Heterojunction Device Patents (Class 257/183)
  • Patent number: 8204092
    Abstract: Injection emitters (light-emitting diodes, superluminescent emitters) are used in the form of highly-efficient solid state radiation sources within a large wavelength range and for wide field of application, including general illumination using white light emitters provided with light-emitting diodes. Said invention also relates to superpower highly-efficient and reliable injection surface-emitting lasers, which generate radiation in the form of a plurality of output beams and which are characterized by a novel original and efficient method for emitting the radiation through the external surfaces thereof.
    Type: Grant
    Filed: July 7, 2006
    Date of Patent: June 19, 2012
    Assignee: General Nano Optics Limited
    Inventor: Vasily Ivanovich Shveykin
  • Patent number: 8202479
    Abstract: The present teachings provide a detection cell for a biological material and methods for detecting biological material including a photosensitive material optically coupled to an interior volume containing the biological material so to avoid optical components or an external light source.
    Type: Grant
    Filed: November 9, 2005
    Date of Patent: June 19, 2012
    Assignee: Applied Biosystems, LLC
    Inventors: Dar Bahatt, Konrad Faulstich
  • Patent number: 8188514
    Abstract: An HEMT type transistor is disclosed that is a normally off type, and in which variations in the gate threshold voltage are small. A transistor is provided with a p-type region, a barrier region, an insulation film, a gate electrode. The channel region is connected to an upper surface of the p-type region. The channel region is n-type or i-type and provided with a first channel region and a second channel region. The barrier region is forming a hetero-junction with an upper surface of the first channel region. The insulation film is connected to an upper surface of the second channel region and an upper surface of the barrier region. The gate electrode faces the second channel region and the barrier region via the insulation film. The first channel region and the second channel region are arranged in series in a current pathway.
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: May 29, 2012
    Assignees: Rensselaer Polytechnic Institute, Toyota Jidosha Kabushiki Kaisha
    Inventors: Masahiro Sugimoto, Tat-Sing Paul Chow, Zhongda Li, Tetsu Kachi, Tsutomu Uesugi
  • Publication number: 20120119258
    Abstract: InP epitaxial material is directly bonded onto a Silicon-On-Insulator (SOI) wafer having Vertical Outgassing Channels (VOCs) between the bonding surface and the insulator (buried oxide, or BOX) layer. H2O and other molecules near the bonding surface migrate to the closest VOC and are quenched in the buried oxide (BOX) layer quickly by combining with bridging oxygen ions and forming pairs of stable nonbridging hydroxyl groups (Si—OH). Various sizes and spacings of channels are envisioned for various devices.
    Type: Application
    Filed: January 27, 2012
    Publication date: May 17, 2012
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventor: Di Liang
  • Patent number: 8178898
    Abstract: A GaN-based semiconductor element includes a substrate, a buffer layer formed on the substrate, including an electrically conductive portion, an epitaxial layer formed on the buffer layer, and a metal structure in ohmic contact with the electrically conductive portion of the buffer layer for controlling an electric potential of the buffer layer.
    Type: Grant
    Filed: August 4, 2009
    Date of Patent: May 15, 2012
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Nariaki Ikeda, Seikoh Yoshida, Masatoshi Ikeda, legal representative
  • Patent number: 8178900
    Abstract: A semiconductor device includes a GaN-based semiconductor layer formed on a substrate, and an insulating film composed of any one of silicon nitride in which the composition ratio of silicon to nitrogen is 0.85 to 3.0, silicon oxide in which the composition ratio of silicon to oxygen is 0.6 to 3.0, or silicon oxide nitride in which the composition ratio of silicon to nitrogen and oxygen is 0.6 to 3.0 that is formed on a surface of the GaN-based semiconductor layer, a gate electrode formed on the GaN-based semiconductor layer, and a source electrode and a drain electrode formed with the gate electrode therebetween.
    Type: Grant
    Filed: March 30, 2006
    Date of Patent: May 15, 2012
    Assignee: Eudyna Devices Inc.
    Inventors: Shunsuke Kurachi, Tsutomu Komatani
  • Patent number: 8178899
    Abstract: A semiconductor device and a fabrication method of the semiconductor device, the semiconductor device including: a substrate; a nitride based compound semiconductor layer placed on the substrate and doped with a first transition metal atom; an aluminum gallium nitride layer (AlxGa1?xN) (where 0.1<=x<=1) placed on the nitride based compound semiconductor layer; a nitride based compound semiconductor layer placed on the aluminum gallium nitride layer (AlxGa1?xN) (where 0.1<=x<=1) and doped with a second transition metal atom; an aluminum gallium nitride layer (AlyGa1?yN) (where 0.1<=y<=1) placed on the nitride based compound semiconductor layer doped with the second transition metal atom; and a gate electrode, a source electrode, and a drain electrode which are placed on the aluminum gallium nitride layer (AlyGa1?yN) (where 0.1<=y<=1).
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: May 15, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Keiichi Matsushita
  • Patent number: 8173469
    Abstract: Provided is a method for fabricating a light emitting device. The method for fabricating the light emitting device includes forming a buffer layer including a compound semiconductor in which a rare-earth element is doped on a substrate, forming a light emitting structure including a first conductive type semiconductor layer, an active layer, and a second conductive type semiconductor layer, which are successively stacked on the buffer layer, forming a first electrode layer on the light emitting structure, removing the substrate, and forming a second electrode layer under the light emitting structure.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: May 8, 2012
    Assignee: LG Innotek Co., Ltd.
    Inventors: Kyung Wook Park, Myung Hoon Jung
  • Patent number: 8169001
    Abstract: The present invention refers to a method for preparing a non-self-aligned heterojunction bipolar transistor comprising: preparing a patterned emitter metal on an emitter epi layer of a HBT epi structure on a substrate; preparing an emitter epitaxy below the emitter metal; applying a resist layer on the top surface covering the emitter metal and emitter epitaxy, and the base layer; applying lithography leaving the emitter epitaxy and the emitter metal covered by the resist vertically with a width pD and leaving a pattern according to the mask in the resist; depositing base metal on the entire surface; and removing the remaining resist and the base metal covering the resist defining a base metal, the base metal being spaced from the emitter epitaxy and the emitter metal by a distance xD from 0.05 ?m to 0.7 ?m. The present invention refers to a non-self-aligned heterojunction bipolar transistor as prepared by this method.
    Type: Grant
    Filed: November 4, 2010
    Date of Patent: May 1, 2012
    Assignee: HRL Laboratories, LLC
    Inventor: Charles H. Fields
  • Patent number: 8163595
    Abstract: Formulations for voltage switchable dielectric materials include two or more different types of semiconductive materials uniformly dispersed within a dielectric matrix material. The semiconductive materials are selected to have different bandgap energies in order to provide the voltage switchable dielectric material with a stepped voltage response. The semiconductive materials may comprise inorganic particles, organic particles, or an organic material that is soluble in, or miscible with, the dielectric matrix material. Formulations optionally can also include electrically conductive materials. At least one of the conductive or semiconductive materials in a formulation can comprise particles characterized by an aspect ratio of at least 3 or greater.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: April 24, 2012
    Assignee: Shocking Technologies, Inc.
    Inventors: Lex Kosowsky, Robert Fleming
  • Patent number: 8164116
    Abstract: A semiconductor device includes: a semiconductor base; a hetero semiconductor region which is in contact with the semiconductor base and which has a band gap different from that of the semiconductor base; a first electrode connected to the hetero semiconductor region; and a second electrode forming an ohmic contact to the semiconductor base. The hetero semiconductor region includes a laminated hetero semiconductor region formed by laminating a plurality of semiconductor layers in which crystal alignment is discontinuous at a boundary between at least two layers.
    Type: Grant
    Filed: August 22, 2006
    Date of Patent: April 24, 2012
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Tetsuya Hayashi, Yoshio Shimoida, Masakatsu Hoshi, Hideaki Tanaka, Shigeharu Yamagami
  • Publication number: 20120087378
    Abstract: The present invention includes methods for producing GaAs/Si composites, GaAs/Si composites, apparatus for preparing GaAs/Si composites, and a variety of electronic and photoelectric circuits and devices incorporating GaAs/Si composites of the present invention.
    Type: Application
    Filed: April 11, 2011
    Publication date: April 12, 2012
    Applicant: BOWLING GREEN STATE UNIVERSITY
    Inventors: Bruno Ullrich, Artur Erlacher
  • Patent number: 8154028
    Abstract: An infrared external photoemissive detector can have an n-p heterojunction comprising an n-type semiconductor layer and a p-layer; the n-layer semiconductor comprising doped silicon embedded with nanoparticles forming Schottky barriers; and the p-layer is a p-type diamond film. The nanoparticles can be about 20-30 atomic percentage metal particles (such as silver) having an average particle size of about 5-10 nm. The p-layer can have a surface layer that has a negative electron affinity. The n-layer can be in the range of about 3 ?m to 10 ?m thick, and preferably about 3 ?m thick. The doped silicon can be doped with elements selected from the list consisting of phosphorus and antimony.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: April 10, 2012
    Assignee: Howard University
    Inventor: Clayton W. Bates, Jr.
  • Patent number: 8148753
    Abstract: The present invention provides a compound semiconductor substrate, including: a single-crystal silicon substrate having a crystal face with (111) orientation; a first buffer layer which is formed on the single-crystal silicon substrate and is constituted of an AlxGa1-xN single crystal (0<x?1); a second buffer layer which is formed on the first buffer layer and is composed of a plurality of first unit layers each having a thickness of from 250 nm to 350 nm and constituted of an AlyGa1-yN single crystal (0?y<0.1) and a plurality of second unit layers each having a thickness of from 5 nm to 20 nm and constituted of an AlzGa1-zN single crystal (0.9<z?1), said pluralities of first and second unit layers having been alternately superposed; and a semiconductor device formation region which is formed on the second buffer layer and includes at least one nitride-based semiconductor single-crystal layer.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: April 3, 2012
    Assignee: Covalent Materials Corporation
    Inventors: Hiroshi Oishi, Jun Komiyama, Kenichi Eriguchi, Yoshihisa Abe, Akira Yoshida, Shunichi Suzuki
  • Publication number: 20120074463
    Abstract: Provided is a semiconductor wafer including: a base wafer containing silicon; an inhibitor that has been formed on the base wafer, has an aperture in which a surface of the base wafer is exposed, and inhibits crystal growth; and a light-absorptive structure that has been formed inside the aperture in contact with a surface of the base wafer exposed inside the aperture, where the light-absorptive structure includes a first semiconductor and a second semiconductor.
    Type: Application
    Filed: December 2, 2011
    Publication date: March 29, 2012
    Applicants: National Institute of Advanced Industrial Science and Technology, SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Masahiko HATA, Taro ITATANI
  • Patent number: 8143650
    Abstract: A semiconductor device 1 includes a substrate 2 having on a main surface thereof a central area and a peripheral area which surrounds the central area and is exposed, a semiconductor layer 4 which is formed on the main surface of the substrate 2, is made of a material harder than the substrate 2, is in the shape of a mesa, and has a steep side over the exposed peripheral area, and an insulating film 12S provided on a side surface of the semiconductor layer 4.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: March 27, 2012
    Assignee: Sanken Electric Co., Ltd.
    Inventors: Ken Sato, Nobuo Kaneko
  • Publication number: 20120068224
    Abstract: A method of producing a semiconductor wafer suited to form types of devices such as HBT and FET on a single semiconductor wafer is provided. The method, by repeating steps including introducing, into a reaction chamber for forming a semiconductor by crystal growth, a first-impurity gas containing an element or a compound containing a first impurity atom as a constituent, thereby producing semiconductor wafers, includes, after introducing the first-impurity gas: taking out a produced semiconductor wafer; disposing a first semiconductor in the reaction chamber; introducing, into the reaction chamber, a second-impurity gas containing an element or a compound containing, as a constituent, a second impurity atom exhibiting a conduction type opposite to the conduction type of the first impurity atom within the first semiconductor; heating the first semiconductor in an atmosphere of the second-impurity gas; and forming a second semiconductor on the heated first semiconductor by crystal growth.
    Type: Application
    Filed: October 6, 2011
    Publication date: March 22, 2012
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Naohiro NISHIKAWA, Tsuyoshi NAKANO, Takayuki INOUE
  • Publication number: 20120068155
    Abstract: In a semiconductor device 100, it is possible to prevent C from piling up at a boundary face between an epitaxial layer 22 and a group III nitride semiconductor substrate 10 by the presence of 30×1010 pieces/cm2 to 2000×1010 pieces/cm2 of sulfide in terms of S and 2 at % to 20 at % of oxide in terms of O in a surface layer 12 with a front surface 10a having a specific plane orientation. Accordingly, a high-resistivity layer is prevented from being formed at the boundary face between the epitaxial layer 22 and the group III nitride semiconductor substrate 10. Consequently, it is possible to improve the emission intensity of the semiconductor device 100.
    Type: Application
    Filed: October 26, 2011
    Publication date: March 22, 2012
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Keiji ISHIBASHI
  • Publication number: 20120061727
    Abstract: Gallium nitride (GaN) based semiconductor devices and methods of manufacturing the same. The GaN-based semiconductor device may include a heterostructure field effect transistor (HFET) or a Schottky diode, arranged on a heat dissipation substrate. The HFET device may include a GaN-based multi-layer having a recess region; a gate arranged in the recess region; and a source and a drain that are arranged on portions of the GaN-based multi-layer at two opposite sides of the gate (or the recess region). The gate, the source, and the drain may be attached to the heat dissipation substrate. The recess region may have a double recess structure. While such a GaN-based semiconductor device is being manufactured, a wafer bonding process and a laser lift-off process may be used.
    Type: Application
    Filed: September 2, 2011
    Publication date: March 15, 2012
    Inventors: Jae-hoon LEE, Ki-se Kim
  • Publication number: 20120061730
    Abstract: There is provided a semiconductor wafer including a base wafer that has an impurity region in which an impurity atom has been introduced into silicon, a plurality of seed bodies provided in contact with the impurity region, and a plurality of compound semiconductors each provided in contact with the corresponding seed bodies and lattice-matched or pseudo-lattice-matched to the corresponding seed bodies. The semiconductor wafer can further include an inhibitor provided on the base wafer and in which a plurality of apertures exposing at least a part of the impurity region are provided.
    Type: Application
    Filed: November 21, 2011
    Publication date: March 15, 2012
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Sadanori YAMANAKA, Masahiko HATA, Noboru FUKUHARA
  • Patent number: 8134142
    Abstract: The invention suggests a transistor (21) comprising a source (24) and a drain (29) as well as a barrier region (27) located between the source and the drain. The barrier region is separated from the source and the drain by intrinsic or lowly doped regions (26, 28) of a semiconductor material. Potential barriers are formed at the interfaces of the barrier region and the intrinsic or lowly doped regions. A gate electrode (32) is provided in the vicinity of the potential barriers such that the effective height and/or width of the potential barriers can be modulated by applying an appropriate voltage to the gate electrode.
    Type: Grant
    Filed: January 24, 2007
    Date of Patent: March 13, 2012
    Assignee: NXP B.V.
    Inventors: Godefridus Hurkx, Prabhat Agarwal
  • Publication number: 20120056200
    Abstract: An embodiment of an integrated electronic device formed in a semiconductor body delimited by a lateral surface, which includes: a substrate made of a first semiconductor material; a first epitaxial region made of a second semiconductor material, which overlies the substrate and defines a first surface; a second epitaxial region made of a third semiconductor material, which overlies the first surface and is in contact with the first epitaxial region, the third semiconductor material having a bandgap narrower than the bandgap of the second semiconductor material; an active area, extending within the second epitaxial region and housing at least one elementary electronic component; and an edge structure, arranged between the active area and the lateral surface, and including a dielectric region arranged laterally with respect to the second epitaxial region, which overlies the first surface and is in contact with the first epitaxial region.
    Type: Application
    Filed: August 30, 2011
    Publication date: March 8, 2012
    Applicant: STMICROELECTRONICS S.R.L.
    Inventors: Ferruccio FRISINA, Angelo MAGRI', Mario Giuseppe SAGGIO
  • Publication number: 20120049902
    Abstract: An embodiment of an integrated electronic device formed in a body of semiconductor material, which includes: a substrate of a first semiconductor material, the first semiconductor material having a first bandgap; a first epitaxial region of a second semiconductor material and having a first type of conductivity, which overlies the substrate and defines a first surface, the second semiconductor material having a second bandgap wider than the first bandgap; and a second epitaxial region of the first semiconductor material, which overlies, and is in direct contact with, the first epitaxial region. The first epitaxial region includes a first buffer layer, which overlies the substrate, and a drift layer, which overlies the first buffer layer and defines the first surface, the first buffer layer and the drift layer having different doping levels.
    Type: Application
    Filed: August 30, 2011
    Publication date: March 1, 2012
    Applicant: STMICROELECTRONICS S.R.L.
    Inventors: Donato CORONA, Nicolo' FRAZZETTO, Antonio Giuseppe GRIMALDI, Corrado IACONO, Monica MICCICHE'
  • Publication number: 20120049940
    Abstract: An embodiment of a vertical-conduction integrated electronic device formed in a body of semiconductor material which includes: a substrate made of a first semiconductor material and with a first type of conductivity, the first semiconductor material having a first bandgap; an epitaxial region made of the first semiconductor material and with the first type of conductivity, which overlies the substrate and defines a first surface; and a first epitaxial layer made of a second semiconductor material, which overlies the first surface and is in direct contact with the epitaxial region, the second semiconductor material having a second bandgap narrower than the first bandgap. The body moreover includes a deep region of a second type of conductivity, extending underneath the first surface and within the epitaxial region.
    Type: Application
    Filed: August 30, 2011
    Publication date: March 1, 2012
    Applicant: STMICROELECTRONICS S.R.L.
    Inventors: Ferruccio FRISINA, Mario Giuseppe SAGGIO, Angelo MAGRI'
  • Patent number: 8125004
    Abstract: A heterojunction field-effect semiconductor device has a main semiconductor region comprising two layers of dissimilar materials such that a two-dimensional electron gas layer is generated along the heterojunction between the two layers. A source and a drain electrode are placed in spaced positions on a major surface of the main semiconductor region and electrically coupled to the 2DEG layer. Between these electrodes, a gate electrode is received in a recess in the major surface of the main semiconductor region via a p-type metal oxide semiconductor film and insulating film, whereby a depletion zone is normally created in the 2DEG layer, making the device normally off. The p-type metal oxide semiconductor film of high hole concentration serves for the normally-off performance of the device with low gate leak current, and the insulating film for further reduction of gate leak current.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: February 28, 2012
    Assignee: Sanken Electric Co., Ltd.
    Inventor: Nobuo Kaneko
  • Publication number: 20120025268
    Abstract: There is provided a compound semiconductor wafer that is suitably used as a semiconductor wafer to form a plurality of different types of devices such as an HBT and an FET thereon. The semiconductor wafer includes a first semiconductor, a carrier-trapping layer that is formed on the first semiconductor and has an electron-trapping center or a hole-trapping center, a second semiconductor that is epitaxially grown on the carrier-trapping layer and serves as a channel in which a free electron or a free hole moves, and a third semiconductor including a stack represented by n-type semiconductor/p-type semiconductor/n-type semiconductor or represented by p-type semiconductor/n-type semiconductor/p-type semiconductor, where the stack epitaxially grown on the second semiconductor.
    Type: Application
    Filed: October 5, 2011
    Publication date: February 2, 2012
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventor: Osamu ICHIKAWA
  • Patent number: 8106378
    Abstract: A p-type semiconductor barrier layer is provided in the vicinity of undoped quantum dots, and holes in the p-type semiconductor barrier layer are injected in advance in the ground level of the valence band of the quantum dots. Lowering the threshold electron density of conduction electrons in the ground level of the conduction band of quantum dots in this way accelerates the relaxation process of electrons from an excited level to the ground level in the conduction band.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: January 31, 2012
    Assignee: NEC Corporation
    Inventor: Hideaki Saito
  • Publication number: 20120007048
    Abstract: A semiconductor structure includes a substrate and a conductive carrier-tunneling layer over and contacting the substrate. The conductive carrier-tunneling layer includes first group-III nitride (III-nitride) layers having a first bandgap, wherein the first III-nitride layers have a thickness less than about 5 nm; and second III-nitride layers having a second bandgap lower than the first bandgap, wherein the first III-nitride layers and the second III-nitride layers are stacked in an alternating pattern. The semiconductor structure is free from a III-nitride layer between the substrate and the conductive carrier-tunneling layer. The semiconductor structure further includes an active layer over the conductive carrier-tunneling layer.
    Type: Application
    Filed: September 20, 2011
    Publication date: January 12, 2012
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Lin Yu, Ding-Yuan Chen, Chen-Hua Yu, Wen-Chih Chiou
  • Patent number: 8093626
    Abstract: Provided is a normally-off field effect transistor using a III-nitride semiconductor. The transistor is provided with a III-nitride semiconductor layer grown on a substrate by including an acceptor and a donor; a gate insulating film which is formed on the III-nitride semiconductor layer to have a thickness to be at a prescribed threshold voltage based on the concentration of the acceptor and that of the donor; a gate electrode formed on the gate insulating film; a first source/drain electrode formed on the III-nitride semiconductor layer to one side of and separate from the gate electrode, directly or via a high dopant concentration region; and a second source/drain electrode formed away from the gate electrode and the first source/drain electrode, on or under the III-nitride semiconductor layer, directly or via a high dopant concentration region.
    Type: Grant
    Filed: June 14, 2007
    Date of Patent: January 10, 2012
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Yuki Niiyama, Shinya Ootomo, Tatsuyuki Shinagawa, Takehiko Nomura, Seikoh Yoshida, Hiroshi Kambayashi
  • Patent number: 8093644
    Abstract: A carbon nanotube based memory device comprises a set of three concentric carbon nanotubes having different diameters. The diameters of the three concentric carbon nanotubes are selected such that an inner carbon nanotube is semiconducting, and intershell electron transport occurs between adjacent carbon nanotubes. Source and drain contacts are made to the inner carbon nanotube, and a gate contact is made to the outer carbon nanotube. The carbon nanotube based memory device is programmed by storing electrons or holes in the middle carbon nanotube through intershell electron transport. Changes in conductance of the inner carbon nanotube due to the charge in the middle shell are detected to determine the charge state of the middle carbon nanotube. Thus, the carbon nanotube based memory device stores information in the middle carbon nanotube in the form of electrical charge.
    Type: Grant
    Filed: January 8, 2009
    Date of Patent: January 10, 2012
    Assignee: Internationl Business Machines Corporation
    Inventor: Haining S. Yang
  • Publication number: 20110316043
    Abstract: Thin group IV semiconductor structures are provided comprising a thin Si substrate and a second region formed directly on the Si substrate, where the second region comprises either (i) a Ge1-xSnx layer; or (ii) a Ge layer having a threading dislocation density of less than about 105/cm2, and the effective bandgap of the second region is less than the effective bandgap of the Si substrate. Further, methods for preparing the thin group IV semiconductor structures are provided. Such structures are useful, for example, as components of solar cells.
    Type: Application
    Filed: September 16, 2009
    Publication date: December 29, 2011
    Applicant: Arizona Board of Regents
    Inventors: John Kouvetakis, Jose Menendez
  • Patent number: 8076685
    Abstract: A nitride semiconductor device includes an active layer formed between an n-type cladding layer and a p-type cladding layer, and a current confining layer having a conductive area through which a current flows to the active layer. The current confining layer includes a first semiconductor layer, a second semiconductor layer and a third semiconductor layer. The second semiconductor layer is formed on and in contact with the first semiconductor layer and has a smaller lattice constant than that of the first semiconductor layer. The third semiconductor layer is formed on and in contact with the second semiconductor layer and has a lattice constant that is smaller than that of the first semiconductor layer and larger than that of the second semiconductor layer.
    Type: Grant
    Filed: September 10, 2009
    Date of Patent: December 13, 2011
    Assignee: Panasonic Corporation
    Inventors: Satoshi Tamura, Ryo Kajitani
  • Patent number: 8061023
    Abstract: A semiconductor package that includes a conductive can, a power semiconductor device electrically and mechanically attached to the inside surface of the can, and an IC semiconductor device copackaged with the power semiconductor device inside the can.
    Type: Grant
    Filed: November 16, 2007
    Date of Patent: November 22, 2011
    Assignee: International Rectifier Corporation
    Inventor: Martin Standing
  • Publication number: 20110278592
    Abstract: A semiconductor device which is designed based on RDR, suppresses the occurrence of a trouble at the boundary between an active region and a power wire and therearound and is small in size and highly integrated. The semiconductor device includes a first conductive impurity region for functional elements which is formed over the main surface of a semiconductor substrate and a second conductive impurity region for power potential to which power potential is applied in at least one standard cell. It also includes insulating layers which are formed over the main surface of the semiconductor substrate and have throughholes reaching the main surface of the semiconductor substrate, and a conductive layer for contact formed in the throughholes of the insulating layers.
    Type: Application
    Filed: April 14, 2011
    Publication date: November 17, 2011
    Inventors: Nobuo TSUBOI, Masakazu OKADA
  • Patent number: 8058124
    Abstract: The semiconductor device, which provides reduced electric current leakage and parasitic resistance to achieve stable current gain, is provided. A first polycrystalline semiconductor layer is grown on a p-type polycrystalline silicon film exposed in a lower surface of a visor section composed of a multiple-layered film containing a p-type polycrystalline silicon film and a silicon nitride film, while growing the first semiconductor layer on a n-type collector layer, and then the first polycrystalline semiconductor layer is selectively removed.
    Type: Grant
    Filed: April 13, 2010
    Date of Patent: November 15, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Masataka Ono, Akiko Fujita
  • Publication number: 20110272737
    Abstract: A transistor includes a transistor body, and a stress application section applying stress to the transistor body. The transistor body includes a formation substrate, and a first semiconductor layer and a second semiconductor layer which are sequentially stacked on the formation substrate. The second semiconductor layer having a wider bandgap than the first semiconductor layer. The stress application section applies stress to the transistor body so that tensile stress applied to the second semiconductor layer increases in accordance with an increase in a temperature.
    Type: Application
    Filed: July 15, 2011
    Publication date: November 10, 2011
    Applicant: Panasonic Corporation
    Inventors: Kenichiro TANAKA, Tetsuzo Ueda
  • Publication number: 20110272736
    Abstract: A semiconductor device includes a substrate including a first region and a second region each having an n-type region and a p-type region, wherein the n-type region in the first region includes a silicon channel, the p-type region in the first region includes a silicon germanium channel, and the n-type region and the p-type region in the second region respectively include a silicon channel. A first gate insulating pattern formed of a thermal oxide layer is disposed on the substrate of the n-type and p-type regions in the second region.
    Type: Application
    Filed: May 6, 2011
    Publication date: November 10, 2011
    Inventors: JONGHO LEE, Chang-Bong Oh, Ho Lee, Myungsun Kim
  • Publication number: 20110266595
    Abstract: There is provided a semiconductor wafer including a base wafer, an insulating layer, and a Si crystal layer in the stated order. The semiconductor wafer further includes an inhibition layer that is provided on the Si crystal layer and has an opening penetrating therethrough to reach the Si crystal layer. The inhibition layer inhibiting crystal growth of a compound semiconductor. Furthermore, a seed crystal is provided within the opening, and a compound semiconductor has a lattice match or a pseudo lattice match with the seed crystal.
    Type: Application
    Filed: October 1, 2009
    Publication date: November 3, 2011
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventor: Masahiko Hata
  • Publication number: 20110266594
    Abstract: A method is disclosed, for producing a layer of AlN having substantially vertical sides relative to the surface of a substrate, comprising: the formation of an AlN growth layer on a substrate, the deposition of the AlN layer, on at least said growth layer, the formation of a mask layer over the AlN layer, at least one edge of which is aligned with at least one edge or side of the growth layer, in a plane which is substantially perpendicular to a surface of the substrate or a surface of the growth layer, the etching of the AlN layer.
    Type: Application
    Filed: April 29, 2011
    Publication date: November 3, 2011
    Applicant: COMMISS. A L'ENERGIE ATOM. ET AUX ENERG. ALTERNA.
    Inventors: Marc Aid, Emmanuel Defay, Aude Lefevre, Guy-Michel Parat
  • Patent number: 8044485
    Abstract: A semiconductor device made of a group-III nitride semiconductor having excellent properties is provided. The semiconductor device has a horizontal diode structure of Schottky type or P-N junction type, or combined type thereof having a main conduction pathway in the horizontal direction in a conductive layer with unit anode portions and unit cathode electrodes being integrated adjacently to each other in the horizontal direction. The conductive layer is preferably formed by depositing a group-III nitride layer and generating a two-dimensional electron gas layer on the interface. Forming the conductive layer of the group-III nitride having high breakdown field allows the breakdown voltage to be kept high while the gap between electrodes is narrow, which achieves a semiconductor device having high output current per chip area.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: October 25, 2011
    Assignee: NGK Insulators, Ltd.
    Inventors: Makoto Miyoshi, Yoshitaka Kuraoka
  • Patent number: 8044432
    Abstract: Methods and devices for fabricating AlGaN/GaN normally-off high electron mobility transistors (HEMTs). A fluorine-based (electronegative ions-based) plasma treatment or low-energy ion implantation is used to modify the drain-side surface field distribution without the use of a field plate electrode. The off-state breakdown voltage can be improved and current collapse can be completely suppressed in LDD-HEMTs with no significant degradation in gains and cutoff frequencies.
    Type: Grant
    Filed: November 29, 2006
    Date of Patent: October 25, 2011
    Assignee: The Hong Kong University of Science and Technology
    Inventors: Jing Chen, Kei May Lau
  • Publication number: 20110254018
    Abstract: A semiconductor switching arrangement includes a normally on semiconductor component of a first conduction type and a normally off semiconductor component of a second conduction type which is the complement of the first conduction type. A load path of the normally off semiconductor component is connected in series with the load path of the normally on semiconductor component. A first actuation circuit connected between the control connection of the normally on semiconductor component and a load path connection of the normally on semiconductor component. The load path connection of the normally on semiconductor component is arranged between the normally on and normally off semiconductor components. A second actuation circuit is connected between the control connection of the normally off semiconductor component and a load path connection of the normally off semiconductor component.
    Type: Application
    Filed: April 14, 2011
    Publication date: October 20, 2011
    Applicant: Infineon Technologies AG
    Inventors: Daniel Domes, Uwe Jansen
  • Publication number: 20110254052
    Abstract: Described herein are semiconductor structures comprising (i) a Si substrate; (ii) a buffer region formed directly over the Si substrate, wherein the buffer region comprises (a) a Ge layer having a threading dislocation density below about 105 cm?2; or (b) a Ge1-xSnx layer formed directly over the Si substrate and a Ge1-x-ySixSny layer formed over the Ge1-xSnx layer; and (iii) a plurality of III-V active blocks formed over the buffer region, wherein the first III-V active block formed over the buffer region is lattice matched or pseudomorphically strained to the buffer region. Further, methods for forming the semiconductor structures are provided and novel Ge1-x-ySixSny, alloys are provided that are lattice matched or pseudomorphically strained to Ge and have tunable band gaps ranging from about 0.80 eV to about 1.4O eV.
    Type: Application
    Filed: September 16, 2009
    Publication date: October 20, 2011
    Applicant: Arizona Board of Regents, a body corporate acting for and on behalf of Arizona State University
    Inventors: John Kouvetakis, Jose Menendez
  • Publication number: 20110227129
    Abstract: A semiconductor wafer including: a base wafer; a seed crystal disposed on the base wafer; a compound semiconductor disposed above the seed crystal; and a high resistance layer disposed between the seed crystal and the compound semiconductor, the high resistance layer having a larger resistivity than the seed crystal, and the seed crystal lattice matching or pseudo lattice matching the compound semiconductor is provided.
    Type: Application
    Filed: November 26, 2009
    Publication date: September 22, 2011
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Sadanori Yamanaka, Masahiko Hata, Tomoyuki Takada
  • Publication number: 20110227130
    Abstract: Semiconductor structures and methods of forming semiconductor structures, and more particularly to structures and methods of forming SiGe and/or SiGeC buried layers for SOI/SiGe devices. An integrated structure includes discontinuous, buried layers having alternating Si and SiGe or SiGeC regions. The structure further includes isolation structures at an interface between the Si and SiGe or SiGeC regions to reduce defects between the alternating regions. Devices are associated with the Si and SiGe or SiGeC regions.
    Type: Application
    Filed: June 1, 2011
    Publication date: September 22, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Xuefeng LIU, Robert M. RASSEL, Steven H. VOLDMAN
  • Patent number: 8022390
    Abstract: A photodetector for detecting infrared light in a wavelength range of 3-25 ?m is disclosed. The photodetector has a mesa structure formed from semiconductor layers which include a type-II superlattice formed of alternating layers of InAs and InxGa1-xSb with 0?x?0.5. Impurity doped regions are formed on sidewalls of the mesa structure to provide for a lateral conduction of photo-generated carriers which can provide an increased carrier mobility and a reduced surface recombination. An optional bias electrode can be used in the photodetector to control and vary a cut-off wavelength or a depletion width therein. The photodetector can be formed as a single-color or multi-color device, and can also be used to form a focal plane array which is compatible with conventional read-out integrated circuits.
    Type: Grant
    Filed: August 17, 2007
    Date of Patent: September 20, 2011
    Assignee: Sandia Corporation
    Inventors: Jin K. Kim, Malcolm S. Carroll
  • Publication number: 20110220964
    Abstract: A semiconductor device includes an epitaxial pattern that fills a depression region formed at a semiconductor substrate of one side of a gate pattern. The gate pattern is disposed on a body located at one side of the depression region. The sidewall of the depression region adjacent to the body includes inner surfaces of tapered recesses that taper toward the body, or has an inner surface of a taper recess and a vertical lower sidewall.
    Type: Application
    Filed: March 10, 2011
    Publication date: September 15, 2011
    Inventors: Dongsuk Shin, Seongjin Nam, Jung Shik Heo, Myungsun Kim
  • Patent number: 8017975
    Abstract: A semiconductor device and manufacturing method satisfies both of the trade-off characteristic advantages of the HBT and the HFET. The semiconductor device is an HBT and HFET integrated circuit. The HBT includes a sub-collector layer, a GaAs collector layer, a GaAs base layer, and an InGaP emitter layer that are sequentially stacked. The sub-collector layer includes a GaAs external sub-collector region, and a GaAs internal sub-collector region disposed on the GaAs external sub-collector region. A mesa-shaped collector part and a collector electrode are separately formed on the GaAs external sub-collector region. The HFET includes a GaAs cap layer, a source electrode, and a drain electrode. The GaAs cap layer includes a portion of the GaAs external sub-collector region. The source electrode and the drain electrode are formed on the GaAs cap layer.
    Type: Grant
    Filed: March 9, 2009
    Date of Patent: September 13, 2011
    Assignee: Panasonic Corporation
    Inventors: Keiichi Murayama, Akiyoshi Tamura, Hirotaka Miyamoto, Kenichi Miyajima
  • Publication number: 20110215338
    Abstract: An electronic device includes a silicon carbide layer including an n-type drift region therein, a contact forming a junction, such as a Schottky junction, with the drift region, and a p-type junction barrier region on the silicon carbide layer. The p-type junction barrier region includes a p-type polysilicon region forming a P-N heterojunction with the drift region, and the p-type junction barrier region is electrically connected to the contact. Related methods are also disclosed.
    Type: Application
    Filed: March 8, 2010
    Publication date: September 8, 2011
    Inventor: Qingchun Zhang
  • Patent number: 8012592
    Abstract: Methods and structures for monolithically integrating monocrystalline silicon and monocrystalline non-silicon materials and devices are provided. In one structure, a semiconductor structure includes a silicon substrate and a first monocrystalline semiconductor layer disposed over the silicon substrate, wherein the first monocrystalline semiconductor layer has a lattice constant different from a lattice constant of relaxed silicon. The semiconductor structure further includes an insulating layer disposed over the first monocrystalline semiconductor layer in a first region, a monocrystalline silicon layer disposed over the insulating layer in the first region, and a second monocrystalline semiconductor layer disposed over at least a portion of the first monocrystalline semiconductor layer in a second region and absent from the first region. The second monocrystalline semiconductor layer has a lattice constant different from the lattice constant of relaxed silicon.
    Type: Grant
    Filed: November 1, 2006
    Date of Patent: September 6, 2011
    Assignee: Massachuesetts Institute of Technology
    Inventor: Eugene A. Fitzgerald