Heterojunction Device Patents (Class 257/183)
  • Patent number: 9117726
    Abstract: A IDCA system with internal nBn photo-detector comprising: a photo-absorbing layer comprising an n-doped semiconductor exhibiting valence band energy level; a barrier layer, a first side of the barrier layer adjacent a first side of the photo-absorbing layer, the barrier layer exhibiting a valence band energy level substantially equal to the valence band energy level of the doped semiconductor of the photo absorbing layer; and a contact area comprising a doped semiconductor, the contact area being adjacent a second side of the barrier layer opposing the first side, the barrier layer exhibiting a thickness and conductance band gap sufficient to prevent tunneling of majority carriers from the photo-absorbing layer to the contact area, blocking the flow of thermalized majority carriers from the photo-absorbing layer to the contact area. Alternatively, a p-doped semiconductor is utilized, equalizing barrier conductance band energy levels and photo-absorbing layers.
    Type: Grant
    Filed: August 12, 2013
    Date of Patent: August 25, 2015
    Inventor: Shimon Maimon
  • Patent number: 9099518
    Abstract: Various embodiments provide an electrostatic discharge (ESD) protection device. The ESD protection device may include a subcollector, collector, base, and emitter formed in layers on top of one another. The emitter may include a different semiconductor than a semiconductor included in the base to form a heterojunction. The ESD protection device may include a collector contact disposed on the subcollector and an emitter contact disposed on the emitter. The ESD protection device may be a two-terminal device, with no conductive base contact coupled with the base.
    Type: Grant
    Filed: February 4, 2014
    Date of Patent: August 4, 2015
    Assignee: TriQuint Semiconductor, Inc.
    Inventors: Timothy S. Henderson, Robert E. Knapp
  • Patent number: 9082689
    Abstract: A semiconductor structure is provided that includes a base substrate, and a multilayered stack located on the base substrate. The multilayered stack includes, from bottom to top, a first sacrificial material layer having a first thickness, a first semiconductor device layer, a second sacrificial material layer having a second thickness, and a second semiconductor device layer, wherein the first thickness is less than the second thickness.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: July 14, 2015
    Assignee: International Business Machines Corporation
    Inventors: Cheng-Wei Cheng, Ning Li, Kuen-Ting Shiu
  • Patent number: 9082748
    Abstract: Semiconductor devices and methods for making semiconductor devices are disclosed herein. A method configured in accordance with a particular embodiment includes forming a stack of semiconductor materials from an epitaxial substrate, where the stack of semiconductor materials defines a heterojunction, and where the stack of semiconductor materials and the epitaxial substrate further define a bulk region that includes a portion of the semiconductor stack adjacent the epitaxial substrate. The method further includes attaching the stack of semiconductor materials to a carrier, where the carrier is configured to provide a signal path to the heterojunction. The method also includes exposing the bulk region by removing the epitaxial substrate.
    Type: Grant
    Filed: October 5, 2012
    Date of Patent: July 14, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Martin F. Schubert, Vladimir Odnoblyudov, Cem Basceri, Thomas Gehrke
  • Patent number: 9064887
    Abstract: According to an embodiment of a field-effect semiconductor device, the field-effect semiconductor device includes a semiconductor body and a source electrode. The semiconductor body includes a drift region, a gate region and a source region of a first semiconductor material having a first band-gap and an anode region of a second semiconductor material having a second band-gap lower than the first band-gap. The drift region is of a first conductivity type. The gate region forms a pn-junction with the drift region. The source region is of the first conductivity type and in resistive electric connection with the drift region and has a higher maximum doping concentration than the drift region. The anode region is of the second conductivity type, forms a heterojunction with the drift region and is spaced apart from the source region. The source metallization is in resistive electric connection with the source region and the anode region.
    Type: Grant
    Filed: September 4, 2012
    Date of Patent: June 23, 2015
    Assignee: Infineon Technologies Austria AG
    Inventor: Wolfgang Werner
  • Patent number: 9040370
    Abstract: A device includes a substrate, isolation regions at a surface of the substrate, and a semiconductor region over a top surface of the isolation regions. A conductive feature is disposed over the top surface of the isolation regions, wherein the conductive feature is adjacent to the semiconductor region. A dielectric material is disposed between the conductive feature and the semiconductor region. The dielectric material, the conductive feature, and the semiconductor region form an anti-fuse.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: May 26, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Hsiao-Lan Yang
  • Patent number: 9041065
    Abstract: Planar Schottky diodes for which the semiconductor material includes a heterojunction which induces a 2DEG in at least one of the semiconductor layers. A metal anode contact is on top of the upper semiconductor layer and forms a Schottky contact with that layer. A metal cathode contact is connected to the 2DEG, forming an ohmic contact with the layer containing the 2DEG.
    Type: Grant
    Filed: August 22, 2013
    Date of Patent: May 26, 2015
    Assignee: Transphorm Inc.
    Inventors: Yifeng Wu, Umesh Mishra, Primit Parikh, Rongming Chu, Ilan Ben-Yaacov, Likun Shen
  • Publication number: 20150137178
    Abstract: In one aspect, a diode comprises: a semiconductor layer having a first side and a second side opposite the first side, the semiconductor layer having a thickness between the first side and the second side, the thickness of the semiconductor layer being based on a mean free path of a charge carrier emitted into the semiconductor layer; a first metal layer deposited on the first side of the semiconductor layer; and a second metal layer deposited on the second side of the semiconductor layer.
    Type: Application
    Filed: April 19, 2013
    Publication date: May 21, 2015
    Inventors: Rozana Hussin, Yixuan Chen, Yi Luo
  • Patent number: 9035351
    Abstract: A semiconductor device having a p base region and an n+ emitter region that come into contact with an emitter electrode and are selectively provided in a surface layer of an n? drift layer. A gate electrode is provided on a portion of the front surface of the n? drift layer which is interposed between the n+ emitter regions, with a gate insulating film interposed therebetween. In some exemplary embodiments, an n+ buffer layer and a p collector layer which have a higher impurity concentration than the n? drift layer are sequentially provided on a surface of the n? drift layer opposite to the front surface on which the n+ emitter region is provided. The impurity concentration of the n+ buffer layer is equal to or greater than 7×1016 cm?3 and equal to or less than 7×1017 cm?3. Accordingly, it is possible to obtain high field decay resistance.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: May 19, 2015
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventor: Tatsuya Naito
  • Patent number: 9023729
    Abstract: A method of growth and transfer of epitaxial structures from semiconductor crystalline substrate(s) to an assembly substrate. Using this method, the assembly substrate encloses one or more semiconductor materials and defines a wafer size that is equal to or larger than the semiconductor crystalline substrate for further wafer processing. The process also provides a unique platform for heterogeneous integration of diverse material systems and device technologies onto one single substrate.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: May 5, 2015
    Assignee: Athenaeum, LLC
    Inventor: Eric Ting-Shan Pan
  • Patent number: 9012958
    Abstract: A semiconductor device of the invention includes an n-GaN layer provided on a substrate, a channel layer provided in contact with the upper surface of the n-GaN layer, an electron supply layer which is provided on the channel layer, and a gate electrode, a source electrode, and a drain electrode which are provided on the electron supply layer. The gate electrode is in contact with an underlying layer made from a nitride semiconductor. The semiconductor device has a ratio defined by the equation L/d1?7, where L is the width of the gate electrode in contact with the underlying layer in a direction between the source electrode and drain electrode; and d1 is the distance between a surface of the n-type gallium nitride layer and a boundary between the gate electrode and the underlying layer.
    Type: Grant
    Filed: April 17, 2014
    Date of Patent: April 21, 2015
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Kazutaka Inoue
  • Patent number: 8987780
    Abstract: A graphene capped HEMT device and a method of fabricating same are disclosed. The graphene capped HEMT device includes one or more graphene caps that enhance device performance and/or reliability of an exemplary AlGaN/GaN heterostructure transistor used in high-frequency, high-energy applications, e.g., wireless telecommunications. The HEMT device disclosed makes use of the extraordinary material properties of graphene. One of the graphene caps acts as a heat sink underneath the transistor, while the other graphene cap stabilizes the source, drain, and gate regions of the transistor to prevent cracking during high-power operation. A process flow is disclosed for replacing a three-layer film stack, previously used to prevent cracking, with a one-atom thick layer of graphene, without otherwise degrading device performance. In addition, the HEMT device disclosed includes a hexagonal boron nitride adhesion layer to facilitate deposition of the compound nitride semiconductors onto the graphene.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: March 24, 2015
    Assignee: STMicroelectronics, Inc.
    Inventors: John H Zhang, Cindy Goldberg, Walter Kleemeier
  • Patent number: 8987075
    Abstract: A semiconductor device includes a substrate, a carrier transit layer disposed above the substrate, a compound semiconductor layer disposed on the carrier transit layer, a source electrode disposed on the compound semiconductor layer, a first groove disposed from the back of the substrate up to the inside of the carrier transit layer while penetrating the substrate, a drain electrode disposed in the inside of the first groove, a gate electrode located between the source electrode and the first groove and disposed on the compound semiconductor layer, and a second groove located diagonally under the source electrode and between the source electrode and the first groove and disposed from the back of the substrate up to the inside of the carrier transit layer while penetrating the substrate.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: March 24, 2015
    Assignee: Fujitsu Limited
    Inventors: Masato Nishimori, Atsushi Yamada
  • Patent number: 8987782
    Abstract: There is provided a compound semiconductor wafer that is suitably used to form a plurality of different types of devices such as an HBT and an FET thereon. The semiconductor wafer includes a first semiconductor, a carrier-trapping layer that is formed on the first semiconductor and has an electron-trapping center or a hole-trapping center, a second semiconductor that is epitaxially grown on the carrier-trapping layer and serves as a channel in which a free electron or a free hole moves, and a third semiconductor including a stack represented by n-type semiconductor/p-type semiconductor/n-type semiconductor or represented by p-type semiconductor/n-type semiconductor/p-type semiconductor, where the stack is epitaxially grown on the second semiconductor.
    Type: Grant
    Filed: October 5, 2011
    Date of Patent: March 24, 2015
    Assignee: Sumitomo Chemical Company, Limited
    Inventor: Osamu Ichikawa
  • Patent number: 8981373
    Abstract: A white LED is provided. The white LED includes a P-type layer, a tunneling structure, an N-type layer, an N-type electrode, and a P-type electrode. The tunneling structure is disposed over the P-type layer. The tunneling structure includes a first barrier layer, an active layer and a second barrier layer. The first barrier layer includes a first metal oxide layer. The active layer includes a second metal oxide layer. The second barrier layer includes a third metal oxide layer. The N-type layer is disposed over the tunneling structure. The N-type electrode and the P-type electrode are respectively contacted with the N-type layer and the P-type layer. An energy gap of the second metal oxide layer is lower than an energy gap of the first metal oxide layer and is lower than an energy gap of the third metal oxide layer.
    Type: Grant
    Filed: January 2, 2014
    Date of Patent: March 17, 2015
    Assignee: Opto Tech Corporation
    Inventors: Lung-Han Peng, Yao-Te Wang, Po-Chun Yeh, Po-Ting Lee
  • Patent number: 8981428
    Abstract: There are provided a semiconductor device in which a drain leak current can be reduced in the transistor operation while high vertical breakdown voltage is achieved and a method for producing the semiconductor device. In the semiconductor device, an opening 28 that extends from an n+-type contact layer 8 and reaches an n-type drift layer 4 through a p-type barrier layer 6 is formed. The semiconductor device includes a regrown layer 27 located so as to cover portions of the p-type barrier layer 6 and the like that are exposed to the opening, the regrown layer 27 including an undoped GaN channel layer 22 and a carrier supply layer 26; an insulating layer 9 located so as to cover the regrown layer 27; and a gate electrode G located on the insulating layer 9. In the p-type barrier layer, the Mg concentration A (cm?3)and the hydrogen concentration B (cm?3) satisfy 0.1<B/A<0.9 . . . (1).
    Type: Grant
    Filed: July 6, 2011
    Date of Patent: March 17, 2015
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yu Saitoh, Masaya Okada, Masaki Ueno, Makoto Kiyama
  • Patent number: 8981338
    Abstract: A semiconductor photocathode includes an AlXGa1-XN layer (0?X<1) bonded to a glass substrate via an SiO2 layer and an alkali-metal-containing layer formed on the AlXGa1-XN layer. The AlXGa1-XN layer includes a first region, a second region, an intermediate region between the first and second regions. The second region has a semiconductor superlattice structure formed by laminating a barrier layer and a well layer alternately, the intermediate region has a semiconductor superlattice structure formed by laminating a barrier layer and a well layer alternately. When a pair of adjacent barrier and well layers is defined as a unit section, an average value of a composition ratio X of Al in a unit section decreases monotonously with distance from an interface position between the second region and the SiO2 layer at least in the intermediate region.
    Type: Grant
    Filed: March 22, 2013
    Date of Patent: March 17, 2015
    Assignees: Sanken Electric Co., Ltd., Hamamatsu Photonics K.K.
    Inventors: Shunro Fuke, Tetsuji Matsuo, Yoshihiro Ishigami, Tokuaki Nihashi
  • Patent number: 8975674
    Abstract: A bridge structure for use in a semiconductor device includes a semiconductor substrate and a semiconductor structure layer. The semiconductor structure layer is formed on a surface of the semiconductor substrate and a lattice difference is formed between the semiconductor structure layer and the semiconductor substrate. The semiconductor structure layer includes at least a first block, at least a second block and at least a third block, wherein the first block and the third block are bonded on the surface of the semiconductor substrate, the second block is floated over the semiconductor substrate and connected with the first block and the third block.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: March 10, 2015
    Assignee: National Applied Research Laboratories
    Inventors: Chun-Lin Chu, Shu-Han Hsu, Guang-Li Luo, Chee-Wee Liu
  • Patent number: 8969915
    Abstract: Gallium nitride (GaN) based semiconductor devices and methods of manufacturing the same. The GaN-based semiconductor device may include a heterostructure field effect transistor (HFET) or a Schottky diode, arranged on a heat dissipation substrate. The HFET device may include a GaN-based multi-layer having a recess region; a gate arranged in the recess region; and a source and a drain that are arranged on portions of the GaN-based multi-layer at two opposite sides of the gate (or the recess region). The gate, the source, and the drain may be attached to the heat dissipation substrate. The recess region may have a double recess structure. While such a GaN-based semiconductor device is being manufactured, a wafer bonding process and a laser lift-off process may be used.
    Type: Grant
    Filed: July 22, 2014
    Date of Patent: March 3, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-Hoon Lee, Ki-Se Kim
  • Patent number: 8963167
    Abstract: An improved diode energy converter for chemical kinetic electron energy transfer is formed using nanostructures and includes identifiable regions associated with chemical reactions isolated chemically from other regions in the converter, a region associated with an area that forms energy barriers of the desired height, a region associated with tailoring the boundary between semiconductor material and metal materials so that the junction does not tear apart, and a region associated with removing heat from the semiconductor.
    Type: Grant
    Filed: January 27, 2014
    Date of Patent: February 24, 2015
    Assignee: Neokismet, LLC
    Inventors: Jawahar M. Gidwani, Anthony C. Zuppero
  • Patent number: 8962461
    Abstract: Consistent with an example embodiment, a GaN heterojunction structure has a three-layer dielectric structure. The lowermost and middle portions of the gate electrode together define the gate foot, and this is associated with two dielectric layers. A thinner first dielectric layer is adjacent the gate edge at the bottom of the gate electrode. The second dielectriclayer corresponds to the layer in the conventional structure, and it is level with the main portion of the gate foot.
    Type: Grant
    Filed: December 16, 2013
    Date of Patent: February 24, 2015
    Assignee: NXP B.V.
    Inventors: Godefridus Adrianus Maria Hurkx, Jeroen Antoon Croon, Johannes Josephus Theodorus Marinus Donkers, Stephan Heil, Jan Sonsky
  • Patent number: 8963203
    Abstract: According to one embodiment, a nitride semiconductor device includes a substrate; semiconductor stacked layers including a nitride semiconductor provided on the substrate, and having a buffer layer, a carrier running layer provided on the buffer layer, and a barrier layer provided on the carrier running layer; a source electrode and a drain electrode provided on the semiconductor stacked layers and in contact with the semiconductor stacked layers; and a gate electrode provided on the semiconductor stacked layers and provided between the source electrode and the drain electrode. The gate electrode has a stacked structure, and a gate metal layer, a barrier metal layer, a first interconnection layer, and a second interconnection layer including Al are sequentially stacked from a side of a surface of the semiconductor stacked layers in the stacked structure.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: February 24, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masahiko Kuraguchi, Akira Yoshioka, Yoshiharu Takada
  • Patent number: 8946724
    Abstract: Monolithic integration of high-frequency GaN-HEMTs and GaN-Schottky diodes. The integrated HEMTs/Schottky diodes are realized using an epitaxial structure and a fabrication process which reduces fabrication cost. Since the disclosed process preferably uses self-aligned technology, both devices show extremely high-frequency performance by minimizing device parasitic resistances and capacitances. Furthermore, since the Schottky contact of diodes is formed by making a direct contact of an anode metal to the 2DEG channel the resulting structure minimizes an intrinsic junction capacitance due to the very thin contact area size. The low resistance of high-mobility 2DEG channel and a low contact resistance realized by a n+GaN ohmic regrowth layer reduce a series resistance of diodes as well as access resistance of the HEMT.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: February 3, 2015
    Assignee: HRL Laboratories, LLC
    Inventors: Keisuke Shinohara, Dean C. Regan
  • Patent number: 8946863
    Abstract: An epitaxial substrate for electronic devices, in which current flows in a lateral direction and of which warpage configuration is properly controlled, and a method of producing the same. The epitaxial substrate for electronic devices is produced by forming a bonded substrate by bonding a low-resistance Si single crystal substrate and a high-resistance Si single crystal substrate together; forming a buffer as an insulating layer on a surface of the bonded substrate on the high-resistance Si single crystal substrate side; and producing an epitaxial substrate by epitaxially growing a plurality of III-nitride layers on the buffer to form a main laminate. The resistivity of the low-resistance Si single crystal substrate is 100 ?·cm or less, and the resistivity of the high-resistance Si single crystal substrate is 1000 ?·cm or more.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: February 3, 2015
    Assignee: Dowa Electronics Materials Co., Ltd.
    Inventors: Tetsuya Ikuta, Daisuke Hino, Ryo Sakamoto, Tomohiko Shibata
  • Patent number: 8941092
    Abstract: Disclosed are a method which improves the performance of a semiconductor element, and a semiconductor element with improved performance. The method for forming a semiconductor element structure includes a heterojunction forming step in which a heterojunction is formed between a strained semiconductor layer (21) in which a strained state is maintained, and relaxed semiconductor layers (23, 25). The heterojunction is formed by performing ion implantation from the surface of a substrate (50) which has a strained semiconductor layer (20) partially covered with a covering layer (30) on an insulating oxide film (40), and altering the strained semiconductor layer (20) where there is no shielding from the covering layer (30) to relaxed semiconductor layers (23, 25) by relaxing the strained state of the strained semiconductor layer (20), while maintaining the strained state of the strained semiconductor layer (21) where there is shielding from the covering layer (30).
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: January 27, 2015
    Assignee: Kanagawa University
    Inventor: Tomohisa Mizuno
  • Patent number: 8941093
    Abstract: A first electrode, an intrinsic first compound semiconductor layer over the first electrode, a second compound semiconductor layer whose band gap is smaller than that of the first compound semiconductor layer on the first compound semiconductor layer, and a second electrode over the second compound semiconductor layer are provided.
    Type: Grant
    Filed: August 21, 2013
    Date of Patent: January 27, 2015
    Assignee: Fujitsu Limited
    Inventor: Tadahiro Imada
  • Patent number: 8937335
    Abstract: The invention provides semiconductor materials including a gallium nitride material layer formed on a silicon substrate and methods to form the semiconductor materials. The semiconductor materials include a transition layer formed between the silicon substrate and the gallium nitride material layer. The transition layer is compositionally-graded to lower stresses in the gallium nitride material layer which can result from differences in thermal expansion rates between the gallium nitride material and the substrate. The lowering of stresses in the gallium nitride material layer reduces the tendency of cracks to form. Thus, the invention enables the production of semiconductor materials including gallium nitride material layers having few or no cracks. The semiconductor materials may be used in a number of microelectronic and optical applications.
    Type: Grant
    Filed: November 19, 2013
    Date of Patent: January 20, 2015
    Assignee: International Rectifier Corporation
    Inventors: T. Warren Weeks, Jr., Edwin L. Piner, Thomas Gehrke, Kevin J. Linthicum
  • Patent number: 8933486
    Abstract: A transistor with source and drain electrodes formed in contact with an active region and a gate between the source and drain electrodes and in contact with the active region. A first spacer layer is on at least part of the active region surface between the gate and drain electrodes and between the gate and source electrodes. The gate comprises a generally t-shaped top portion that extends toward the source and drain electrodes. A field plate is on the spacer layer and under the overhang of at least one section of the gate top portion. The field plate is at least partially covered by a second spacer layer that is on at least part of the first active layer surface and between the gate and drain and between the gate and source. At least one conductive path electrically connects the field plate to the source electrode or the gate.
    Type: Grant
    Filed: September 26, 2011
    Date of Patent: January 13, 2015
    Assignee: Cree, Inc.
    Inventor: Yifeng Wu
  • Patent number: 8928034
    Abstract: The invention provides semiconductor materials including a gallium nitride material layer formed on a silicon substrate and methods to form the semiconductor materials. The semiconductor materials include a transition layer formed between the silicon substrate and the gallium nitride material layer. The transition layer is compositionally-graded to lower stresses in the gallium nitride material layer which can result from differences in thermal expansion rates between the gallium nitride material and the substrate. The lowering of stresses in the gallium nitride material layer reduces the tendency of cracks to form. Thus, the invention enables the production of semiconductor materials including gallium nitride material layers having few or no cracks. The semiconductor materials may be used in a number of microelectronic and optical applications.
    Type: Grant
    Filed: November 19, 2013
    Date of Patent: January 6, 2015
    Assignee: International Rectifier Corporation
    Inventors: T. Warren Weeks, Jr., Edwin L. Piner, Thomas Gehrke, Kevin J. Linthicum
  • Patent number: 8928035
    Abstract: The invention provides semiconductor materials including a gallium nitride material layer formed on a silicon substrate and methods to form the semiconductor materials. The semiconductor materials include a transition layer formed between the silicon substrate and the gallium nitride material layer. The transition layer is compositionally-graded to lower stresses in the gallium nitride material layer which can result from differences in thermal expansion rates between the gallium nitride material and the substrate. The lowering of stresses in the gallium nitride material layer reduces the tendency of cracks to form. Thus, the invention enables the production of semiconductor materials including gallium nitride material layers having few or no cracks. The semiconductor materials may be used in a number of microelectronic and optical applications.
    Type: Grant
    Filed: November 19, 2013
    Date of Patent: January 6, 2015
    Assignee: International Rectifier Corporation
    Inventors: T. Warren Weeks, Jr., Edwin L. Piner, Thomas Gehrke, Kevin J. Linthicum
  • Patent number: 8928029
    Abstract: Bias-switchable dual-band infrared detectors and methods of manufacturing such detectors are provided. The infrared detectors are based on a back-to-back heterojunction diode design, where the detector structure consists of, sequentially, a top contact layer, a unipolar hole barrier layer, an absorber layer, a unipolar electron barrier, a second absorber, a second unipolar hole barrier, and a bottom contact layer. In addition, by substantially reducing the width of one of the absorber layers, a single-band infrared detector can also be formed.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: January 6, 2015
    Assignee: California Institute of Technology
    Inventors: David Z. Ting, Sarath D. Gunapala, Alexander Soibel, Jean Nguyen, Arezou Khoshakhlagh
  • Patent number: 8896027
    Abstract: Disclosed is a high performance nitride semiconductor having a reverse leak current characteristic with two-dimensional electron gas as a conductive layer. A desired impurity is diffused into or a nitride semiconductor to which a desired impurity is added is re-grown on the bottom surface and the side face portion of a recessed portion formed by dry etching using chlorine gas on the upper surface of a nitride semiconductor stacked film to increase resistance of the side face portion of the nitride semiconductor stacked film contacting an anode electrode, reducing the reverse leak current.
    Type: Grant
    Filed: November 24, 2012
    Date of Patent: November 25, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Akihisa Terano, Kazuhiro Mochizuki, Tomonobu Tsuchiya
  • Patent number: 8890213
    Abstract: There is provided a semiconductor wafer including a base wafer that has an impurity region in which an impurity atom has been introduced into silicon, a plurality of seed bodies provided in contact with the impurity region, and a plurality of compound semiconductors each provided in contact with the corresponding seed bodies and lattice-matched or pseudo-lattice-matched to the corresponding seed bodies. The semiconductor wafer can further include an inhibitor provided on the base wafer and in which a plurality of apertures exposing at least a part of the impurity region are provided.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: November 18, 2014
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Sadanori Yamanaka, Masahiko Hata, Noboru Fukuhara
  • Patent number: 8890206
    Abstract: An AlGaN/GaN HEMT includes a compound semiconductor laminated structure, a gate electrode formed above the compound semiconductor laminated structure, and a p-type semiconductor layer formed between the compound semiconductor laminated structure and the gate electrode, and the p-type semiconductor layer has tensile strain in a direction parallel to a surface of the compound semiconductor laminated structure.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: November 18, 2014
    Assignee: Transphorm Japan, Inc.
    Inventor: Atsushi Yamada
  • Patent number: 8890207
    Abstract: System and method for controlling the channel thickness and preventing variations due to formation of small features. An embodiment comprises a fin raised above the substrate and a capping layer is formed over the fin. The channel carriers are repelled from the heavily doped fin and confined within the capping layer. This forms a thin-channel that allows greater electrostatic control of the gate.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: November 18, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Zhiqiang Wu, Ken-Ichi Goto, Wen-Hsing Hsieh, Jon-Hsu Ho, Chih-Ching Wang, Ching-Fang Huang
  • Patent number: 8890111
    Abstract: A method for producing an emissive pixel screen includes forming an active pixel matrix along which an electrode forming layer runs and having pixels arranged according to a distribution, forming an anisotropic substrate that includes a set of light emitting diodes constituted by parallel nanowires and arranged in an insulating matrix transversely with respect to a substrate thickness and having a density higher than a density of the pixels irrespective of the pixel distribution, connecting the substrate to the active pixel matrix by connecting only sub-groups of the parallel nanowires by a first end to separate pixel electrodes defined in the electrode forming layer according to the distribution of the pixels in the matrix, and connecting the sub-groups, by another end, to a common electrode, and delimiting the sub-groups by rendering the nanowires of the substrate that are arranged between the sub-groups emissively inactive.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: November 18, 2014
    Assignee: Commissariat à l'énergie atomique et aux énergies alternatives
    Inventors: Francois Templier, Laurent Clavelier, Marc Rabarot
  • Patent number: 8884332
    Abstract: A nitride semiconductor device includes a semiconductor substrate and a nitride semiconductor layer disposed on the semiconductor substrate. The semiconductor substrate includes a normal region, a carrier supplying region, and an interface current blocking region. The interface current blocking region surrounds the normal region and the carrier supplying region. The interface current blocking region and the carrier supplying region include impurities. The carrier supplying region has a conductivity type allowing the carrier supplying region to serve as a source of carriers supplied to or a destination of carriers supplied from a carrier layer generated at an interface between the nitride semiconductor layer and the semiconductor substrate. The interface current blocking region has a conductivity type allowing the interface current blocking region to serve as a potential barrier to the carriers.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: November 11, 2014
    Assignee: Panasonic Corporation
    Inventors: Hidekazu Umeda, Tetsuzo Ueda, Daisuke Ueda
  • Patent number: 8878252
    Abstract: A structure comprises a substrate, a mask, a buffer/nucleation layer, and a group III-V compound semiconductor material. The substrate has a top surface and has a recess from the top surface. The recess includes a sidewall. The first mask is the top surface of the substrate. The buffer/nucleation layer is along the sidewall, and has a different material composition than a material composition of the sidewall. The III-V compound semiconductor material continuously extends from inside the recess on the buffer/nucleation layer to over the first mask.
    Type: Grant
    Filed: February 12, 2014
    Date of Patent: November 4, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Lin Yu, Chen-Hua Yu, Ding-Yuan Chen, Wen-Chih Chiou
  • Patent number: 8878250
    Abstract: Electronic device is provided, including: a base wafer whose surface is made of silicon crystal; a Group 3-5 compound semiconductor crystal formed directly or indirectly on partial region of the silicon crystal; an electronic element including a portion of the Group 3-5 compound semiconductor crystal as active layer; an insulating film formed directly or indirectly on the base wafer and covering the electronic element; an electrode formed directly or indirectly on the insulating film; a first coupling wiring extending through the insulating film, having at least a portion thereof formed directly or indirectly on the insulating film, and electrically coupling the electronic element with the electrode; a passive element formed directly or indirectly on the insulating film; a second coupling wiring extending through the insulating film, having at least a portion thereof formed directly or indirectly on the insulating film, and electrically coupling the electronic element with the passive element.
    Type: Grant
    Filed: August 24, 2012
    Date of Patent: November 4, 2014
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Masahiko Hata, Sadanori Yamanaka, Tomoyuki Takada, Kazuhiko Honjo
  • Patent number: 8878245
    Abstract: A transistor device having non-alloyed ohmic contacts formed by a process that improves the contact morphology and reduces metal spiking into the semiconductor layers. During fabrication, a regrowth mask is deposited on the semiconductor device. A portion of the regrowth mask and the epitaxial semiconductor layers is removed, defining areas for selective regrowth of a highly-doped semiconductor material. The remaining portion of the regrowth mask forms a regrowth mask residual layer. After regrowth, ohmic contacts are formed on the regrowth structures without the use of a high-temperature annealing process. The regrowth mask residual layer does not need to be removed, but rather remains on the device throughout fabrication and can function as a passivation layer and/or a spacer layer.
    Type: Grant
    Filed: September 25, 2007
    Date of Patent: November 4, 2014
    Assignee: Cree, Inc.
    Inventors: Primit Parikh, Sten Heikman
  • Patent number: 8872224
    Abstract: A low-cost neutron detector is formed on a substrate includes a sensor formed by an active material layer sandwiched between two electrodes, and a neutron capture layer formed in close proximity to (i.e., over and/or under) the sensor. The sensor active material layer includes a bulk heterojunction or bilayer structure that is formed by depositing particulate solutions incorporating at least one type of high atomic number nanoparticle using low-temperature (i.e., below 400° C.) solution processing techniques. The sensor electrode material and neutron capture material are similarly disposed in associated solutions (e.g., conductive inks) that are also deposited using low-temperature solution processing techniques, whereby the fabrication process can be carried out on low-cost flexible substrate material (e.g., PET) using high efficiency roll-to-roll production techniques.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: October 28, 2014
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Gregory L. Whiting, Tse Nga Ng, Janos Veres, Robert A. Street
  • Publication number: 20140306268
    Abstract: A method for obtaining a heterogeneous substrate intended for use in the production of a semiconductor comprises the following steps: (a) obtaining a first substrate (2) made from a type II-VI or type III-V material and a second substrate (1), each substrate being substantially planar and each substrate having a pre-determined surface area; (b) grinding a non-through recess (10) into the second substrate (1), the surface area of said recess being greater than the surface area of the first substrate, such that the first substrate can be housed in the recess; (c) depositing a bonding material (15) in the recess (10); (d) depositing the first substrate (2) in the recess (10) of the second substrate and securing the first substrate in the second substrate at a temperature below 300° C.; and (e) leveling the first and second substrates in order to obtain a heterogeneous substrate having a substantially planar face (30).
    Type: Application
    Filed: October 31, 2012
    Publication date: October 16, 2014
    Inventors: Abdenacer Ait-Mani, Stephanie Huet
  • Patent number: 8859354
    Abstract: A method is provided for fabricating a transistor. The method includes providing a semiconductor substrate, and forming a quantum well layer on the semiconductor substrate. The method also includes forming a potential energy barrier layer on the semiconductor substrate, and forming an isolation structure to isolate different transistor regions. Further, the method includes patterning the transistor region to form trenches by removing portions of the quantum well layer and the potential energy barrier layer corresponding to a source region and a drain region, and filling trenches with a semiconductor material to form a source and a drain. Further, the method also includes forming a gate structure on a portion of the quantum well layer and the potential energy barrier layer corresponding to a gate region.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: October 14, 2014
    Assignee: Semiconductor Manufacturing International Corp
    Inventor: Deyuan Xiao
  • Publication number: 20140299918
    Abstract: A semiconductor substrate and a fabrication method thereof, and a semiconductor apparatus using the same and a fabrication method thereof are provided. The semiconductor substrate includes a semiconductor wafer, a silicon germanium (SiGe)-based impurity doping region formed on the semiconductor wafer, and a protection layer formed on the SiGe-based impurity doping region.
    Type: Application
    Filed: July 25, 2013
    Publication date: October 9, 2014
    Applicant: SK hynix Inc.
    Inventors: Jong Chul LEE, Min Yong LEE, Jin Ku LEE
  • Patent number: 8853043
    Abstract: A heterojunction bipolar transistor (HBT), an integrated circuit (IC) chip including at least one HBT and a method of forming the IC. The HBT includes an extrinsic base with one or more buried interstitial barrier layer. The extrinsic base may be heavily doped with boron and each buried interstitial barrier layer is doped with a dopant containing carbon, e.g., carbon or SiGe:C. The surface of the extrinsic base may be silicided.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: October 7, 2014
    Assignee: International Business Machines Corporation
    Inventors: Wade J. Hodge, Alvin J. Joseph, Rajendran Krishnasamy, Qizhi Liu, Bradley A. Orner
  • Patent number: 8853670
    Abstract: In a semiconductor device 100, it is possible to prevent C from piling up at a boundary face between an epitaxial layer 22 and a group III nitride semiconductor substrate 10 by the presence of 30×1010 pieces/cm2 to 2000×1010 pieces/cm2 of sulfide in terms of S and 2 at % to 20 at % of oxide in terms of O in a surface layer 12 with a front surface 10a having a specific plane orientation. Accordingly, a high-resistivity layer is prevented from being formed at the boundary face between the epitaxial layer 22 and the group III nitride semiconductor substrate 10. Consequently, it is possible to improve the emission intensity of the semiconductor device 100.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: October 7, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Keiji Ishibashi
  • Publication number: 20140287534
    Abstract: The present invention discloses highly sensitive magnetic heterojunction device consisting of a composite comprising ferromagnetic (La0.66Sr0.34MnO3) LSMO layer with ultra-thin ferrimagnetic CoFe2O4 (CFO) layer capable of giant resistive switching (RS) which can be tuned at micro tesla magnetic field at room temperature.
    Type: Application
    Filed: June 25, 2012
    Publication date: September 25, 2014
    Applicant: COUNCIL OF SCIENTIFIC & INDUSTRIAL RESEARCH
    Inventors: Satishchandra Balkrishna Ogale, Dipankar Das Sarma, Abhimanyu Singh Rana, Vishal Prabhakar Thakare, Anil Kumar Puri
  • Patent number: 8841691
    Abstract: A method of fabricating a Light Emitting Diode with improved light extraction efficiency, comprising depositing a plurality of Zinc Oxide (ZnO) nanorods on one or more surfaces of a III-Nitride based LED, by growing the ZnO nanorods from an aqueous solution, wherein the surfaces are different from c-plane surfaces of III-Nitride and transmit light generated by the LED.
    Type: Grant
    Filed: August 19, 2013
    Date of Patent: September 23, 2014
    Assignee: The Regents of the University of California
    Inventors: Jacob J. Richardson, Daniel B. Thompson, Ingrid Koslow, Jun-Seok Ha, Frederick F. Lange, Steven P. DenBaars, Shuji Nakamura
  • Publication number: 20140264436
    Abstract: A low-cost neutron detector is formed on a substrate includes a sensor formed by an active material layer sandwiched between two electrodes, and a neutron capture layer formed in close proximity to (i.e., over and/or under) the sensor. The sensor active material layer includes a bulk heterojunction or bilayer structure that is formed by depositing particulate solutions incorporating at least one type of high atomic number nanoparticle using low-temperature (i.e., below 400° C.) solution processing techniques. The sensor electrode material and neutron capture material are similarly disposed in associated solutions (e.g., conductive inks) that are also deposited using low-temperature solution processing techniques, whereby the fabrication process can be carried out on low-cost flexible substrate material (e.g., PET) using high efficiency roll-to-roll production techniques.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: Palo Alto Research Center Incorporated
    Inventors: Gregory L. Whiting, Tse Nga Ng, Janos Veres, Robert A. Street
  • Patent number: 8835980
    Abstract: Provided is a semiconductor wafer including: a base wafer containing silicon; an inhibitor that has been formed on the base wafer, has an aperture in which a surface of the base wafer is exposed, and inhibits crystal growth; and a light-absorptive structure that has been formed inside the aperture in contact with a surface of the base wafer exposed inside the aperture, where the light-absorptive structure includes a first semiconductor and a second semiconductor.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: September 16, 2014
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Masahiko Hata, Taro Itatani