957 (1982).
  • Mukai et al., “A Study of CD Budget in Spacer Patterning Technology,” Proc. Of SPIE, 6924, 1-8 (2008).
  • Nogueira et al., “Production of Highly Hydrophobic Films Using Low Frequency and High Density Plasma,” Revista Brasileira de Aplicacoes de Vacuo, 25(1), 45-53 (2006).
  • Schmatz et al., “Unusual Isomerization Reactions in 1.3-Diaza-2-Silcyclopentanes,” Organometallics, 23, 1180-1182 (2004).
  • Scientific and Technical Information Center EIC 2800 Search Report dated Feb. 16, 2012.
  • Shamma et al., “PDL Oxide Enabled Doubling,” Proc. Of SPIE, 6924, 69240D, 1-10 (2008).
  • Wirths, et al, “SiGeSn Growth tudies Using Reduced Pressure Chemical Vapor Deposition Towards Optoeleconic Applications,” This Soid Films, 557, 183-187 (2014).
  • Yun et al., “Behavior of Various Organosilicon Molecules in PECVD Processes for Hydrocarbon-Doped Silicon Oxide Films,” Solid State Phenomena, vol. 124-126, 347-350 (2007).
Patent History
Patent number: 9892908
Type: Grant
Filed: Mar 17, 2015
Date of Patent: Feb 13, 2018
Patent Publication Number: 20150187568
Assignee: ASM America, Inc. (Phoenix, AZ)
Inventors: Fred Pettinger (Phoenix, AZ), Carl White (Gilbert, AZ), Dave Marquardt (Scottsdale, AZ), Sokol Ibrani (Scottsdale, AZ), Eric Shero (Phoenix, AZ), Todd Dunn (Cave Creek, AZ), Kyle Fondurulia (Phoenix, AZ), Mike Halpin (Scottsdale, AZ)
Primary Examiner: Jeffrie R Lund
Application Number: 14/660,755
Classifications
Current U.S. Class: Gas Or Vapor Deposition (118/715)
International Classification: H01L 21/02 (20060101); C23C 16/455 (20060101); C23C 16/44 (20060101); H01J 37/32 (20060101);