Active Channel Region Has A Graded Dopant Concentration Decreasing With Distance From Source Region (e.g., Double Diffused Device, Dmos Transistor) Patents (Class 257/335)
  • Patent number: 9035379
    Abstract: A lateral DMOS transistor is provided with a source region, a drain region, and a conductive gate. The drain region is laterally separated from the conductive gate by a field oxide that encroaches beneath the conductive gate. The lateral DMOS transistor may be formed in a racetrack-like configuration with the conductive gate including a rectilinear portion and a curved portion and surrounded by the source region. Disposed between the conductive gate and the trapped drain is one or more levels of interlevel dielectric material. One or more groups of isolated conductor leads are formed in or on the dielectric layers and may be disposed at multiple device levels. The isolated conductive leads increase the breakdown voltage of the lateral DMOS transistor particularly in the curved regions where electric field crowding can otherwise degrade breakdown voltages.
    Type: Grant
    Filed: July 17, 2014
    Date of Patent: May 19, 2015
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ker Hsiao Huo, Ru-Yi Su, Fu-Chih Yang, Chun Lin Tsai, Chih-Chang Cheng
  • Patent number: 9035375
    Abstract: Embodiments relate to a field-effect device that includes a body region, a first source/drain region of a first conductivity type, a second source/drain region, and a pocket implant region adjacent to the first source/drain region, the pocket implant region being of a second conductivity type, wherein the second conductivity type is different from the first conductivity type. The body region physically contacts the pocket implant region.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: May 19, 2015
    Assignee: Infineon Technologies AG
    Inventors: Mayank Shrivastava, Harald Gossner, Ramgopal Rao, Maryam Shojaei Baghini
  • Patent number: 9024381
    Abstract: A semiconductor device and a fabricating method thereof are provided. The semiconductor device includes a substrate, and a super junction area that is disposed above the substrate. The super junction area may include pillars of different doping types that are alternately disposed. One of the pillars of the super junction area may have a doping concentration that gradually decreases and then increases from bottom to top in a vertical direction of the semiconductor device.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: May 5, 2015
    Assignee: MagnaChip Semiconductor, Ltd.
    Inventors: Moon-soo Cho, Kwang-yeon Jun, Hyuk Woo, Chang-sik Lim
  • Patent number: 9024330
    Abstract: A method of manufacturing a semiconductor device includes forming an ohmic electrode in a first area on one of main surfaces of a silicon carbide layer, siliciding the ohmic electrode, and forming a Schottky electrode in a second area on the one of the main surfaces of the silicon carbide layer with self alignment. The second area is exposed where the ohmic electrode is not formed.
    Type: Grant
    Filed: December 26, 2013
    Date of Patent: May 5, 2015
    Assignees: Toyota Jidosha Kabushiki Kaisha, Denso Corporation
    Inventors: Yukihiko Watanabe, Sachiko Aoi, Masahiro Sugimoto, Akitaka Soeno, Shinichiro Miyahara
  • Patent number: 9025266
    Abstract: A semiconductor integrated circuit device has a p-type substrate to which a ground voltage is applied and a floating-type NMOSFET which is integrated on the p-type substrate and to which a negative voltage lower than the ground voltage is applied. The floating-type NMOSFET includes an n-type buried layer buried in the p-type substrate, a high voltage n-type well formed on the n-type buried layer and floats electrically, a p-type drift region formed in the n-type well, an n-type drain region and an-type source region formed in the p-type drift region, and a gate electrode formed on a channel region interposed between the n-type drain region and the n-type source region. The high voltage n-type well includes an n-type tunnel region, with a higher impurity concentration than that of the high voltage n-type well, inside a peripheral region formed so as to surround the p-type drift region.
    Type: Grant
    Filed: June 14, 2013
    Date of Patent: May 5, 2015
    Assignee: Rohm Co., Ltd.
    Inventor: Yasuhiro Miyagoe
  • Publication number: 20150115360
    Abstract: An N type well (NW) is formed over a prescribed depth from a main surface of a semiconductor substrate (SUB), and a P type well (PW) and an N type drain region (ND) are formed in the N type well (NW). An N type source region (NS), an N+ type source region (NNS), and a P+ type impurity region (BCR) are formed in the P type well (PW). The N type source region (NS) is formed on a region situated directly below the N+ type source region (NNS), and not on a region situated directly below the P+ type impurity region (BCR), and the P+ type impurity region (BCR) is in direct contact with the P type well (PW).
    Type: Application
    Filed: January 9, 2015
    Publication date: April 30, 2015
    Inventor: Shunji KUBO
  • Patent number: 9018062
    Abstract: In one embodiment, a method of making a super-junction MOS transistor in a wafer can include: (i) forming a first doping layer having a high doping concentration; (ii) forming a second doping layer on the first doping layer, wherein a doping concentration of the second doping layer is less than a doping concentration of the first doping layer; (iii) forming a third doping layer on the second doping layer, wherein the third doping layer comprises an intrinsic layer; (iv) etching through the third doping layer and partially through the second doping layer to form trenches; and (v) filling the trenches to form pillar structures.
    Type: Grant
    Filed: February 3, 2014
    Date of Patent: April 28, 2015
    Assignee: Silergy Semiconductor Technology (Hangzhou) Ltd.
    Inventor: Zhongping Liao
  • Patent number: 9013007
    Abstract: A depletion type MOS transistor includes a well region having a first conductivity type and formed on a semiconductor substrate, a gate insulating film formed on the well region, and a gate electrode formed on the gate insulating film. Source and drain regions having a second conductivity type different from the first conductivity type are formed on respective sides of the gate electrode and within the well region. A first low concentration impurity region has the second conductivity type and is formed below the gate insulating film between the source and drain regions and within the well region. A second low concentration impurity region has the first conductivity type and is formed below the first low concentration impurity region between the source and drain regions and within the well region.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: April 21, 2015
    Assignee: Seiko Instruments Inc.
    Inventor: Hirofumi Harada
  • Patent number: 9012987
    Abstract: A manufacturing method of a semiconductor device including a DMOS transistor, an NMOS transistor and a PMOS transistor arranged on a semiconductor substrate, the DMOS transistor including a first impurity region and a second impurity region formed to be adjacent to each other, the first impurity region being of the same conductivity type as a drain region and a source region of the DMOS transistor, forming to enclose the drain region, and the second impurity region being of a conductivity type opposite to the first impurity region, forming to enclose the source region, the manufacturing method of the semiconductor device comprising forming the first impurity region and one of the NMOS transistor and the PMOS transistor, and forming the second impurity region and the other of the NMOS transistor and the PMOS transistor.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: April 21, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventors: Nobuyuki Suzuki, Satoshi Suzuki, Masanobu Ohmura
  • Patent number: 9006825
    Abstract: A MOS device with an isolated drain includes: a semiconductor substrate having a first conductivity type; a first well region embedded in a first portion of the semiconductor substrate, having a second conductivity type; a second well region disposed in a second portion of the semiconductor substrate, overlying the first well region and having the first conductivity type; a third well region disposed in a third portion of the semiconductor substrate, overlying the first well region having the second conductivity type; a fourth well region disposed in a fourth portion of the semiconductor substrate between the first and third well regions, having the first conductivity type; a gate stack formed over the semiconductor substrate; a source region disposed in a portion of the second well region, having the second conductivity type; and a drain region disposed in a portion of the fourth well region, having the second conductivity type.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: April 14, 2015
    Assignee: MediaTek Inc.
    Inventors: Puo-Yu Chiang, Yan-Liang Ji
  • Patent number: 9006707
    Abstract: In one embodiment, the present invention includes a method for forming a logic device, including forming an n-type semiconductor device over a silicon (Si) substrate that includes an indium gallium arsenide (InGaAs)-based stack including a first buffer layer, a second buffer layer formed over the first buffer layer, a first device layer formed over the second buffer layer. Further, the method may include forming a p-type semiconductor device over the Si substrate from the InGaAs-based stack and forming an isolation between the n-type semiconductor device and the p-type semiconductor device. Other embodiments are described and claimed.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: April 14, 2015
    Assignee: Intel Corporation
    Inventors: Mantu K. Hudait, Jack T. Kavalieros, Suman Datta, Marko Radosavljevic
  • Patent number: 9006820
    Abstract: A transistor includes a semiconductor body; a body region of a first conductivity type formed in the semiconductor body; a gate electrode formed partially overlapping the body region and insulated from the semiconductor body by a gate dielectric layer; a source diffusion region of a second conductivity type formed in the body region on a first side of the gate electrode; a trench formed in the semiconductor body on a second side, opposite the first side, of the gate electrode, the trench being lined with a sidewall dielectric layer; and a doped sidewall region of the second conductivity type formed in the semiconductor body along the sidewall of the trench where the doped sidewall region forms a vertical drain current path for the transistor.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: April 14, 2015
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventor: Hideaki Tsuchiko
  • Publication number: 20150091085
    Abstract: A MOS device with an isolated drain includes: a semiconductor substrate having a first conductivity type; a first well region embedded in a first portion of the semiconductor substrate, having a second conductivity type; a second well region disposed in a second portion of the semiconductor substrate, overlying the first well region and having the first conductivity type; a third well region disposed in a third portion of the semiconductor substrate, overlying the first well region having the second conductivity type; a fourth well region disposed in a fourth portion of the semiconductor substrate between the first and third well regions, having the first conductivity type; a gate stack formed over the semiconductor substrate; a source region disposed in a portion of the second well region, having the second conductivity type; and a drain region disposed in a portion of the fourth well region, having the second conductivity type.
    Type: Application
    Filed: September 27, 2013
    Publication date: April 2, 2015
    Applicant: MediaTek Inc.
    Inventors: Puo-Yu CHIANG, Yan-Liang JI
  • Patent number: 8994104
    Abstract: Techniques are disclosed for forming transistor devices having reduced parasitic contact resistance relative to conventional devices. The techniques can be implemented, for example, using a standard contact stack such as a series of metals on, for example, silicon or silicon germanium (SiGe) source/drain regions. In accordance with one example such embodiment, an intermediate boron doped germanium layer is provided between the source/drain and contact metals to significantly reduce contact resistance. Numerous transistor configurations and suitable fabrication processes will be apparent in light of this disclosure, including both planar and non-planar transistor structures (e.g., FinFETs), as well as strained and unstrained channel structures. Graded buffering can be used to reduce misfit dislocation. The techniques are particularly well-suited for implementing p-type devices, but can be used for n-type devices if so desired.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: March 31, 2015
    Assignee: Intel Corporation
    Inventors: Glenn A. Glass, Anand S. Murthy, Tahir Ghani
  • Patent number: 8994103
    Abstract: A lateral double-diffused metal-oxide-semiconductor transistor device includes a substrate having at least a shallow trench isolation formed therein, an epitaxial layer encompassing the STI in the substrate, a gate, and a drain region and a source region formed in the substrate at respective two sides of the gate. The epitaxial layer, the source region and the drain region include a first conductivity type. The gate includes a first portion formed on the substrate and a second portion extending into the STI.
    Type: Grant
    Filed: July 10, 2013
    Date of Patent: March 31, 2015
    Assignee: United Microelectronics Corp.
    Inventors: Wei-Lin Chen, Tseng-Hsun Liu, Kuan-Yu Chen, Chiu-Ling Lee, Chiu-Te Lee, Chih-Chung Wang
  • Patent number: 8987821
    Abstract: A lateral double-diffused metal-oxide-semiconductor (LDMOS) transistor device includes an enhancement implant region formed in a portion of an accumulation region proximate a P-N junction between body and drift drain regions. The enhancement implant region contains additional dopants of the same conductivity type as the drift drain region. There is a gap between the enhancement implant region and the P-N junction. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: March 24, 2015
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventor: Hideaki Tsuchiko
  • Patent number: 8987816
    Abstract: A method for forming CA power rails using a three mask decomposition process and the resulting device are provided. Embodiments include forming a horizontal diffusion CA power rail in an active layer of a semiconductor substrate using a first color mask; forming a plurality of vertical CAs in the active layer using second and third color masks, the vertical CAs connecting the CA power rail to at least one diffusion region on the semiconductor substrate, spaced from the CA power rail, wherein each pair of CAs formed by one of the second and third color masks are separated by at least two pitches.
    Type: Grant
    Filed: October 21, 2014
    Date of Patent: March 24, 2015
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Jason Stephens, Marc Tarabbia, Nader Hindawy, Roderick Augur
  • Patent number: 8987820
    Abstract: A LDMOS device includes a substrate having opposite first and second surfaces; a well region in a portion of the substrate; a gate structure over a portion of the substrate; a first doped region disposed in a portion of the well region from a first side; a second doped region disposed in the well region from a second side; a third doped region disposed in the first doped region; a fourth doped region disposed in the second doped region; a first trench in the third doped region, the first doped region, the well region, and the substrate adjacent to the first surface; a conductive contact in the first trench; a second trench in the substrate adjacent to the second surface; a first conductive layer in second trench; and a second conductive layer over the second surface of the substrate and the first conductive layer.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: March 24, 2015
    Assignee: Vanguard International Semiconductor Corporation
    Inventors: Tsung-Hsiung Lee, Jui-Chun Chang
  • Patent number: 8987810
    Abstract: A semiconductor device has an FET of a trench-gate structure obtained by disposing a conductive layer, which will be a gate, in a trench extended in the main surface of a semiconductor substrate, wherein the upper surface of the trench-gate conductive layer is formed equal to or higher than the main surface of the semiconductor substrate. The conductive layer of the trench gate is formed to have a substantially flat or concave upper surface and the upper surface is formed equal to or higher than the main surface of the semiconductor substrate. After etching of the semiconductor substrate to form the upper surface of the conductive layer of the trench gate, a channel region and a source region are formed by ion implantation so that the semiconductor device is free from occurrence of a source offset.
    Type: Grant
    Filed: January 31, 2014
    Date of Patent: March 24, 2015
    Assignee: Renesas Electronics Corporation
    Inventors: Hiroshi Inagawa, Nobuo Machida, Kentaro Ooishi
  • Publication number: 20150076597
    Abstract: A semiconductor component and a method for producing a semiconductor component are described. The semiconductor component includes a semiconductor body including an inner zone and an edge zone, and a passivation layer, which is arranged at least on a surface of the semiconductor body adjoining the edge zone. The passivation layer includes a semiconductor oxide and that includes a defect region having crystal defects that serve as getter centers for contaminations.
    Type: Application
    Filed: September 15, 2014
    Publication date: March 19, 2015
    Inventors: Hans-Joachim Schulze, Manfred Pfaffenlehner, Markus Schmitt
  • Publication number: 20150076596
    Abstract: A semiconductor device includes a first type region including a first conductivity type and a second type region including a second conductivity type. The semiconductor device includes a channel region extending between the first type region and the second type region. The semiconductor device includes a gate electrode surrounding at least some of the channel region. A first gate edge of the gate electrode is separated a first distance from a first type region edge of the first type region and a second gate edge of the gate electrode is separated a second distance from a second type region edge of the second type region. The first distance is less than the second distance.
    Type: Application
    Filed: September 19, 2013
    Publication date: March 19, 2015
    Applicant: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Jean-Pierre Colinge, Tsung-Hsing Yu, Yeh Hsu, Chia-Wen Liu, Carlos H. Diaz
  • Patent number: 8981474
    Abstract: A semiconductor device formed on a silicon-on-insulator substrate includes a gate electrode, a gate insulation film, a drain diffusion region, a drift region, a body region, a plurality of source diffusion regions, and a plurality of charge collection diffusion regions. The source diffusion regions and charge collection diffusion regions are of mutually opposite conductivity types, and alternate with one another in the direction paralleling the width of the gate electrode. The half-width of each source diffusion region is equal to or less than the length of the gate electrode plus the half-length of the drift region.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: March 17, 2015
    Assignee: LAPIS Semiconductor Co., Ltd.
    Inventor: Noriyuki Miura
  • Patent number: 8981477
    Abstract: A laterally-diffused metal oxide semiconductor (LDMOS) device and method of manufacturing the same are provided. The LDMOS device can include a drift region, a source region and a drain region spaced a predetermined interval apart from each other in the drift region, a field insulating layer formed in the drift region between the source region and the drain region, and a first P-TOP region formed under the field insulating layer. The LDMOS device can further include a gate polysilicon covering a portion of the field insulating layer, a gate electrode formed on the gate polysilicon, and a contact line penetrating the gate electrode, the gate polysilicon, and the field insulating layer.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: March 17, 2015
    Assignee: Dongbu Hitek Co., Ltd.
    Inventor: Nam Chil Moon
  • Patent number: 8981472
    Abstract: A high-voltage MOS transistor has a semiconductor substrate formed with a first well of a first conductivity type in which a drain region and a drift region are formed and a second well of a second, opposite conductivity type in which a source region and a channel region are formed, a gate electrode extends over the substrate from the second well to the first well via a gate insulation film, wherein there is formed a buried insulation film in the drift region underneath the gate insulation film at a drain edge of the gate electrode, there being formed an offset region in the semiconductor substrate between the channel region and the buried insulation film, wherein the resistance of the offset region is reduced in a surface part thereof by being introduced with an impurity element of the first conductivity type with a concentration exceeding the first well.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: March 17, 2015
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Takae Sukegawa, Youichi Momiyama
  • Patent number: 8981475
    Abstract: A lateral diffusion metal oxide semiconductor (LDMOS) comprises a semiconductor substrate having an STI structure in a top surface of the substrate, a drift region below the STI structure, and a source region and a drain region on opposite sides of the STI structure. A gate conductor is on the substrate over a gap between the STI structure and the source region and partially overlaps the drift region. A conformal dielectric layer is on the top surface and forms a mesa above the gate conductor. The conformal dielectric layer has a conformal etch-stop layer embedded therein. Contact studs extend through the dielectric layer and the etch-stop layer, and are connected to the source region, drain region, and gate conductor. A source electrode contacts the source contact stud, a gate electrode contacts the gate contact stud, and a drain electrode contacts the drain contact stud. A drift electrode is over the drift region.
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: March 17, 2015
    Assignee: International Business Machines Corporation
    Inventors: Santosh Sharma, Yun Shi, Anthony K. Stamper
  • Patent number: 8981476
    Abstract: A semiconductor device includes: first and second n-type wells formed in p-type semiconductor substrate, the second n-type well being deeper than the first n-type well; first and second p-type backgate regions formed in the first and second n-type wells; first and second n-type source regions formed in the first and second p-type backgate regions; first and second n-type drain regions formed in the first and second n-type wells, at positions opposed to the first and second n-type source regions, sandwiching the first and the second p-type backgate regions; and field insulation films formed on the substrate, at positions between the first and second p-type backgate regions and the first and second n-type drain regions; whereby first transistor is formed in the first n-type well, and second transistor is formed in the second n-type well with a higher reverse voltage durability than the first transistor.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: March 17, 2015
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Kazuhiko Takada
  • Patent number: 8981473
    Abstract: According to one embodiment, in a dielectric isolation substrate, an insulating film having a first thickness is provided on a semiconductor substrate. A semiconductor layer of a first conductivity type having a second thickness is provided on the insulating film. An impurity diffusion layer of a second conductivity type is provided partially in a lower portion of the semiconductor layer and is in contact with the insulating film.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: March 17, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Ryo Wada, Kaori Yoshioka, Norio Yasuhara, Tomoko Matsudai, Yuichi Goto
  • Patent number: 8975662
    Abstract: Source zones of a first conductivity type and body zones of a second conductivity type are formed in a semiconductor die. The source zones directly adjoin a first surface of the semiconductor die. A dielectric layer adjoins the first surface. Polysilicon plugs extend through the dielectric layer and are electrically connected to the source and the body zones. An impurity source containing at least one metallic recombination element is provided in contact with deposited polycrystalline silicon material forming the polysilicon plugs and distant to the semiconductor die. Atoms of the metallic recombination element, for example platinum atoms, may be diffused out from the impurity source into the semiconductor die to reliably reduce the reverse recovery charge.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: March 10, 2015
    Assignee: Infineon Technologies Austria AG
    Inventors: Michael Hutzler, Ralf Siemieniec, Oliver Blank
  • Patent number: 8975693
    Abstract: A semiconductor device includes a semiconductor substrate of a first conductivity type, a buried layer a second conductivity type different from the first conductivity type on the substrate and an epitaxial layer of the second conductivity type on the buried layer. The device further includes a pocket well of the first conductivity type in the epitaxial layer, a first drift region in the epitaxial layer at least partially overlapping the pocket well, a second drift region in the epitaxial layer and spaced apart from the first drift region, and a body region of the first conductivity type in the pocket well. A gate electrode is disposed on the body region, the pocket well and the first drift region and has an edge overlying the epitaxial region between the first and second drift regions.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: March 10, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Eung-Kyu Lee, Jae-June Jang, Hoon Chang, Min-Hwan Kim, Sung-Ryoul Bae, Dong-Eun Jang
  • Publication number: 20150061005
    Abstract: A semiconductor device includes a first type region including a first conductivity type. The semiconductor device includes a second type region including a second conductivity type. The semiconductor device includes a third type region including a third conductivity type that is opposite the first conductivity type, the third type region covering the first type region. The semiconductor device includes a fourth type region including a fourth conductivity type that is opposite the second conductivity type, the fourth type region covering the second type region. The semiconductor device includes a channel region extending between the third type region and the fourth type region.
    Type: Application
    Filed: August 29, 2013
    Publication date: March 5, 2015
    Applicant: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Richard Kenneth Oxland, Martin Christopher Holland, Krishna Kumar Bhuwalka
  • Patent number: 8969161
    Abstract: A semiconductor device includes: an active region configured over a substrate to include a first conductive-type first deep well and second conductive-type second deep well forming a junction therebetween. A gate electrode extends across the junction and over a portion of first conductive-type first deep well and a portion of the second conductive-type second deep well. A second conductive-type source region is in the first conductive-type first deep well at one side of the gate electrode whereas a second conductive-type drain region is in the second conductive-type second deep well on another side of the gate electrode. A first conductive-type impurity region is in the first conductive-type first deep well surrounding the second conductive-type source region and extending toward the junction so as to partially overlap with the gate electrode and/or partially overlap with the second conductive-type source region.
    Type: Grant
    Filed: October 3, 2013
    Date of Patent: March 3, 2015
    Assignee: Magnachip Semiconductor, Ltd.
    Inventors: Jae-Han Cha, Kyung-Ho Lee, Sun-Goo Kim, Hyung-Suk Choi, Ju-Ho Kim, Jin-Young Chae, In-Taek Oh
  • Patent number: 8969953
    Abstract: Self-aligned charge balanced semiconductor devices and methods for forming such devices are disclosed. One or more planar gates are formed over a semiconductor substrate of a first conductivity type. One or more deep trenches are etched in the semiconductor self-aligned to the planar gates. The trenches are filled with a semiconductor material of a second conductivity type such that the deep trenches are charge balanced with the adjacent regions of the semiconductor substrate Source and body regions are formed by implanting dopants onto the filled trenches. This process can form self-aligned charge balanced devices with a cell pitch less than 12 microns.
    Type: Grant
    Filed: August 26, 2013
    Date of Patent: March 3, 2015
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: John Chen, Yeeheng Lee, Lingpeng Guan, Moses Ho, Wilson Ma, Anup Bhalla, Hamza Yilmaz
  • Patent number: 8963235
    Abstract: A semiconductor structure of a trench power device comprises a base, an insulating layer, and a source conductive layer. The base includes a first trench etched from the top surface thereof, and two portions of the top surface arranged at two opposite sides of the first trench are respectively defined as two top contacting surfaces. Part of the first trench is filled with the insulating layer, and two inner walls of a non-filled portion of the first trench are respectively defined as two side contacting surfaces without contacting the insulating layer. The source conductive layer is embedded in the insulating layer. Thus, when a metallic layer is integrally formed on the semiconductor structure and connects the top contacting surfaces and the side contacting surfaces, the top contacting surfaces and the side contacting surfaces are configured to be a Schottky barrier interface.
    Type: Grant
    Filed: October 25, 2013
    Date of Patent: February 24, 2015
    Assignee: Sinopower Semiconductor, Inc.
    Inventor: Po-Hsien Li
  • Patent number: 8957475
    Abstract: A laterally diffused metal oxide semiconductor (LDMOS) device, and a method of manufacturing the same are provided. The LDMOS device can include a drain region of a bootstrap field effect transistor (FET), a source region of the bootstrap FET, a drift region formed between the drain region and the source region, and a gate formed at one side of the source region and on the drift region.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: February 17, 2015
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Nam Chil Moon
  • Patent number: 8952553
    Abstract: The present teaching provides a semiconductor device capable of relaxing stress transferred to a contact region during wire bonding and improving reliability of wire bonding. A semiconductor device comprises contact regions, an interlayer insulating film, an emitter electrode, and a stress relaxation portion. The contact regions are provided at a certain interval in areas exposing at a surface of a semiconductor substrate. The interlayer insulating film is provided on the surface of the semiconductor substrate between adjacent contact regions. The emitter electrode is provided on an upper side of the semiconductor substrate and electrically connected to each of the contact regions. The stress relaxation portion is provided on an upper surface of the emitter electrode in an area only above the contact regions. The stress relaxation portion is formed of a conductive material.
    Type: Grant
    Filed: February 16, 2009
    Date of Patent: February 10, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masaru Senoo, Tomohiko Sato
  • Patent number: 8952455
    Abstract: In the case of using an analog buffer circuit, an input voltage is required to be added a voltage equal to a voltage between the gate and source of a polycrystalline silicon TFT; therefore, a power supply voltage is increased, thus a power consumption is increased with heat. In view of the foregoing problem, the invention provides a depletion mode polycrystalline silicon TFT as a polycrystalline silicon TFT used in an analog buffer circuit such as a source follower circuit. The depletion mode polycrystalline silicon TFT has a threshold voltage on its negative voltage side; therefore, an input voltage does not have to be increased as described above. As a result, a power supply voltage requires no increase, thus a low power consumption of a liquid crystal display device in particular can be realized.
    Type: Grant
    Filed: September 26, 2011
    Date of Patent: February 10, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Jun Koyama
  • Publication number: 20150035052
    Abstract: A method for forming CA power rails using a three mask decomposition process and the resulting device are provided. Embodiments include forming a horizontal diffusion CA power rail in an active layer of a semiconductor substrate using a first color mask; forming a plurality of vertical CAs in the active layer using second and third color masks, the vertical CAs connecting the CA power rail to at least one diffusion region on the semiconductor substrate, spaced from the CA power rail, wherein each pair of CAs formed by one of the second and third color masks are separated by at least two pitches.
    Type: Application
    Filed: October 21, 2014
    Publication date: February 5, 2015
    Inventors: Jason STEPHENS, Marc TARABBIA, Nader HINDAWY, Roderick AUGUR
  • Patent number: 8946769
    Abstract: A lateral device includes a gate region connected to a drain region by a drift layer. An insulation region adjoins the drift layer between the gate region and the drain region. Permanent charges are embedded in the insulation region, sufficient to cause inversion in the insulation region.
    Type: Grant
    Filed: January 30, 2014
    Date of Patent: February 3, 2015
    Assignee: MaxPower Semiconductor Inc.
    Inventors: Mohamed N. Darwish, Amit Paul
  • Patent number: 8941176
    Abstract: An embodiment of an integrated device includes a semiconductor body, in which an STI insulating structure is formed, laterally delimiting first active areas and at least one second active area in a low-voltage region and in a power region of the semiconductor body, respectively. Low-voltage CMOS components are housed in the first active areas. Formed in the second active area is a power component, which includes a source region, a body region, a drain-contact region, and at least one LOCOS insulation region, arranged between the body region and the drain-contact region and having a prominent portion that emerges from a surface of the semiconductor body, and an embedded portion inside it. The prominent portion of the LOCOS insulation region has a volume greater than that of the embedded portion.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: January 27, 2015
    Assignee: STMicroelectronics S.r.l.
    Inventors: Alessandro Causio, Paolo Colpani, Simone Dario Mariani
  • Patent number: 8932928
    Abstract: A power MOSFET includes a semiconductor substrate with an upper surface, a cavity of a first depth in the substrate whose sidewall extends to the upper surface, a dielectric liner in the cavity, a gate conductor within the dielectric liner extending to or above the upper surface, body region(s) within the substrate of a second depth, separated from the gate conductor in a lower cavity region by first portion(s) of the dielectric liner of a first thickness, and source region(s) within the body region(s) extending to a third depth that is less than the second depth. The source region(s) are separated from the gate conductor by a second portion of the dielectric liner of a second thickness at least in part greater than the first thickness. The dielectric liner has a protrusion extending laterally into the gate conductor away from the body region(s) at or less than the third depth.
    Type: Grant
    Filed: May 12, 2014
    Date of Patent: January 13, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Peilin Wang, Edouard D. de Fresart, Wenyi Li
  • Patent number: 8928074
    Abstract: Semiconductor devices and methods of making the devices are described. The devices can be junction field-effect transistors (JFETs) or diodes such as junction barrier Schottky (JBS) diodes or PiN diodes. The devices have graded p-type semiconductor layers and/or regions formed by epitaxial growth. The methods do not require ion implantation. The devices can be made from a wide-bandgap semiconductor material such as silicon carbide (SiC) and can be used in high temperature and high power applications.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: January 6, 2015
    Assignee: Power Integrations, Inc.
    Inventors: Lin Cheng, Michael Mazzola
  • Patent number: 8921934
    Abstract: An integrated circuit device includes a pad layer having a body portion with a first doping type laterally adjacent to a drift region portion with a second doping type, a trench formed in the pad layer, the trench extending through an interface of the body portion and the drift region portion, a gate formed in the trench and over a top surface of the pad layer along the interface of the body portion and the drift region portion, an oxide formed in the trench on opposing sides of the gate, and a field plate embedded in the oxide on each of the opposing sides of the gate.
    Type: Grant
    Filed: July 11, 2012
    Date of Patent: December 30, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Wai Ng, Hsueh-Liang Chou, Po-Chih Su, Ruey-Hsin Liu
  • Patent number: 8921190
    Abstract: A semiconductor structure and method of manufacture and, more particularly, a field effect transistor that has a body contact and method of manufacturing the same is provided. The structure includes a device having a raised source region of a first conductivity type and an active region below the raised source region extending to a body of the device. The active region has a second conductivity type different than the first conductivity type. A contact region is in electric contact with the active region. The method includes forming a raised source region over an active region of a device and forming a contact region of a same conductivity type as the active region, wherein the active region forms a contact body between the contact region and a body of the device.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: December 30, 2014
    Assignee: International Business Machines Corporation
    Inventors: Alan B. Botula, Alvin J. Joseph, Stephen E. Luce, John J. Pekarik, Yun Shi
  • Patent number: 8921933
    Abstract: A semiconductor structure and a method for operating the same are provided. The semiconductor structure includes a substrate, a first doped region, a second doped region, a third doped region, a first trench structure and a second gate structure. The first doped region is in the substrate. The first doped region has a first conductivity type. The second doped region is in the first doped region. The second doped region has a second conductivity type opposite to the first conductivity type. The third doped region having the first conductivity type is in the second doped region. The first trench structure has a first gate structure. The first gate structure and the second gate structure are respectively on different sides of the second doped region.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: December 30, 2014
    Assignee: Macronix International Co., Ltd.
    Inventors: Shyi-Yuan Wu, Wing-Chor Chan, Shih-Chin Lien, Cheng-Chi Lin
  • Patent number: 8916440
    Abstract: Semiconductor structures and methods of manufacture are disclosed herein. Specifically, disclosed herein are methods of manufacturing a high-voltage metal-oxide-semiconductor field-effect transistor and respective structures. A method includes forming a field-effect transistor (FET) on a substrate in a FET region, forming a high-voltage FET (HVFET) on a dielectric stack over a over lightly-doped diffusion (LDD) drain in a HVFET region, and forming an NPN on the substrate in an NPN region.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: December 23, 2014
    Assignee: International Business Machines Corporation
    Inventors: William F. Clark, Jr., Qizhi Liu, John J. Pekarik, Yun Shi, Yanli Zhang
  • Patent number: 8916930
    Abstract: A trenched power semiconductor device on a lightly doped substrate is provided. The device has a base, a plurality of trenches including at least a gate trench, a plurality of first heavily doping regions, a body region, a source doped region, a contact window, a second heavily doped region, and a metal layer. The trenches are formed in the base. The first heavily doped regions are beneath the trenches respectively and spaced from the bottom of the respective trench with a lightly doped region. The body region encircles the trenches and is away from the first heavily doped region with a predetermined distance. The source doped region is in an upper portion of the body region. The contact window is adjacent to the edge of the base. The second heavily doped region is below the contact window filled by the metal layer for electrically connecting the second heavily doped region.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: December 23, 2014
    Assignee: Super Group Semiconductor Co., Ltd.
    Inventors: Yuan-Shun Chang, Yi-Yun Tsai, Kao-Way Tu
  • Patent number: 8916913
    Abstract: The present disclosure discloses a high voltage semiconductor device and the associated methods of manufacturing. In one embodiment, the high voltage semiconductor device comprises: an epitaxial layer, a first low voltage well formed in the epitaxial layer; a second low voltage well formed in the epitaxial layer; a high voltage well formed in the epitaxial layer, wherein the second low voltage well is surrounded by the high voltage well; a first highly doping region formed in the first low voltage well; a second highly doping region and a third highly doping region formed in the second low voltage well, wherein the third highly doping region is adjacent to the second highly doping region; a field oxide formed in the epitaxial layer as a shallow-trench isolation structure; and a gate region formed on the epitaxial layer.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: December 23, 2014
    Assignee: Monolithic Power Systems, Inc.
    Inventors: Ji-Hyoung Yoo, Lei Zhang
  • Patent number: 8916935
    Abstract: A device includes a High-Voltage N-Well (HVNW) region have a first edge, and a High-Voltage P-Well (HVPW) region having a second edge adjoining the first edge. A first Shallow N-well (SHN) region is disposed over a lower portion of the HVNW region, wherein the first SHN region is spaced apart from the first edge by an upper part of the HVNW region. A second SHN region is disposed over a lower portion of the HVPW region, wherein the second SHN region is laterally spaced apart from the second edge. A Shallow P-well (SHP) region is disposed over the lower portion of the HVPW region, and is between the first SHN region and the second SHN region. The SHP region has a p-type impurity concentration higher than a p-type impurity concentration of the HVPW region. An isolation region is disposed over and contacting the SHP region.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: December 23, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Chien-Fu Huang
  • Patent number: 8916931
    Abstract: An N type layer made of an N type epitaxial layer in which an N+ type drain layer etc are formed is surrounded by a P type drain isolation layer extending from the front surface of the N type epitaxial layer to an N+ type buried layer. A P type collector layer is formed in an N type layer made of the N type epitaxial layer surrounded by the P type drain isolation layer and a P type element isolation layer, extending from the front surface to the inside of the N type layer. A parasitic bipolar transistor that uses the first conductive type drain isolation layer as the emitter, the second conductive type N type layer as the base, and the collector layer as the collector is thus formed so as to flow a surge current into a ground line.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: December 23, 2014
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Yasuhiro Takeda, Seiji Otake
  • Patent number: RE45449
    Abstract: A power semiconductor element having a lightly doped drift and buffer layer is disclosed. One embodiment has, underneath and between deep well regions of a first conductivity type, a lightly doped drift and buffer layer of a second conductivity type. The drift and buffer layer has a minimum vertical extension between a drain contact layer on the adjacent surface of a semiconductor substrate and the bottom of the deepest well region which is at least equal to a minimum lateral distance between the deep well regions. The vertical extension can also be determined such that a total amount of dopant per unit area in the drift and buffer layer is larger than a breakdown charge amount at breakdown voltage.
    Type: Grant
    Filed: April 30, 2013
    Date of Patent: April 7, 2015
    Assignee: Infineon Technologies AG
    Inventors: Markus Zundel, Franz Hirler, Armin Willmeroth